ECE 4413 / AME 4383

Control Systems Engineering

Instructor: Sesh Commuri

Prerequisites
ECE: ECE3793
AME: AME2533, MATH3113

Syllabus

1. Introduction to Control Systems (1 hours)
 - What is control?
 - Open Loop versus Closed Loop Control
 - Examples of Control Systems
 i. Speed Control (Watts Speed Governor)
 ii. Robot Control
 iii. Flight Control

2. Elements of Computer Control (1 hours)
 - Sensors
 - Actuators
 - Servo Amplifiers and Computers in Control
 - Control Requirements (Bandwidth, Settling Time, Cost Considerations)

3. Review of Mathematical Concepts (3 hours)
 - Laplace Transforms
 - Inverse Laplace Transforms
 - Solution of LTI Differential Equations
 - Basic MATLAB Operations

 - Transfer Functions and Impulse-Response Functions
 - Concept of Poles and Zeros
 - Modeling of Sensors
 - Modeling of Actuators
 - Block Diagram Representation of Systems
 - Simplification of Block Diagrams
 - State-Space Representation of Systems
 - Eigenvalues and Eigenvectors
 - Axes Systems and Notation, Translation, Rotation
 - Robot Modeling (Planar 2-DOF)
 - Aircraft Modeling
 i. Longitudinal Dynamics
 ➢ Longitudinal Characteristic Equation
 ➢ Short-period pitching oscillation
 ➢ Phugoid Mode
 ii. Lateral Dynamics
 ➢ Lateral Direction Characteristic Equation
 ➢ Roll-Subsidence Mode
 ➢ Spiral Mode
 ➢ Dutch-Roll Mode
5. Transient and Steady-State Response Analysis (12 hours)
 - First-Order Systems
 - Second-Order Systems
 - Third-Order Systems
 - Response Characteristics Using MATLAB
 - Steady-State Errors in Unity Feedback Systems
 - Effects of P-I-D Control Actions on System Performance
 - Handling Qualities of Aircraft
 i. Longitudinal Flying Qualities
 ii. Lateral-Direction Flying Qualities
 iii. The influence of Feedback

6. Frequency Response Analysis (9 hours)
 - Bode Diagrams and Plotting using MATLAB
 - Polar Plots and Plotting using MATLAB
 - Nyquist Stability Criteria
 - Stability Analysis
 - Relative Stability
 - Experimental Determination of Transfer Functions

7. Compensator Design (6 hours)
 - Lead Compensation
 - Lag Compensation
 - Lag-Lead Compensation

8. Discrete-Time Control (3 hours)
 - Difference Equations
 - Z transforms
 - Stability Analysis in Z Domain
 - Implementation of Digital Controllers

9. Practical PID Control (3 hours)
 - Tuning Rules for PID Controllers
 - Integrator Anti-Windup Control
 - Real-Time Considerations

 Exams (3 hours)

Total = 47 hours

Recommended Text

References

Schedule
2 Lectures per week; 1 hour 15 minutes per Lecture.

Assessment Methods Used
5 Assignments contributing to 10% of the final grade.
4 Quizzes contributing to 10% of the final grade.
1 Term Project contributing 20% of final grade.
2 Mid-Term Exams contributing to 30% each of the final grade (best of two).
1 Final Exam (Comprehensive) contributing to 30% of the final grade.