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Abstract—Accurate and non-invasive monitoring of hematopoi-
etic stem cell transplantation (HSCT) patients is crucial but
challenging due to factors including the limitations of tradi-
tional biopsies and the intensive manual analysis required for
emerging comprehensive imaging techniques like FLT PET/CT.
Furthermore, low-dose CT resolution in this vulnerable patient
population often hinders precise vertebral body segmentation, a
critical step for comprehensive marrow compartment assessment.
This paper presents a novel approach for per-vertebral body in-
stance segmentation in HSCT FLT PET/CT scans, addressing the
inherent difficulties of low-resolution data and limited annotated
training cases. Our method leverages an attention-gated U-Net
architecture, significantly enhanced by a novel data augmentation
strategy involving downsampled high-resolution VerSe dataset
images. We demonstrate, for the first time, accurate vertebral
body segmentation on this challenging low-resolution dataset.
Our approach integrates an attention-based U-Net model and is
compared against TotalSegmentator as a baseline, showing supe-
rior segmentation performance, particularly in the anatomically
complex upper spine where TotalSegmentator exhibits subopti-
mal results. To the best of our knowledge, this work reports
fully automated high-quality instance segmentation results for
individual vertebral bodies in CT volumes of HSCT FLT PET/CT
patients for the first time, promising to facilitate automation
for critical quantitative assessments like SUV measurement and
ultimately improve long-term patient management and outcomes.

Index Terms—vertebrae segmentation, HSCT, FLT, PET/CT.

I. INTRODUCTION

Hematopoietic stem cell transplantation (HSCT) serves as a
crucial and often last-resort intervention for patients diagnosed
with severe hematologic disorders. This procedure involves
the infusion of healthy stem cells to restore normal blood cell
production, offering a potential cure for disorders including
leukemia, lymphoma, and aplastic anemia. HSCT is a com-
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plex, multi-stage process involving marrow ablation, donor cell
infusion, and subsequent hematopoietic recovery [1].

Traditionally, post-transplant monitoring has relied on inva-
sive single aspirate bone marrow biopsies, which pose risks
such as infection and patient discomfort. Importantly, single
aspirate biopsies often suffer from sampling bias and are inher-
ently incapable of providing a comprehensive characterization
of the entire full-body marrow compartment. For instance, a
single aspirate biopsy drawn from the pelvis (typical) may fail
to reveal a recurrence of cancer cells in a spinal vertebra or in
the sternum leading to relapse that could prove fatal to the pa-
tient. To address this significant inherent shortcoming of single
aspirate biopsies, emerging advances in noninvasive imaging
techniques and molecular biomarkers are transforming post-
transplant assessment by offering dramatically more compre-
hensive insight into hematopoietic recovery and disease status,
with the promise of ultimately improving patient management
and long-term prognosis in the clinical setting. Among these
emerging techniques, full-body FLT PET/CT imaging has
shown strong potential for playing a critical role in assessing
disease progression and treatment response in oncology by
providing comprehensive, high-sensitivity metabolic insights
without the need for invasive biopsies [1]–[5].

However, while full-body FLT PET/CT imaging offers im-
portant advantages including comprehensive, high-sensitivity,
and high-specificity assessment of the entire full-body marrow
cavity, its widespread clinical translation is hindered by some
significant challenges that still remain.

First, interpretation of these images generally requires in-
tensive labor by an expert physician to perform manual Region
of Interest (ROI) designation and analysis across numer-
ous anatomical structures (e.g., all vertebral bodies, sternum,
pelvis, certain organs). Second, radiation dosing considerations
in this inherently vulnerable patient population necessitate
low-dose CT protocols. This results in poor CT resolution,
making it extremely difficult to perform accurate identification
of individual bones and their respective marrow cavities.
Accurate identification of intervertebral boundaries along the
spinal column in particular remains a significant and persistent
challenge, both for physicians attempting to perform manual
segmentation and for machine algorithms, at least because of
indistinct anatomical margins resulting from dosing consid-
erations which typically lead to poor CT resolution in full-
body PET/CT volumes acquired from HSCT patients [6]. The
development of new accurate and fully automated machine
algorithms for vertebral body segmentation in the CT low dose



regime thus remains an important open problem, the solution
to which is urgently needed in order to enable clinically
practical robust quantitative analysis including fully-automated
per-bone standardized uptake value (SUV) measurements in
the PET modality which are critical for comprehensive moni-
toring of disease progression and treatment response in HSCT
patients.

Recent advances in deep learning have introduced novel
approaches for analyzing medical images, particularly through
pattern recognition models that facilitate automated interpre-
tation. In this context, segmentation models play an important
role by identifying and delineating regions of interest in com-
plex medical images [7]. Among deep learning architectures,
U-Net has gained prominence in medical image analysis due
to its ability to preserve important structural details while oper-
ating effectively even in cases of severely limited training data
and/or poor image quality [8]. A widely recognized extension
of this architecture, nnU-Net, has been successfully employed
as a benchmark model for medical image segmentation. One
of its notable applications is TotalSegmentator, a tool designed
for general medical image segmentation tasks and for the CT
modality in particular [9]–[12]. However, in our specific use
case of low-resolution HSCT FLT PET/CT scans, TotalSeg-
mentator demonstrated suboptimal performance against the
CT modality and even complete failure on some vertebrae,
particularly in the segmentation of the upper spine where
anatomical complexities pose additional challenges not only
for machine algorithms but even for expert physicians per-
forming manual segmentations. While TotalSegmentator was
utilized for PET/CT in [10], it was applied only for organs
and not for vertebrae, underscoring the unique and unsolved
challenges posed by vertebral segmentation in this specific
clinical context and data modality.

In this paper, we address these critical challenges and
the identified segmentation gap by introducing a novel and
highly specialized deep learning framework for accurate per-
vertebral body instance segmentation in low-resolution FLT
PET/CT scans of HSCT patients. As is typical in many
practical medical imaging scenarios, we faced the difficult
problem of a severe paucity of training data – which rep-
resents a significant challenge impeding the development of
effective practical deep learning algorithms. A cornerstone
of our approach is a new and effective data augmentation
strategy designed to overcome this severe paucity of annotated
clinical training samples. We leverage cases from the well-
established VerSe dataset [13], [14] to create a more robust and
relevant training corpus by resampling these high-resolution
images and processing the corresponding ground truth labels
to precisely match the 5mm slice thickness of our clinical
cases as well as satisfy the need to extract accurate SUV
measurements from the marrow cavities of the vertebral bodies
only. We propose an attention-based U-Net model specifically
tailored for upper spine segmentation, which demonstrates
superior segmentation performance on low-resolution PET/CT
images of HSCT patients compared to the small number
of existing benchmarks such as [6], [15], as well as to

TotalSegmentator in this low-resolution problem domain. As
shown by our results given in Table I below, our proposed U-
Net architecture provides a significant performance advantage
relative to TotalSegmentator on some regions of the spine; the
inherent difficulty of this problem is further demonstrated by
TotalSegmentator’s failure on some vertebrae including most
notably C2-C6 and T5-T6. To the best of our knowledge,
this paper represents the first study to successfully perform
accurate automated segmentation of the individual vertebral
bodies in low-resolution PET/CT scans of HSCT patients
while achieving high precision as quantified by Dice scores.
Moreover our proposed method accomplishes this without
relying on cues from the PET modality, making it applicable at
early observation points where the PET signature is expected
to be low. Our findings highlight the profound potential of
deep learning in overcoming image quality constraints and
illustrate how creative data augmentation strategies can be
used to compensate for severe paucity of training data. In
a larger context, our proposed segmentation methodology
provides a tangible step towards development and clinical
translation of fully automated quantitative assessments such as
per-bone SUV measurements with potential to enhance patient
outcomes and long-term prognosis.

II. RELATED WORK

Automated vertebrae segmentation from CT scans is a
critical medical imaging task supporting diagnosis, treatment
planning, and surgical navigation. Research in this domain
has evolved from traditional image processing to advanced
deep learning, consistently aiming for enhanced accuracy and
robustness. This section provides an overview of recent ad-
vances, highlighting methodologies and the specific challenges
our current work addresses.

Early segmentation relied on classical methods like
intensity-based thresholding, active shape models (ASMs),
and deformable models. While foundational, these techniques
often struggled with spinal anatomical variability, noise, ar-
tifacts, and required extensive manual initialization, limiting
their generalizability across diverse patient populations and
imaging protocols [16]–[18].

Deep learning has revolutionized medical image analysis.
For example, recent Transformer models capable of captur-
ing global contextual information include VerteFormer [19]
(Vision Transformer with ED and GIE blocks) and LumVert-
CancNet [20] (Swin Transformer for centroid localization and
hybrid encoder-decoder). While these models represent the
current state-of-the-art on high-resolution general CT data,
their generalizability to low-dose, low-resolution clinical data
from specific cohorts like HSCT patients and their inherent
computational demands require further investigation for prac-
tical clinical deployment.

Traditional deep learning approaches often employ con-
volutional neural networks (CNNs) and fully convolutional
networks (FCNs). Chen et al. [21] proposed an FCN-based
framework integrating a hidden Markov model, achieving high
identification rates. Klein et al. [22] introduced VertDetect, a



3D vertebral segmentation model leveraging a shared CNN
backbone and graph convolutional network (GCN), achieving
a Dice similarity coefficient (DSC) of 0.883. Other works
combine CNNs with recurrent networks; Liao et al. [23] used
a multi-task 3D FCN with a bidirectional recurrent neural net-
work, while Lessmann et al. [24] proposed an iterative FCN.
Despite their robust performance, these models often demand
extensive annotated datasets which are scarce in specialized
clinical contexts like low-dose HSCT imaging. These models
may also struggle with the fine-grained details and indistinct
boundaries prevalent in low-resolution acquisitions.

U-Net [8] remains a foundational architecture in biomed-
ical image segmentation due at least in part to its effective
preservation of structural details. Falk, et al. [25], for example,
applied U-Net broadly for cell detection and analysis. The
Attention U-Net [26] in particular is an important U-Net
variation that uses attention gates for improved feature focus.
The general effectiveness of U-Net including U-Net variants in
medical image segmentation has also been well demonstrated
in the VerSe Challenge [7], [13].

However, while U-Net performance is generally robust
in a wide variety of medical image segmentation problems
importantly including many where limited training data is a
concern, obtaining good performance against extremely low-
resolution and low-contrast clinical data such as the HSCT
patients scans we consider in this paper remains challenging.

For example, Carson et al. employed an ensemble of U-Nets
to perform approximate segmentation of individual vertebral
bodies in low-dose PET/CT scans of HSCT patients in [6].
Their method involves first using the CT data to obtain a
segmentation of the spinal column as a unit and then using
the PET data to find a best axial plane for approximating each
intervertebral boundary. This approach suffers from two main
limitations. First, because each approximated intervertebral
boundary is constrained to lie entirely within a single axial
plane, the method is inherently incapable of accounting for
the natural curvature of the spine which can introduce signifi-
cant segmentation errors particularly in the smaller vertebrae.
Second, since the segmentation of individual vertebral bodies
relies on having a strong PET signature, their method may
not be applicable at early observation points before or soon
after transplant (e.g., 1 day before and/or 3 and 5-9 days post-
HSCT) when early detection or prediction of events such as
graft failure and relapse could be most beneficial in terms of
improving patient outcomes.

The availability of large-scale annotated datasets such as
Sekuboyina et al.’s 374 multi-detector spine CT scans [13]
and Liebl et al.’s VerSe 2020 dataset with 4142 vertebrae
annotations [14] has significantly facilitated and positively
impacted vertebrae segmentation research. However, a critical
scarcity still persists for datasets specific to low-resolution
clinical protocols in specialized patient populations such as
the low-dose FLT PET/CT HSCT patients we consider in this
paper. A key component of our contribution in this paper is
to demonstrate how an innovative augmentation strategy can
bridge this domain gap, enabling the relatively rich availability

of labeled segmentation training samples in datasets such as
VerSe to be leveraged for alleviating the profound paucity of
training samples available with small cohort low-dose datasets
such as the HSCT patient scans considered here.

In summary, while significant progress has been made in au-
tomated vertebrae segmentation through advanced deep learn-
ing, the specific challenges of low-resolution, low-dose clinical
data in vulnerable populations such as HSCT patients coupled
with a profound paucity of annotated data represent a critical
unmet need that is impeding the development of practical fully
automatic machine segmentation and SUV measurement algo-
rithms that could play a role in facilitating widespread clinical
translation of full-body FLT PET/CT imaging in the treatment
of HSCT patients. We directly address these limitations in
this paper by developing a highly specialized framework for
robust and accurate vertebral body segmentation under such
constrained conditions.

III. METHODOLOGY

Developing robust machine learning models for medical
image segmentation generally requires large quantities of high-
quality labeled data. However, in many medical imaging
applications, particularly at the research stage, large numbers
of data samples are simply not available. Moreover, even
when large quantities of data are available, acquiring com-
prehensive annotations is generally labor-intensive, sometimes
constrained by ethical considerations, and may also be ham-
pered by limited expert availability. In this study, we faced a
significant data paucity issue with access to only 27 labeled
low-resolution FLT PET/CT clinical volumes from 18 patients
– thus rendering the problem of how to train a generalizable
segmentation model for vertebral bodies exceedingly challeng-
ing. The CT voxel resolution was fixed at 1.17 mm × 1.17
mm × 5.00 mm due to dosing considerations while the PET
data were acquired isotropically at a voxel resolution of 4
mm × 4 mm × 4 mm. In addition to the small cohort size
and corresponding general lack of adequate training samples,
the very thick 5 mm CT axial slice spacing in this low-
dose data is a primary factor obscuring the intervertebral
boundaries, especially in the cervical region, and making
individual vertebral body segmentation difficult for machines
and even for human experts. Also, because we desire a fully
automatic solution that, unlike the previous methods given
in [6] and [15], can be applied at early observation points
when the PET signature may be very low (i.e., at -1, +3, +5-9
days relative to transplant), we sought an approach that could
rely on the CT volumes alone for performing vertebral body
instance segmentation without depending on cues from the
PET modality.

To address the significant data paucity limitation, we placed
data augmentation at the center of our strategy and sought
a feasible way to leverage the publicly available VerSe
dataset [13], [14] to expand our training corpus. Doing so was
not entirely obvious and straightforward for two main reasons:

• First, the various images in the VerSe dataset have a
variety of voxel spacings ranging from 0.6 mm to 2.5 mm



that are isotropic in some cases and anisotropic in others.
Resampling the VerSe CT data to match the 1.17 mm ×
1.17 mm × 5.00 mm voxel spacing of our HSCT patient
scans, thus making the resampled VerSe images appear
as though they had been acquired under the imaging
conditions of our clinical protocol, was straightforward;
we accomplished this using the Spacingd transform
provided by MONAI with trilinear interpolation.1 The
slightly tricky aspect lies in realizing that the corre-
sponding VerSe ground truth label images must also be
resampled to the same resolution, but that a different
interpolation scheme is required since the ground truth
labels must take integer values. We called Spacingd
with nearest neighbor interpolation to resample the labels.

• Second, our ultimate goal is to develop an accurate, fully
automatic technique for extracting clinically significant
SUV measurements from the marrow cavity of each
vertebral body. This results in an anatomical mismatch
with the VerSe ground truth data wherein the entire
vertebra is labeled including the vertebral body, pedicles,
lamina, and the spinous, transverse, and superior articular
processes. Consequently, for both training and evaluation
it was necessary for us to process the VerSe ground
truth to remove the pedicles, lamina, and processes. We
performed this processing at the higher native VerSe
resolution prior to resampling the CT data and labels.

Our processing to remove the unwanted structures from the
VerSe ground truth begins by applying a 2D morphological
opening in axial planes with a dynamically sized disk-shaped
structuring element. Each image of VerSe ground truth labels
was first converted to the RAS orientation to ensure consis-
tency with respect to the directionality of the labels associated
with the spinous process relative to those associated with the
main vertebral body. The radius of the structuring element
was dynamically adjusted on a per-slice basis, guided by the
pixel area of the vertebra labels in the current axial slice. The
reason for dynamically adjusting the structuring element size
was to account for the variation in the size of the vertebral
body in traversing from the cervical region through to the
lumbar region. Within each axial slice, the opening results in
a binary image where the pedicles, lamina, and processes are
either separated from the main vertebral body or eradicated
altogether. We then apply connected component labeling with
region removal to retain only the labels associated with the ver-
tebral body. Since connected components corresponding to one
or more of the vertebral processes may actually have a larger
area than the component corresponding to the vertebral body,
particularly in the lumbar region, it is not sufficient to simply
retain the largest connected component. Instead, to identify the
vertebral body while rejecting the unwanted structures in the
labels image, we retain the connected component lying closest
to the average spatial centroid computed across the last five
slices processed (with obvious modification to account for the
first few axial slices in the cervical region).

1https://docs.monai.io/en/stable/transforms.html

Fig. 1. Processing to remove unwanted structures from the VerSe ground truth
labels. Upper left: example axial plane from the original VerSe CT volume.
Upper right: axial binary label image associated with the vertebra. Lower left:
result of the morphological opening. Lower right: binary mask corresponding
to the vertebral body only, obtained by connected components analysis.

An example of this processing is shown in Fig. 1 where the
obtained binary mask corresponding to the labels associated
with the vertebral body only is shown in the lower right panel.
Once the unwanted structures are removed from the VerSe
ground truth labels associated with all vertebrae, both the CT
and ground truth volumes are resampled to a voxel spacing
of 1.17 × 1.17 × 5 mm using MONAI as described above.
An example is given in Fig. 2, where the upper panel shows
the original VerSe CT data with ground truth labels overlayed
while the lower panel shows the downsampled CT data with
processed and downsampled ground truth overlayed.

By making augmentation the cornerstone of our pipeline,
we significantly enhanced the diversity and relevance of the
training data, directly improving the robustness and clinical
applicability of our segmentation model under severe data
constraints.

A. Network Architecture

We employed the attention gated U-Net architecture, follow-
ing the design proposed by Oktay et al. [26]. This architecture
was specifically chosen for its ability to integrate attention
mechanisms into the standard U-Net framework, which selec-
tively emphasizes relevant image regions and features. This
capability is particularly important for improving segmentation
accuracy in our challenging low-resolution, low-contrast med-
ical images, where indistinct boundaries and subtle features
might otherwise be overlooked. The architecture is a fully 3D
U-Net, making it inherently suitable for volumetric medical
image segmentation.

The encoder branch comprises five layers of residual units,
where each unit consists of convolutional blocks incorporating
skip connections. These residual connections are vital for miti-
gating the vanishing gradient problem, enabling the training of
deeper networks and promoting more effective gradient flow.
All convolutions throughout the network are 3D convolutions,



Fig. 2. Processing to remove unwanted structures from the VerSe ground truth
and downsample both ground truth and CT data. Upper: original VerSe CT
data with ground truth overlayed; both shown at native VerSe voxel resolution.
Lower: result after processing to remove pedicles, lamina, and processes and
downsampling to match the poor CT resolution of our HSCT patient CT
volumes. The red bar indicates axial slice while yellow indicates sagittal.

preserving the spatial context in all three dimensions. The
channel configuration systematically scales, starting with 16
channels in the initial layer and expanding to 256 channels in
the final encoder layer.

To prevent overfitting, dropout regularization is applied
selectively within the encoder: the first two layers have no
dropout, while the third, fourth, and final layers employ
dropout rates of 0.1, 0.2, and 0.3, respectively. This selective
application allows for robust feature learning in earlier layers
while introducing regularization in deeper layers more prone
to overfitting. The decoder branch incorporates attention gates
before each up-convolution operation, directing the network’s
focus to the most salient spatial features of the input images.
Batch normalization is applied throughout the network to
stabilize training and accelerate convergence, and parametric
ReLU (PReLU) is utilized as the activation function, allowing
for learning the slope of the negative part of the rectifier,
thereby preventing the “dying ReLU” problem. The overall
network architecture is depicted in Fig. 3.

Despite its comprehensive capabilities, the model consists of
a relatively compact 4,787,484 trainable parameters, making
it lightweight and efficient for volumetric medical imaging
applications. This compact size, combined with the inclusion
of attention gates and residual connections, facilitates effective
feature extraction and robust segmentation performance while
still being amenable to clinical deployment.
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Fig. 3. Proposed attention gated U-Net architecture. The encoder (left)
consists of residual units with increasing channels and dropout, while the
decoder (right) incorporates attention gates before each up-convolution to
focus on salient features.

B. Data and Preprocessing

This study utilized 18F-fluorothymidine (FLT) PET/CT scan
data from hematopoietic stem cell transplantation (HSCT)
patients. The clinical dataset comprised 27 labeled scans
from 18 patients, with all manual annotations meticulously
performed by a registered trainee to ensure high accuracy for
model training and evaluation. As previously noted, the limited
sample size of these clinical cases underscored the necessity
for robust data augmentation strategies. The CT scans in our
clinical dataset had a coarse axial resolution with a slice
thickness of 5 mm. This low resolution significantly compli-
cated vertebral body segmentation due to reduced boundary
detail and inherent blur. Additionally, the dataset incorporated
temporal variations in FLT uptake, with scans acquired at one
day before transplantation, 5-9 days post-transplant, and 28
days post-transplant.

For training, our combined dataset consisted of 93 down-
sampled VerSe volumes and 27 clinical HSCT volumes. Model
validation was conducted using four independent clinical
HSCT volumes from four patients. The segmentation task
involved 26 distinct anatomical classes, covering individual
vertebral bodies. Class 0 (background) was explicitly excluded
from both the training loss calculation and Dice validation to
focus performance metrics solely on the anatomical structures
of interest. Due to its unique and often variable morphology



and lesser clinical significance in this context, the C1 vertebra
was omitted from training.

Preprocessing was applied to ensure data consistency and
quality. All images were standardized to the LPS (Left, Pos-
terior, Superior) coordinate system to maintain a consistent
anatomical orientation. CT intensities were normalized to a
standardized range of -100 to 250 Hounsfield Units (HU),
effectively normalizing tissue densities across different scans.
Images smaller than the designated patch size (96, 96, 64)
were padded accordingly to ensure uniform input dimensions
for the 3D convolutional network. Training samples were
generated through random patch extraction, a common strategy
to manage memory constraints with volumetric data and to
encourage the model to learn local features.

To further enhance robustness and mitigate overfitting given
the limited clinical data, conventional data augmentation
strategies were employed on the already VerSe-augmented
dataset, including small random elastic transformations to sim-
ulate realistic anatomical deformations, random affine trans-
formations (rotations/scaling/shearing) to enhance viewpoint
invariance, and random intensity shifts with an offset of 15%
relative to the original distribution, mimicking variations in
scanner parameters and patient attenuation.

C. Training Setup
The attention gated U-Net model was trained with a batch

size of 1, primarily due to memory constraints associated
with processing large 3D volumetric medical images. Training
was conducted over 750 epochs. The AdamW optimizer was
utilized for optimization, chosen for its strong performance
in deep learning applications, particularly with its decoupled
weight decay. A fixed learning rate of 1× 10−4 and a weight
decay (L2 regularization) of 1× 10−3 were applied.

The loss function was a composite of Dice loss and cross-
entropy loss with one-hot encoding. This combination is
standard practice in medical image segmentation; Dice loss
effectively handles class imbalance (e.g., small foreground ob-
jects like vertebrae against a large background) by maximizing
the overlap between predicted and ground truth segmentations,
while cross-entropy loss provides robust pixel-wise classifica-
tion.

To mitigate overfitting, which is a significant concern with
limited clinical data, data augmentation played a pivotal role,
leveraging both the spatial transformations and intensity-based
augmentations already described in Section III-B. Although
experiments with learning rate schedulers were conducted,
they were found to exacerbate overfitting rather than improve
generalization in this specific setup, suggesting that the fixed
learning rate combined with aggressive data augmentation
provided high-quality and effective regularization. The primary
evaluation metric for model performance during training and
validation was the Dice similarity coefficient, a widely ac-
cepted metric for segmentation accuracy.

D. Experimental Validation
To quantitatively evaluate our framework, we conducted

a comprehensive experimental validation, assessing both our

novel data augmentation strategy and comparative perfor-
mance against a leading state-of-the-art model.

First, we analyzed the impact of incorporating the down-
sampled VerSe dataset. Table I presents the results of a three-
fold cross-validation, summarizing the average Dice Similarity
Coefficient (DSC) across all vertebral bodies as well as
per-vertebra segmentation. Our findings reveal a substantial
improvement when the downsampled VerSe dataset was intro-
duced, with average Dice scores increasing by approximately
39% (e.g., from 0.537 to 0.751 for C4). This demonstrates the
significant role and viability of our data augmentation in over-
coming acute scarcity of annotated clinical data, underscoring
its potency for boosting segmentation model performance in
challenging clinical settings.

Second, we performed a comparative analysis against To-
talSegmentator [9], a state-of-the-art nnU-Net based model.
Both models were evaluated on four independent, previously
unseen clinical test cases, focusing particularly on the anatom-
ically complex and challenging upper spine regions where
segmentation is difficult due to intricate structures and the
lower image quality of low-dose CT. Detailed comparative
performance metrics are presented in Table I. We used the
publicly released TotalSegmentator model without retraining
or fine-tuning. As a general-purpose segmentation framework
trained on high-resolution CT data, TotalSegmentator remains
one of the most widely used tools in medical image segmenta-
tion and provides a practical off-the-shelf baseline. Retraining
the TotalSegmentator model with our domain-specific data in
this study was not feasible due to several factors, including:
(1) even with VerSe augmentation, our limited dataset size
is insufficient to support effective re-training of a model of
this size; (2) its broad multi-class output space is misaligned
with our focus on vertebral bodies only; and (3) adapting
the training pipeline, which is not fully documented for task-
specific retraining, would require substantial engineering effort
beyond the scope of this study. Thus, we do not present
TotalSegmentator as a competing method but rather as a rep-
resentative general-purpose benchmark. Its underperformance
in this context helps to highlight the unique challenges posed
by our clinical imaging domain and motivates the need for
tailored, domain-aware solutions like the one we propose.

As shown in Table I, our proposed model consistently
outperforms TotalSegmentator on all but three vertebrae. For
instance, our model achieves a Dice score of 0.781 ± 0.069
for C5 (vs. 0.633 ± 0.047 for TotalSegmentator) and a
remarkable 0.904 ± 0.038 for T10, (vs. 0.778 ± 0.273 for
TotalSegmentator). In addition, TotalSegmentator generally
exhibits a high sample standard deviation in the thoracic
region and even failure to segment the vertebral body in
some instances in the cervical and thoracic regions. These
data support our hypothesis that an attention-enhanced U-Net
coupled with domain-aware data augmentation can achieve
superior performance even under low-resolution constraints.
While TotalSegmentator delivers the best average Dice scores
for certain vertebrae (T2, T12, and L1), the performance
gain provided by TotalSegmentator on these vertebrae relative



TABLE I
AVERAGE DICE SCORES ± STANDARD DEVIATION PER VERTEBRA FROM
3-FOLD CROSS-VALIDATION FOR NO VERSE, WITH VERSE, AND TOTAL

SEGMENTATOR SETTINGS

Proposed

Vertebra
w/out VerSe

Augmentation
w/ VerSe

Augmentation
Total

Segmentator

C2 0.574 ± 0.126 0.730 ± 0.082 0.679 ± 0.053
C3 0.562 ± 0.154 0.755 ± 0.048 0.679 ± 0.051
C4 0.537 ± 0.160 0.751 ± 0.055 0.658 ± 0.043
C5 0.600 ± 0.129 0.781 ± 0.069 0.633 ± 0.047
C6 0.647 ± 0.113 0.796 ± 0.051 0.695 ± 0.045
C7 0.661 ± 0.105 0.777 ± 0.059 0.735 ± 0.056
T1 0.645 ± 0.085 0.797 ± 0.046 0.742 ± 0.093
T2 0.679 ± 0.086 0.824 ± 0.047 0.825 ± 0.054
T3 0.628 ± 0.095 0.848 ± 0.030 0.803 ± 0.130
T4 0.574 ± 0.134 0.839 ± 0.036 0.804 ± 0.119
T5 0.551 ± 0.153 0.841 ± 0.037 0.684 ± 0.309
T6 0.513 ± 0.182 0.835 ± 0.021 0.603 ± 0.301
T7 0.554 ± 0.258 0.868 ± 0.050 0.710 ± 0.285
T8 0.582 ± 0.214 0.879 ± 0.040 0.710 ± 0.270
T9 0.548 ± 0.229 0.885 ± 0.036 0.738 ± 0.277
T10 0.591 ± 0.169 0.904 ± 0.038 0.778 ± 0.273
T11 0.635 ± 0.172 0.902 ± 0.032 0.838 ± 0.101
T12 0.591 ± 0.268 0.907 ± 0.029 0.925 ± 0.030
L1 0.590 ± 0.299 0.907 ± 0.019 0.913 ± 0.027
L2 0.738 ± 0.147 0.928 ± 0.017 0.899 ± 0.065
L3 0.725 ± 0.178 0.923 ± 0.017 0.897 ± 0.091
L4 0.686 ± 0.213 0.926 ± 0.023 0.833 ± 0.259
L5 0.667 ± 0.151 0.844 ± 0.248 0.790 ± 0.327

to our model with VerSe augmentation is relatively small;
moreover, our model maintains highly competitive scores
across the entire spine, exhibiting exceptional robustness in
the most challenging anatomical areas where TotalSegmentator
has significant difficulty and high variability. These results
demonstrate our proposed model’s ability to accurately seg-
ment vertebral structures despite severe low-resolution con-
straints, making it a more robust and suitable choice for
critical clinical applications where high-quality imaging may
not always be available, e.g. due to dosing considerations
associated with particularly vulnerable patient populations.
Qualitative segmentation results providing visual evidence of
the proposed model’s precision are given in Fig. 4. Further
discussion, analysis, and implications for future research are
given in Section IV.

IV. CONCLUSION

In this paper we have illustrated how creative data aug-
mentation can in at least some instances be used to overcome
seemingly insurmountable data quality and data paucity prob-
lems. On the face of it, the initial appearance was that it would
be infeasible to consider augmenting our very limited HSCT
patient low-dose PET/CT dataset with high-resolution, ground
truth labeled VerSe data at least because of the stark resolution
differences and because each entire vertebra is labeled in the
VerSe ground truth whereas the vertebral body marrow cavity
must be isolated for SUV measurement in our application. One

(a) (b) (c) (d)

Fig. 4. 3D examples. (a)-(c): U-Net vertebral body instance segmentations
obtained by applying the proposed model with VerSe augmentation to low-
dose HSCT patient CT data. (d): typical volumetric difference map between
the delivered segmentation and ground truth for one validation sample; red
indicates misclassified voxels that disagree with ground truth.

of the key things that we have shown is that these challenges
can be successfully traversed by creatively processing the
VerSe ground truth at native (high) resolution to adapt it by
removing the unwanted structures, and then downsampling
both the VerSe CT data and the adapted ground truth labels
to generate meaningful additional labeled training samples
as though they had been originally acquired with the low-
dose imaging configuration required for our vulnerable HSCT
patient population.

This approach had a significant impact, making it possible
to train an attention-gated U-Net model to deliver fully auto-
mated, high-quality segmentations of the individual vertebral
bodies of the spinal column in HSCT patient low-dose FLT
PET/CT scans without relying on cues from the PET modality
for the first time.

This result is important for at least two reasons. First,
the ability to segment the individual vertebral bodies in low-
resolution CT data without relying on the PET modality means
that our technique can be applied at early observation points
when the PET signal may be weak. Combined with per-bone
SUV measurements, this could facilitate machine assisted or
even fully automatic early detection and prediction of graft
failure and relapse, potentially enabling life saving intervention
that would be impossible in current clinical practice. Second,
compared to current clinical practice which is largely based
on single aspirate biopsies for assessment of the post-HSCT
marrow compartment, this result opens the door to machine
assisted or even fully automatic assessment on a per-bone
basis, potentially alleviating the high physician time and labor
burden that currently impedes clinical translation of emerging
comprehensive imaging technologies such as FLT PET/CT.

The results in Table I show that our strategy for adapt-
ing VerSe data to meaningfully augment the limited dataset
of HSCT patient scans delivered a substantial performance
improvement of approximately 39% in average Dice score



over the entire spinal column compared to the same U-
Net architecture without VerSe augmentation. Broken out by
region, the average Dice score performance gain due to VerSe
augmentation was 28.69% for the cervical region, 46.60% for
the thoracic region, and 33.66% for the lumbar region.

Table I also shows comparative performance of the proposed
method against TotalSegmentator, a leading state-of-the-art
medical image segmentation solution. While TotalSegmen-
tator excels in generalized CT segmentation problems, on
the specialized low-dose low-resolution HSCT patient scans
considered here our VerSe augmented method provided a
consistent and significant performance advantage, particularly
in the upper cervical (C2-C7) and mid-thoracic (T4-T11)
spinal regions. In particular, compared to TotalSegmentator our
model achieved a Dice score improvement of 11.59% averaged
over the entire spine, broken out as gains of 12.74% for the
cervical region, 13.89% for the thoracic region, and 4.69% for
the lumbar region. In addition, as also shown in Table I, our
model achieved a lower variance in Dice score compared to
TotalSegmentator on 18 of the 23 vertebrae tested.

Our ongoing work is focused in a few key areas. First,
we are continuing to enroll new HSCT patients and acquire
additional FLT PET/CT scans at a variety of observation points
including 3, 5-9, and 28 days post-transplant. Second, we are
continuing the arduous and time consuming task of manually
generating ground truth annotations for our current backlog
of already-acquired but still unlabeled HSCT patient low-dose
FLT PET/CT scans as well as for new patient scans as they are
acquired going forward. We believe that continuing to generate
as large as possible a corpus of labeled HSCT patient scans to
enrich the training set and enable additional cross validation
folds at testing is probably the most promising avenue for
obtaining further performance enhancements with our current
U-Net architecture described in this paper. Third, our approach
described here needs to be expanded to include additional
bones, most immediately the sternum and pelvis. Doing so
is impeded primarily by the current lack of sufficient labeled
training data to support the additional segmentation classes.
Finally, this fully automatic segmentation method needs to
be leveraged to realize fully automated extraction of SUV
measurements, validate them against physician measurements,
and then use them to investigate and develop machine assisted
and fully automatic methods for early prediction of graft
failure and relapse.
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fully convolutional neural networks for automatic vertebra segmentation
and identification,” Med. Image Anal., vol. 53, pp. 142–155, 2019.

[25] T. Falk et al., “U-Net: deep learning for cell counting, detection, and
morphometry,” Nature Methods, vol. 16, no. 1, pp. 67–70, 2019.

[26] O. Oktay et al., “Attention U-net: Learning where to look for the
pancreas,” arXiv preprint arXiv:1804.03999, 2018.


