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ABSTRACT — We model nonstationary,
locally-coherent signals with multi-component
AM-FM functions. Signal components are iso-
lated by a multiband bank of Gabor wavelets,
and estimates of the modulating functions are
derived from each channel using a localized,
computationally efficient nonlinear algorithm.
In computing the multi-component AM-FM
representation, Kalman filters are used to track
each identified component across the filterbank
channel responses. For the first time, we also
demonstrate reconstruction of a complicated
signal from the estimated modulating func-
tions.

1 Introduction

The treatment of wideband, nonstationary sig-
nals is important in a wide variety of applica-
tions including speech, audio, radar, and sonar
signal processing. Often the signals of inter-
est can be decomposed into a sum of several
components that are each narrowband on a lo-
cal scale, or locally coherent, where the infor-
mation is manifest. In analyzing and interpret-
ing such multi-component signals, it is desirable
to characterize the structure of each component
on a spectro-temporally localized basis; instan-
taneous frequency analysis is but one example.
Computationally efficient AM-FM modeling tech-
niques, which are inherently capable of captur-
ing and representing local nonstationarities, have
been the subject of significant recent interest [1-
9]. Maragos, Quatieri, and Kaiser [1,3,6,7] and
Bovik, Maragos, and Quatieri [5,8] characterized
and popularized the Teager-Kaiser Energy Op-
erator for AM-FM signal demodulation. Bovik,
et. al., demonstrated powerful characterizations
of images in terms of amplitude and frequency
modulation models [2]. Havlicek, Bovik, and
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Maragos introduced a related demodulation algo-
rithm unique in its ability to estimate instanta-
neous frequency with correct sign information [4],
and Havlicek and Bovik combined this algorithm
with component tracking to extend the analysis
to multi-component images [9].

In this paper we develop powerful new nonlin-
ear techniques for simultaneously estimating the
modulating functions associated with each of the
multiple components comprising a multi-partite
nonstationary signal ¢(z) modeled as

K
t(z) = ) ar(z) exp [jor(2)], (1)
k=1

where z € R, t : R —» C, a : R — [0,00), and
@ : R — R For the first time, we also demon-
strate reconstruction of a signal from the multi-
component AM-FM representation.

2 Nonlinear Demodulation Algorithm

For a single nonstationary complex valued signal
component

t(z) = a(z) exp [jo()], (2)

the demodulation problem involves estimating
the amplitude envelope a(z) and instantaneous
frequency w(z) = L£¢(z) = ¢/(z) that character-

ize the local signal structure. Observing that

t'(z) = jt(z)¢ (z) + exp [jo(z)] a'(z)  (3)

immediately leads to the nonlinear demodulation
algorithm

|t(z)| = la(z) exp [ie(z)] [, (4)
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w(z) = Re[? (z) ] (5)
jt(x)

If the signal of interest is real, we form the asso-

ciated complex analytic signal by adding j times

its Hilbert transform prior to demodulation [10].



3 Multi-Component Demodulation

Since the demodulation algorithm (4),(5) is non-
linear, it breaks down in the presence of out-of-
band additive noise or multiple components due
to cross-term interference [8]. In these situations
it is necessary to isolate the various components
prior to demodulation by processing the signal
with a multiband bank of Gabor filters, which
are optimal in their conjoint time-frequency un-
certainty [2]. This scheme isolates the AM-FM
components on a temporally local basis, and we
subsequently apply the demodulation algorithm
to the filtered channel outputs, with the mod-
ification that the filtered amplitude estimates
must be divided by the appropriate channel filter
magnitude evaluated at the estimated instanta-
neous frequency. While this filtered demodulation
scheme is only approximate, the approximation
error is tightly bounded, provided the filterbank
is designed prudently [4].

3.1 Filter Bank

All of the filters have unit L? norm in both do-
mains to preserve the signal energy in each filter
passband. The equation for a filter with center
frequency fp, is

1 —z2 .
m

with Fourier transform

Gn(f) = {/8r0%, exp [~4n’0 (f — fm)?]

With v = (28 — 1)2/(28 + 1)?, we take o, =
v—Inn/(2ryf,) so that each filter has an 7-
peak bandwidth of B octaves. The filter center
frequencies progress geometrically with common
ratio 28, such that the center frequencies of adja-
cent filters are related by f,.1 = 28 f,,. This ar-
rangement ensures that adjacent filters intersect
precisely where each is at a fraction n of peak
response.

We use a bank of M + 1 filters, and fy, the
center frequency of the initial filter, is a design
parameter. This places the center frequency of
the final filter at fy; = 2MB fy. The filter tessela-
tion covers every point in the frequency domain
from B octaves below fy to B octaves above fs
with a filter that is responding at a fraction 7 or
greater of it’s peak response. For the examples in
this paper, we used a bank of half-octave filters
intersecting at half-peak, giving n = B = % The
discrete frequency representation of the filterbank
is shown in Figure 1.
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Figure 1: Discrete frequency representation of the
filterbank. The filter spectra are positive and real
valued.
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Figure 2: Block diagram of the
multi-component algorithm.

3.2 Tracking of Multiple Components

With the filtered demodulation algorithm, every
channel in the multiband filter bank produces ob-
servations of a(x) and of w(x) at every point in
the domain of the signal. The problem of multi-
component demodulation then becomes one of
determining which channel should be used in es-
timating the modulating functions of each com-
ponent at each point.

Suppose two components exist in a region of
the domain of the signal. If we traverse the
domain points in order, the instantaneous fre-
quency of each component maps out a track in
the frequency domain. At each point, we decide
which channel to use in estimating the modulat-
ing functions of a given component by following
that component’s frequency domain track with a
track processor. A block diagram of the overall
scheme is shown in Figure 2. The filtered de-
modulation algorithm is performed in the blocks
marked “ESA”.

For each identified signal component, a(z) and



w(z) are tracked. We make no specific assump-
tions about statistical correlation between these
quantities, and track each separately. Here, we
present only the equations for tracking w(zx); the
track filter for a(z) differs only in it’s Kalman
gain sequences. First, write wy, the samples of
w(z), in a first order Taylor series:

k
Wk = Wp—1 + W1 +/k 1(I~c —t)w"(t)dt. (6)

Since each signal component is locally-coherent,
wy, should not vary too rapidly or too wildly from
sample to sample. Hence, we do not model the
higher order terms of the series explicitly, but
rather consider that w' is essentially a constant
plus a drift, where the drift is an uncorrelated
noise process ug. This immediately gives the sim-
ple and widely applicable plant model

R H G

The design of an elegant Kalman track filter in-
volving only scalar equations is straightforward
from the model (7):

Wg41
!
Wk +1

Op = Wrgp—1 + ak(wp — Dp—1)  (8)
Witk = Whk1t+ Br(wp — Dgp—-1) (9)
Opy1p = Wrlk + @ ks1/ks (10)

where o and [ are the Kalman gain sequences,
wy, is the observation of w at sample k derived
from the channel whose center frequency is clos-
est to Wgg—1 in units of ot Wg|k—1 is the pre-
diction of w at sample k given k — 1 observations,
and Wy, is the estimate of w at sample k given
k observations. The observation aj, used to up-
date the amplitude track filter for a component
is always taken from the same channel as w}.

3.2.1 New Track Starts

We consider starting a new track on any chan-
nel that produces a large amplitude observation
a?, and whose frequency observation w} does not
lie too close to the predicted frequency of an
existing track. However, our confidence in the
observations produced by a channel is highest
when the observed frequency is close to the chan-
nel center frequency, since this generally affords
improved immunity against out-of-band informa-
tion through an enhanced SNR. The quantity

‘Gm(%w)‘ / maxy |G, (f)| lies between zero and
one, and increases as w moves closer to the filter

center frequency. Hence we define the quality of
channel m at each point k by

_ a’%,m ‘Gm(%wg,m”
B maxy [Gm(f)]

(11)

where aj ,, and wy , are the amplitude and fre-
quency estimates produced by channel m at the
point k, respectively.

At each sample, we start new tracks on the
channels with the highest values of Qj,,, pro-
vided that wy . does not lie in the n-peak pass-
band of a channel that was used to update an
already existing track at k.

4 Reconstruction

Reconstructing a component of the signal from
the discrete AM-FM representation a(z), w(z)
is an overdetermined problem. Given as an ini-
tial condition one complex valued sample ob-
tained from the channel filter used to estimate
the component’s instantaneous amplitude and
frequency, the instantaneous phase ¢(z) can be
reconstructed by simply summing the frequency
estimates. The component can then be re-
constructed by substituting the amplitude esti-
mates and reconstruction of ¢(z) directly into the
model (2).

In practice, however, the frequency estimates
will contain errors which arise from the approxi-
mation inherent in the filtered demodulation al-
gorithm, as well as from cross-component inter-
ference. The deleterious effects of these errors on
the reconstructed component would be cumula-
tive if only a single initial condition were used.

Instead, we divide the portion of the domain
where a component is supported into several dis-
joint segments and perform the reconstruction in-
dependently over each segment. This requires in-
corporating an initial condition for each segment
into the AM-FM representation of each compo-
nent. Finally, the multi-partite signal ¢(z) is re-
constructed by summing the individually recon-
structed components, according to the model (1).

5 Example

Figure 3 shows an example of reconstructing a
two-component signal from the estimated modu-
lating functions. The original signal, shown in
the (a) part of the figure, is the sum of two
linear chirps with Gaussian amplitude modula-
tion. The frequency of the first component varies
from 0.0347 to 0.0893 Hz/sample, while that of
the second component varies from 0.381 to 0.271
Hz/sample. The Gaussian space constants for the
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Figure 3: Two-component example: (a) original
signal, (b) reconstructed signal, (c) reconstruc-
tion error.

two components are 4096 samples and 2048 sam-
ples, respectively. Both components have a peak
amplitude of 0.5, so that the multi-component
signal has unit peak amplitude. This signal was
processed with the multi-component paradigm
shown in Figure 2. The tracker correctly detected
the presence of two components. Reconstruction
was performed over segments of length 32 sam-
ples, with an independent initial condition being
used for each component on each segment. The
reconstructed signal and the reconstruction error
are shown in Figures 3(b) and 3(c), respectively.
The maximum reconstruction error is 0.026, less
than 3% of the peak amplitude.

6 Concluding Remarks

In this paper we introduced, for the first time,
a practical technique for computing the multi-
component AM-FM representation. The ap-
proach utilizes computationally efficient localized
nonlinear operators to estimate the amplitude
and frequency modulations on a component-wise
basis. We validated the representation by recon-
structing a complicated signal from its estimated
modulating functions. In treating nonstation-
ary, locally-coherent signals, AM-FM modeling
offers several advantages over traditional time-

frequency distributions. The modulating func-
tions are able to simultaneously capture both
temporally and spectrally localized features of the
signal structure and represent them naturally in
a way that facilitates analysis and interpretation.
Furthermore, the AM-FM representation tends to
be smooth and efficient, making it amenable to
compression.
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