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Abstract—We evaluate the object detection capabilities of deep
learning based CNNs on midwave/longwave dual-band infrared
(DBIR) video sequences for the first time. The characterization
of CNN object detection performance on DBIR data, and in
particular comparative analysis of the performance of DBIR
systems relative to single-band longwave infrared (LWIR) and
midwave infrared (MWIR) systems, has not been reported
previously in the open literature. This is due at least in part to a
general lack of labeled, publicly available DBIR data sets. In this
paper, we apply a well-known, state-of-the-art CNN to DBIR data
for the first time. A new labeled DBIR data set was generated
comprising multiple classes of vehicles, people, airplanes, and
birds. YOLOv4, pre-trained on the MS COCO dataset, was
used for inference on the MWIR and LWIR channels of the
DBIR sensor independently. The resulting detections from the two
bands were considered both separately and jointly. The labeled
objects of this DBIR data set were grouped into small, medium,
and large classes. Detection performance on the medium and
large objects was comparable to YOLOv4 performance reported
previously in the open literature for visible wavelength objects in
terms of average precision and average recall. Recall performance
on small objects showed a significant size-dependent advantage
for DBIR over LWIR or MWIR alone.

Index Terms—dual-band infrared, small object detection, long-
wave infrared, midwave infrared, CNN, YOLO

I. INTRODUCTION

Dual-band infrared (DBIR) camera systems integrate infor-
mation from multiple subbands of the infrared (IR) spectrum
independently to produce two output channels separated in
wavelength. Commonly, and in this paper, the spectral bands
of interest are the 3-5 um midwave IR (MWIR) band and the
8-12 pm longwave IR (LWIR) band, but other configurations
are possible [1]. In [2], we reported previous work where we
constructed an experimental DBIR sensor using a research
grade 320 x 240 MWIR/LWIR QWIP focal plane array (FPA)
by QmagiQ LLC of Nashua, NH, and used it to acquire 48
mid-long DBIR video sequences depicting a rich variety of
civilian objects. Fig. 1 shows a field test where this sensor
was used for DBIR data collection in Santa Barbara, CA.
By research grade, we mean that the midwave array of the
detector had a swath of damaged pixels occurring in an area
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Fig. 1. Experimental dual-band MWIR/LWIR sensor deployed for field tests
to acquire DBIR video sequences in Santa Barbara, CA.

of size approximately 70 x 140 pixels localized primarily to
the right edge of the midwave image, as also reported in [2].
A typical MWIR/LWIR frame pair acquired with this sensor
is shown in Fig. 2, where the damaged pixels can be seen in
the midwave image at right.

Recently, we completed the arduous task of manually an-
notating ground truth bounding boxes and centroids for all of
the objects in 43 of the 48 acquired DBIR video sequences
(manual annotation of the remaining five sequences was not
completed in time for the results to be included in this paper).
We refer to this newly annotated collection of sequences as
the OK-DBIR dataset. Our main contribution in this paper
is to report detection results obtained by applying a state-of-
the-art pre-trained convolutional neural network (CNN) object
detector to this newly annotated dataset. As discussed below in
Section V, we found that DBIR provided a significant gain in
recall performance for small object detection relative to LWIR
or MWIR single-band detection.

Meaningful comparison studies applying machine learn-



Fig. 2. Typical MWIR/LWIR frame pair acquired with the DBIR sensor of
Fig. 1, cropped to a 240 x 240 pixel 1:1 aspect ratio. The 8-12 yum longwave
band is shown on the left, while the 3-5 pm midwave band is shown on the
right where the swath of damaged pixels is evident. Ground truth bounding
boxes (blue and green) are added for one object of interest.

ing techniques to DBIR data are not available in the open
literature. In [3], a NATO research team generated another
DBIR MWIR/LWIR dataset in France and used generative
adversarial networks to investigate super resolution. In [1],
multi-layer perceptrons were used to detect military targets in
DBIR sequences. However, to the best of our knowledge there
are no previously published open studies reporting data on
sensor performance characteristics using deep learning CNNs
for object detection on DBIR datasets.

II. BACKGROUND

IR camera systems play a role in a wide variety of important
civilian and military applications [4]. Single-band cameras are
used in the vast majority of these. In order to better understand
if there are potential benefits that could be gained by replac-
ing a single-band IR camera with a DBIR system, a study
is needed to evaluate the performance of modern detection
algorithms on DBIR data. The last publicly available detection
studies were reported in 2001 and 2002 [1]. However, since
that time there have been significant advances in detection
algorithms, particularly with regards to the use of CNNs.

The training of CNN-based object detectors typically re-
quires substantial training data comprising at least tens of
thousands of labeled images, the labeling and curation of
which involve a significant cost [5]. Currently, there is not
any sufficiently large publicly available DBIR data set that
could support training or re-training of a CNN for object
detection in DBIR video sequences. Despite this lack of DBIR
data, there are previous studies demonstrating relatively strong
performance for CNN-based object detectors retrained using
single-band IR data alone or in combination with visible
spectrum data [6], [7]. New studies providing evidence of the
efficacy of DBIR sensor systems could stimulate increased
investment supporting the generation of larger comprehensive
labeled DBIR data sets for training, which is one of the main
objectives of the work we report in this paper.

Many CNNs run slower than real time, limiting their
near-term applicability in practical field-deployed sensor sys-
tems [8]. You Only Look Once (YOLO) is one notable

example of a state-of-the-art algorithm that does not suffer
from this shortcoming [8], [9]. For this reason, YOLOv4 pre-
trained on the MS COCO visual spectrum data set was selected
as the initial CNN for evaluation here.

Many CNNs also do not detect small and distant targets as
well as larger targets [10]. One reason for this is that small
objects often lack appearance information to distinguish object
from background [11]. The YOLO architecture specifies a
minimum grid size as part of its approach to reducing the
run time for detection [9]. This minimum grid size induces
lower limits on detectable object size. While the definition
of small, medium, and large targets varies somewhat in the
literature, here we adopt the values provided in the MS COCO
evaluation metrics [5]: small targets are those with an area
under 32 pixels, large targets are those with an area over 962
pixels [12], and medium targets are those with an area falling
between these two values.

Two significant characteristics needed to integrate a sensor
into a practical system are probability of detection (PD) and
false detection rate (FD) [13]. Ideally, the detector system has
high PD and low FD. However, CNN performance is more
commonly characterized in terms of recall, which is strongly
related to PD, and precision, which is inversely related to
FD [14]. Thus, one desires a detector that achieves high recall
and high precision simultaneously. Well-known techniques
such as multiple-hypothesis tracking and clutter modeling may
be used to reduce the number of false positives (FP) [13]. But
it must be borne in mind that reducing FP by these techniques
almost universally reduces TP by some marginal and tunable
amount [13]. Receiver operating characteristic (ROC) curves
and/or the closely related precision-recall curves can be used to
select an appropriate sensitivity for the FP rejection algorithms
via detection threshold optimization [13].

CNN detection algorithms facilitate sensitivity tuning by
reporting a measurement of similarity between the region
being classified and internal representations of that object
class, referred to here as class confidence (CC). Precision-
recall curves typically show the relationship between precision
and recall, parameterized by CC. In addition to detection
threshold optimization, TP and FP rates can also be tuned
by thresholding CC. Given these two approaches for FP
reduction (concomitantly increasing precision), our focus here
is simultaneously to increase recall in the IR scenario by
incorporating DBIR data.

A second commonly used FP suppression algorithm is non-
maximum suppression (NMS) [9], [15]. The main idea is to
eliminate multiple redundant detections of a single object,
which would otherwise be counted as false positives, by
thresholding the intersection over union (IoU) between pairs
of detections. NMS begins by selecting the detection with the
highest CC and calculates the IoU of all other detections in the
frame relative to the selected detection. Other detections that
exceed the NMS threshold on IoU are deemed too similar
to the selected detection and are removed [9], [15]. The
process then repeats iteratively by selecting the next highest
CC detection among those remaining in the frame. A lower



NMS threshold results in higher Precision and lower Recall.

III. MEASURING PERFORMANCE

The determination of whether a given detection is a TP or
FP is made by thresholding the IoU between that detection
and each ground truth object present in the frame. If the IoU
exceeds the specified threshold, then the detection is deemed to
be a TP. Alternatively, if the maximum IoU is below threshold,
then the detection is deemed to be an FP. Similarly, a ground
truth object is determined be to a False Negative (FN) if
the maximum IoU between that ground truth object and any
detection falls below threshold. The three calculated values
TP, FP, and FN are then used to define precision P and recall
R in the standard way according to

TP
P=——— 1
TP+ FP M
and TP
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IV. EXPERIMENT DESIGN

As we mentioned in Section I, objects in 43 DBIR se-
quences of the OK-DBIR dataset were manually labeled with
ground truth. The objects were classified as Pickup, Car,
SUYV, Van, Semi, Person, Motorcycle, Airplane, Fuel Truck,
or Birds. In some cases, there were small, distant objects
that were moving away from the sensor at the beginning of
the sequence and lacked sufficient appearance information for
reliable classification by the human annotator. These objects
were labeled “Indeterminate.” All together, the 43 labeled
sequences in the data set contain 78,606 instances of 242
objects.

These data include many examples of partial and full occlu-
sions. Many of the objects undergo gradual appearance change
as they move towards or away from the sensor system. Some
objects also change appearance significantly with changing
attitude or direction relative to the sensor. While there are
some advantages to having many sequential frames of the same
object, especially in evaluating tracking algorithms, there are
some disadvantages when studying CNN based detection in
isolation. A principle concern is the problem of over-fitting.
Given concerns about the relatively low appearance variation
and low object count in this dataset (relative to, e.g., MS
COCO), a decision was made against transfer learning or
retraining. Thus, YOLOv4 was acquired pre-trained on MS
COCO from github [8] as implemented by the original authors.

Because the OK-DBIR sequences were acquired at a sam-
ple resolution of 14 bits, some preprocessing was necessary
prior to running pre-trained YOLOv4 inference. The brightest
pixels of the images were clipped and histogram stretching
was subsequently performed to achieve an intensity profile
matching the dynamic range of typical visual spectrum images.
Inference was then performed on the MWIR and LWIR
channels independently. After inference, NMS was applied to
suppress duplications and minor variations in the detection
reports. The threshold for NMS was set at 0.99. This value was

selected to remove identical or nearly identical FPs, preventing
over counting due to duplicate classification for the same FP.
The IoU between detections and ground truth was evaluated
against the NMS refined detections from both bands. Precision
and recall were calculated for each (IoU, CC) pair in the
MWIR band, in the LWIR band, and jointly for DBIR, where
both IoU and CC were varied in a range from 0.05 to 0.95.
The 43 sequences of the OK-DBIR data set comprise 53,181
small object instances, 23,882 medium object instances, and
1,543 large object instances. Of the small objects, 56.4% are
smaller than 102 pixels and 25.5% are smaller than 8% pixels.
To evaluate the gain in recall provided by DBIR without
respect to CC, the maximum recall across all CC for a given
IoU was calculated for LWIR, MWIR, and jointly for DBIR,
grouped separately by small, medium, and large objects.

V. RESULTS

Maximum recall with respect to CC as a function of IoU is
shown in Fig. 3 for large and medium objects and in Fig. 4
for small objects. These results show a consistent gain in
maximum recall performance for DBIR relative to MWIR
or LWIR alone across all object sizes and at all IoU. The
maximum recall performance gain for DBIR relative to MWIR
is significant in all cases tested, whereas the gain relative to
LWIR shows an improvement of 3.5% for medium and large
objects and 50% for small objects averaged over IoU ranging
from 0.1 to 0.95 in increments of 0.05.

In [8], YOLOv4 average precision (AP) on visible spectrum
data was reported ranging from 0.44 to 0.66, with 0.66 being
obtained at an IoU of 0.5. At an IoU of 0.5, the DBIR
AP in our study was 0.47 for medium and large objects
and 0.13 for small objects, meaning that we obtained lower
AP performance than that reported in [8]. Possible factors
contributing to this performance loss include dissimilarity
between visible spectrum and IR data, damage to the MWIR
portion of the sensor under test, and dissimilarity relative to
object signatures as seen in MS COCO. Average recall (AR)
for YOLOv4 on MS COCO is more challenging to find;
however, an AR of 0.61 is reported in [16] for retraining
YOLOvV4 on MS COCO with a smaller classification set.

To better understand detection performance on the smallest
objects with area less than or equal to 162 pixels, we also
performed a separate experiment with the CC threshold set at
0.3 and the IoU threshold set at 0.5. For this experiment, we
calculated PD separately for all object instances with an area of
2 pixels for 1 <4 < 16. The results are given in Fig. 5. The
smallest detected object had an area of 42 pixels and there
were 3,363 smaller object instances that were not detected
at these threshold settings. The graph in Fig. 5 illustrates
the strong relationship between object size and PD for small
objects.

VI. CONCLUSION

Using DBIR data improves the performance of YOLOv4
trained on MS COCO for detection of small, medium, and
large targets. A significant improvement in recall for small
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Fig. 3. Medium and large object Maximum recall per IoU for all CC. NMS
thresholding set to 0.99.
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Fig. 4. Small object maximum recall per IoU for all CC. NMS thresholding
set to 0.99.
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Fig. 5. Percent of small objects detected by square root of bounding-box area
in pixels; MWIR and LWIR both considered.

objects, a class of objects providing the biggest opportunity for
improvement, was observed. A more moderate performance
gain for medium and large objects was observed. Given the
low base-level of detection observed in small objects compared
to medium and large objects in this study, additional work is
needed to improve small object detection with CNN based
object detectors. As work progresses in the field of small
and distant object detection, continued evaluation of these
algorithms with respect to the OK-DBIR dataset is likely to
prove beneficial. The results of the experiments here suggest
that there may be a practical benefit to using DBIR for CNN
based object detection. It is likely that the biggest performance
gains would be observed among small and distant objects.
Retraining CNNs with DBIR data may be beneficial and
should be studied further. However, new larger DBIR data
sets would likely be needed to support those efforts
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