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� Introduction

The characterization� the analysis� and the representation of projected surface textures

in images have long been recognized as fundamental problems in image processing

and machine vision 
���� Texture processing may be used to segment images into

objects or regions of homogeneous texture� to classify or recognize surface materials

from their projections in images� and to infer three�dimensional surface shape from

images� Yet� despite the facts that texture is clearly an intrinsic property of images�

has been clearly shown to play a fundamental role in human vision at the preattentive

level� and is demonstrably useful in image processing and machine vision algorithms�

the quanti�cation and characterization of texture has proven elusive� Indeed� no well

posed de�nition of image texture even exists�

The earliest successful texture processing techniques sought to characterize texture

�whether deterministically or statistically� in terms of repeated primitives� or struc�

tured groupings of gray levels� as well as in terms of the spatial arrangements of those

primitives� In a comprehensive ���� survey� Haralick reviewed what I shall refer to

as early texture processing techniques 
��� a later survey by Van Gool� Dewaele� and

Oosterlinck reviewed essentially the same methods 
���

In contrast� many modern texture processing techniques characterize and quantify

texture in terms of localized� coherent groupings of instantaneous spatial frequencies

or� more generally� in terms of nonstationary amplitude� frequency� and phase modu�

lations occurring in frequency and orientation selective channels� In this paper� I will

review� compare� and contrast the early methods and the modern methods of texture

processing� I will discuss the evolution of texture processing with relation to profound

discoveries about mammalian biological visual function that occurred in the �elds of

psychophysics and physiology� and I will argue that modern texture processing tech�

niques have evolved to emulate biological vision systems to the extent possible� Some of

the most recent innovations in texture processing such as the multidimensional Teager�

Kaiser operator and AM�FM modeling techniques will be examined in some detail� and
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e	ective texture segmentation using computed dominant modulations will be demon�

strated for the �rst time�

� Early Approaches to Texture

Statistical characterization of the spatial arrangement of texture primitives dates back

at least to Julesz� who in his later work used the term textons to describe the primi�

tives 
������ Typical textons included line segments� oriented blobs� line crossings� and

the terminations of blobs and line segments� In a series of psychophysical experiments

spanning more than �� years� Julesz discovered that the human visual system is capable

of preattentively discriminating certain textures� The culmination of this work was the

assertion that the eye cannot preattentively discriminate between textures that have

the same second�order statistics on a spatially local basis �but that it can preatten�

tively discriminate between textures with the same �rst�order and global second�order

statistics� provided that the local second�order statistics di	er��

Motivated in part by what Julesz was discovering about biological vision systems�

particularly that the human visual system is perceptually sensitive to second�order

statistics� numerous investigators set out to develop machine vision texture processing

algorithms based on the statistical approach� Perhaps the most successful of these were

based on gray level cooccurrence matrices� which were introduced and systematically

developed by Haralick 
��� Each cooccurrence matrix was associated with a distance

d and an orientation �� The matrix entries Pi�j corresponded to the number of times

that a pixel with gray level i appeared in the image displaced by a distance d and

orientation � from a pixel with gray level j� Features� such as angular second moment�

contrast� correlation� and entropy� were then de�ned in terms of algebraic operations

on the cooccurrence matrix entries and used to characterize� classify� and discriminate

textures� typically using a linear classi�er� Haralick and others obtained good clas�

si�cation and discrimination results using this approach 
��� Zucker and Terzopoulos
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developed a statistical method for determining the best values of d and �� as well as the

best features to use for classi�cation of textures belonging to �xed training classes 
����

A generalization of the gray level cooccurrence matrix� motivated at least partially

by Hubel and Wiesel�s discovery that certain cortical cells responded strongly and selec�

tively to oriented� elongated bars and edges 
������ was the generalized cooccurrence

matrix� Generalized cooccurrence matrices were analogous to gray level cooccurrence

matrices� but described the spatial distributions of textons that were more sophisticated

than simple pixel gray levels 
�� ��� Hence� they were correspondingly more di�cult to

de�ne� more computationally intensive� and in the absence of a complete texton theory

for human visual perception� more ad hoc� Other methods related to the gray level

cooccurrence matrix and generally deemed inferior included the gray level di�erence

matrix and the gray level run length matrix 
�� ���

An approach using two�dimensional autoregressive models to describe texture orig�

inated in the computer graphics and texture synthesis �elds� where it was found that

synthetic textures of reasonably high quality could be created by estimating the model

parameters for a real texture� and then iterating the model from a random initial

state 
�� ��� Attempts to use the autoregressive model parameters as texture features

for classi�cation and discrimination achieved only limited success� particularly for im�

ages containing macrotextures characterized by structural placement rules consistent

over large numbers of pixels�

Several early texture analysis techniques employed spatial frequency�based texture

features computed from the autocorrelation function of the image� the Fourier power

spectrum of the image� or Fourier spectra computed on blocks within the image 
��

��� The shape of the autocorrelation function indicates the coarseness of the texture�

whereas the orientation of the texture is manifest in directional dependencies in the

autocorrelation function� Typical features used in the Fourier spectrum techniques

included the amount of power present in annular or ring�� wedge�� and slit�shaped

regions of the frequency plane� Bajcsy and Lieberman measured texture gradients from
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Fourier spectra computed over square regions and used them to infer three�dimensional

shape from texture 
���� At the time of the survey papers 
�� ��� viz� ����� spatial

frequency�based techniques were generally considered to have inherent problems and

to be inferior to the cooccurrence matrix methods for classifying and discriminating

texture� Closely related to the spatial frequency�based methods were the so called

edginess methods� which attempted to characterize textures by estimating the number

of edges present per unit area at various scales using gradient� derivative� or Laplacian

convolution kernels 
�� ���

Purely structural methods sought to describe texture in terms of deterministic rules

for the spatial placement of texture primitives� The placement rules were described for�

mally by shape� array� and tree grammars 
��� ���� The choices of what primitives to

use and what their scales of de�nition should be were image dependent and ad hoc� and

hence these methods were rarely used for texture analysis� classi�cation� and discrim�

ination in practice 
��� Morphological techniques for the structural characterization of

texture were also investigated 
�� ���

The salient characteristic of the early methods described in this section is that they

were all ad hoc� Some of them were e	ective for characterizing and discriminating tex�

tures in certain classes of images� but none of them worked well for general images� The

characterization and discrimination of textures within a given limited class of images

required the design of features and a corresponding classi�er that were specialized to

that class�

� Psychophysical and Physiological Advances

Between ���� and ���� a series of advances in the understanding and modeling of

biological visual function occurred in psychophysics and physiology� these advances

had a profound impact on subsequent texture research in image processing and machine

vision� Campbell and Robson determined that certain aspects of human visual function
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could be explained by the existence of independent linear channels sensitive to narrow

ranges of spatial frequencies 
���� This multiple�channels model was corroborated by

Graham and Nachmias 
���� For a striking perceptual demonstration of the channels

in operation� see 
��� p� ����� Blakemore and Campbell established that the channels

were orientation selective as well as frequency selective 
���� Based on psychophysical

experiments involving one�dimensional textures� Richards and Polit argued that the

texture discrimination capability of the human visual system could be explained by

the existence of only four distinct spatial frequency channels �here� spatial frequency

refers to the magnitude of the multidimensional frequency vector� 
���� From similar

experiments� Caelli and Bevan suggested that the maximum number of orientation

channels is �� 
���

Numerous ensuing studies characterized cortical cell responses as spatial frequency

�lters and advocated the modeling of cortical visual function as a Fourier frequency

analysis 
������� Robson suggested that the Fourier decomposition occurs indepen�

dently on equi�sized spatial patches� rather than globally on the entire retinal im�

age 
��� Typically� the experiments in these studies employed sinusoidal gratings of

one form or another as stimuli� and hence the results characterized cortical receptive

�elds as functions of spatial frequency� The corresponding spatial sensitivity pro�les

were obtained via inverse Fourier transforms� subject to the assumption that the spa�

tial �ltering being performed was linear� While there are certainly nonlinear aspects

to the function of complex cells� and even simple cells� the validity of linear models

for the spatial �ltering stages of both simple and complex cells has been reasonably

established 
������� Various functional models� including the di�erence of Gaussians

�DoG� and Laplacian of Gaussian �LoG� or r�g� 
�� ���� were popular from early on

for describing the spatial receptive �elds of retinal� lateral geniculate nucleus �LGN��

and cortical cells�

Both even� and odd�symmetric spatial receptive �elds were observed experimen�

tally� and in ���� Mar�celja 
��� made the connection between these receptive �elds





and the one�dimensional elementary functions described by Gabor in ���� 
���� The so

called Gabor functions take the form f�x� � G�x�ej�x in one dimension and f�x� y� �

G�x� y�ej�ux�vy� in two dimensions� where G��� is Gaussian� Hence� they are Gaussians
in the frequency domain and Gaussian envelopes frequency�modulated by complex si�

nusoids in the time and space domains� The real and imaginary parts of f��� di	er
in phase by ���� For appropriate choices of G��� they are even� and odd�symmetric�
respectively� In ���� Pollen and Ronner recorded responses from pairs of adjacent sim�

ple visual cortical cells in cat� and found that often the phases of the responses within

each pair did indeed di	er by ��� 
��� Furthermore they found that� within pairs� it

was often the case that the receptive �eld of one cell exhibited even symmetry while

the other exhibited odd symmetry�

The Gabor functions admit many attractive properties� Gabor proved an uncer�

tainty relation which limits the degree to which any one�dimensional function can be

localized simultaneously in both time and frequency 
���� He showed that his functions

achieved the lower bound on conjoint resolution and were unique in this respect� hence

he proposed analyzing arbitrary functions in terms of linear combinations of Gabor

functions to implement an optimally tempero�spectrally localized nonstationary analy�

sis� An analytical technique for determining the coe�cients in such a Gabor expansion

was developed by Basstiaans 
�������

MacKay and Daugman both advocated the Gabor receptive �eld model for visual

cortical cells� and developed the two�dimensional version of Gabor�s uncertainty re�

lation 
��� ��� The lower bound on conjoint spatio�spectral localization is uniquely

realized by the two�dimensional Gabor functions� Research by numerous investiga�

tors supported the Gabor function receptive �eld model� and it became widely ac�

cepted 
��� �����

Objections to the Gabor function receptive �eld model still remain 
��� Some inves�

tigators have argued that other functional forms such as the di�erence of three Gaus�

sians may �t certain experimental data better than Gabor functions 
���� However� an

�



extensive and rigorous study by Jones� Stepnoski� and Palmer measuring the receptive

�elds of simple cortical cells in the striate cortex of cat� both in the two�dimensional

spatial and spatial frequency domains� found the deviations from the Gabor model

to be �� � �devoid of spatial structure and statistically indistinguishable from random

noise� 
��� �� ���

� Modern Approaches to Texture

In the search for machine vision algorithms to characterize image textures and perform

segmentation and shape analysis based on texture� a recurrent theme has been the

emulation� to varying degrees� of biological vision systems� The latter constitute the

only known vision systems that work well in general� Of the techniques described in

Section �� the gray level cooccurrence matrix methods were perhaps most successful�

These were motivated by the knowledge that biological vision systems somehow utilize

local second�order spatial statistics to discriminate textures� However� since nothing

speci�c is known about how this statistical information is used in biological vision

systems� the analogy between cooccurrence matrices and biological visual function is

only a weak one�

Consider using gray level cooccurrence matrices to design an algorithm for discrim�

inating textures in ��� �� gray scale images having eight�bit pixels� If we consider
only the eight orientations n����� n � f�� �� � � � � �g� and compute second�order statis�
tics over distances ranging from one to �� pixels� then the region about every pixel in

an image will be described by ��� gray level cooccurrence matrices each having ��� ���

unique entries� With this approach� texture discrimination features at each pixel will

be de�ned on a set of �� ���� ��� numbers� Since we do not know how biological vision

systems use the information represented by this large set of numbers� the design of the

features employed by our discriminator will not be biologically motivated�

In view of the research described in Section �� let us alternatively consider the
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design of a texture discriminator based on decomposing images with a multiband bank

of linear �lters� Since real�valued images have conjugate symmetric spectra� only half

of the possible orientations need be considered explicitly� Thus� the results of Richards

and Polit 
��� together with those of Caelli and Bevan 
�� suggest that a bank of four

�lters at each of nine orientations� or �� �lters in total� should su�ce� In general� the

�lters may be complex�valued� So� with this approach we seek to discriminate textures

using �� complex�valued response images� Since we do not know how the information

represented by these response images is used in biological vision systems� we still cannot

design a biologically motivated discriminator� However� in this case each pixel in the

image is described by only �� complex�valued numbers� This represents a fantastic

simpli�cation compared with the cooccurrence matrix approach just discussed� the

size of the set of numbers to be considered in designing features has been reduced by

a factor of approximately ���	�
� In a like spirit� the texture processing and analysis

techniques I will review in this section made use of the advances described in Section ��

I will refer to them as modern approaches to di	erentiate them from the approaches

described in Section ��

In ����� Stockham advocated the design of image processors based on the human

visual system and recommended the use of Gaussian frequency characteristics 
���

Primarily motivated by texton theories of Julesz and Bergen 
���� Ikonomopoulos and

Unser used a complete� orthogonal bank of directional �lters with radial slit�shaped

spectra to discriminate textures 
���� They obtained reasonable rates of correct classi�

�cation for images made up of juxtapositions of Brodatz textures 
���� Using features

de�ned on the responses of isotropic� annularly�shaped frequency �lters and Gaussian

orientation �lters� Coggins and Jain obtained a correct classi�cation rate of ��� for a

set of ��� Brodatz textures 
���� Rao and Schunck 
��� and Rao and Jain 
��� used the

responses of r�g �lters to estimate the local coherency and dominant local orientation

at each pixel in an image and used these quantities to perform texture segmentation�

In ����� Turner analyzed textured images with a bank of �� Gabor �lters arranged
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in a polar tesselation with four circularly symmetric �lters on each of four oriented

rays 
��� He argued that e	ective texture segmentation could be performed using the

responses of these �lters� Malik and Perona formulated an approximate computational

model for biological early visual function� and used it for texture segmentation 
����

They modeled area V� simple cells as DoG �lters followed by half�wave recti�ers� and

also incorporated a model of nonlinear intracortical inhibition into their paradigm� In

the �nal stage of their approach� they computed texture gradients from the channel

�lter responses and identi�ed texture boundaries as local peaks in the magnitude of

the texture gradient�

Extending the work of Basstiaans 
������� Zeevi and Porat developed a formulation

for the coe�cients in a two�dimensional Gabor expansion applicable to images 
���� The

Gabor expansion coe�cients bear strong analogy to spatially subsampled Gabor �lter

response images� in that they re�ect the degree to which an image correlates with var�

ious Gabor functions on a spatio�spectrally local basis� Porat and Zeevi demonstrated

high quality reconstructions of textured images using Gabor expansions truncated to a

few thousand terms� and used simple statistics of the Gabor coe�cients as features to

e	ectively segment juxtaposed Brodatz textures 
��� ���� In a similar scheme� Wilson

and Spann performed texture segmentation using feature sets de�ned on the responses

of a multiband bank of �nite prolate spheroidal �lters� which have properties similar

to those of the Gabor �lters 
����

In ����� Bovik� Clark� and Geisler proposed an interpretation of image texture as

a carrier of region information� which could be demodulated 
������� They modeled a

given texture according to

t�x� y� � a�x� y� cos 
���U�x V�y�  p�x� y�� � ���

where a�x� y� was a slowly varying amplitude modulation and p�x� y� was a slowly

varying phase term� Their approach was to �lter the image with a multiband bank of

Gabor �lters and then assign a given pixel to a texture�segmented region according to
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which channel �lter produced the greatest magnitude response at the pixel� With this

approach� they obtained a number of excellent segmentations using channel �lters with

parameters that were speci�cally designed for each image analyzed�

In addition� they observed that visually discriminable textures arise when two

regions contain textures with identical spatial frequency and amplitude modulation

characteristics� but have a spatial phase displacement relative to one another� Using

frequency�modulated derivative of Gaussian and r�g �lters in concert with the Ga�

bor channel �lters� they obtained the Laplacians of the channel �lter response phases�

Signi�cant zero crossings of these Laplacians correspond to signi�cant phase discon�

tinuities in the texture under analysis� and they used this fact to re�ne the texture

segmentations obtained from the channel amplitudes by also segmenting textures with

identical amplitude and frequency characteristics but di	ering phase characteristics�

A detailed analysis of the Gabor �lters used in 
��� was subsequently carried out by

Bovik� who established that post�ltering can be used to obtain texture segmentations

and three�dimensional shape information even in the presence of signi�cant deviations

from the smooth model ��� 
���� He observed that a host of factors including occlusions�

surface discontinuities� deformations and defects in surface topology� surface re�ectance�

shadows� specularities� and noise can all give rise to perturbations in ��� that correspond

to amplitude and phase modulations that are not locally smooth� In 
���� Bovik also

introduced the more general texture model

t�x� y� � A�x� y� cos 
!�x� y�� � ���

where A�x� y� is a smoothly varying amplitude modulation term and !�x� y� is a

smoothly varying phase modulation term� The components of the phase gradient vector

r!�x� y� are the instantaneous image frequencies� Bovik brie�y addressed estimation
of r!�x� y� from the Gabor �lter channel responses and proposed two approximate

approaches� The �rst was simply to estimate r!�x� y� as the center frequency of the
channel �lter with maximum response amplitude at pixel �x� y�� The second was to
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interpolate between the center frequencies of several channel �lters� weighting each by

the amplitude of its response at pixel �x� y��

��� The Importance of Modulation and Frequency Estimation

The usefulness of term A�x� y� in ���� which is interpreted as amplitude modulation

in a bandpass �ltered texture� has been established in the foregoing discussion� For

example� Malik and Perona performed bandpass �ltering of images� and then applied

half�wave recti�cation and low�pass �ltering to the bandpass responses 
���� This proce�

dure yields an approximation to A�x� y�� Bovik� Clark� and Geisler 
��� and Bovik 
���

demonstrated that excellent texture segmentations could be obtained based solely on

the amplitude envelopes of appropriately designed bandpass �lters� Of the studies re�

viewed in Section � that advocated Gabor function receptive �eld models� most did

so based on evidence that biological vision systems somehow detect the presence of

and make use of narrowband concentrations of spatially local frequencies� spatial vari�

ations in the energies of such concentrated frequency bundles correspond to amplitude

modulations A�x� y��

Phase and frequency modulation information is also generally useful� Witkin 
��

and Kass and Witkin 
��� used demodulated �lterbank channel responses to compute

shape and orientation from texture� Schachter used smoothly varying amplitude and

frequency modulations to synthesize realistic looking image textures 
���� Recently�

Friedlander and Francos modeled images as the real part of a complex exponential

with polynomial phase and demonstrated an algorithm for estimating the order and

coe�cients of the polynomial 
��� ����

In this section� I will discuss why estimation of the instantaneous image frequencies

r!�x� y�� interpreted as frequency modulations� is an important problem� Most� if not
all of the de�ciencies associated with the early spatial frequency�based texture analysis

methods described in Section � can be attributed to the fact that these methods utilized

global Fourier frequencies� or Fourier frequencies computed over �xed�size subimages�
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This sheds light the apparent discrepancy between the general conclusion that spatial

frequency�based methods were inferior to cooccurrence matrix�based methods 
���� and

the overwhelming psychophysical and physiological evidence that biological vision sys�

tems do indeed analyze the retinal image in terms of spatial frequency� as described in

Section �� The explanation is that the latter �biological systems� perform the frequency

analysis on a conjointly localized basis in the joint space�frequency hyperspace� There�

fore� in designing texture processing algorithms to emulate biological vision systems to

some degree� it makes sense to consider the spatially localized instantaneous frequencies

r!�x� y� rather than the Fourier frequencies�
The extent to which biological vision systems explicitly use spatial frequency infor�

mation in texture perception remains unknown� What is clear� however� is that visual

cortical cells do transmit contrast and spatial phase information 
���� Contrast infor�

mation is manifest in the amplitude modulation term A�x� y� in ���� while spatial phase

information is manifest in !�x� y�� The design of machine vision algorithms to estimate

!�x� y� is di�cult and ill�posed as a consequence of the phase wrapping problem� the

value of the phase at any point in an image is always ambiguous by an additive factor

of �n�� n � Z� In a machine vision system� representing spatial phase in terms of

estimates of the spatial frequencies r!�x� y� circumvents this problem�
Furthermore� since the linear operations of convolution and di	erentiation com�

mute� several of the texture analysis techniques discussed so far may be interpreted as

making explicit use of demodulated instantaneous spatial frequency information� For

example� the methods of Bajcsy and Lieberman 
���� Rao and Schunck 
���� Rao and

Jain 
���� and Malik and Perona 
���� as well as the phase�based texture segmentation

technique of Bovik� Clark� and Geisler 
��� all employed gradients or �lters with di	er�

entiated envelopes� The responses of the latter are equivalent to the derivatives of the

responses of the undi�erentiated �lters� So derivatives of images or derivatives of band�

pass �ltered images were explicitly utilized in all of these methods� To see that these

di	erentiated quantities approximate the instantaneous spatial frequencies� consider a
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possibly bandpass �ltered sinusoidal grating image t�x� y� modeled according to

t�x� y� � A cos 
!�x� y�� � A cos 
u�x  v�y� � ���

The partial derivatives of t�x� y� are

t�x��x� y� �
�

�x
t�x� y� � �Au� sin 
u�x  v�y� ���

and

t�y��x� y� �
�

�y
t�x� y� � �Av� sin 
u�x  v�y� � ��

Now

arctan

�
t�y��x� y�

t�x��x� y�

�
� arctan

�
v�
u�

�
� argr!�x� y�� ���

so the orientation �eld of the di	erentiated image is equal to the orientation of the

instantaneous frequency vector� For the special case of an image �ltered by a complex�

valued Gabor �lter� the real and imaginary components of the response are in quadra�

ture phase� so the response image tG�x� y� may be modeled as

tG�x� y� � A exp 
j!�x� y�� � A exp 
j �u�x v�y�� � ���

The partials of tG�x� y� are

t
�x�
G �x� y� �

�

�x
tG�x� y� � jAu� exp 
j �u�x  v�y�� ���

and

t
�y�
G �x� y� �

�

�y
tG�x� y� � jAv� exp 
j �u�x v�y�� � ���

As before�

arctan

�� t�y�G �x� y�

t
�x�
G �x� y�

�� � arctan �v�
u�

�
� argr!�x� y�� ����
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In this case we also have 					 ��xtG�x� y�
					 � jAj ju�j ����

and 					 ��y tG�x� y�
					 � jAj jv�j � ����

and hence the magnitudes of the partials of tG�x� y� are proportional to the instan�

taneous frequencies u� and v�� For slowly varying modulations A�x� y� and r!�x� y��
��� and ��������� still hold approximately� Furthermore� the coe�cients computed

in the two�dimensional Gabor expansions of Porat and Zeevi 
��� indicate the degree

to which certain frequencies are present in an image on a spatially local basis� and

hence are implicitly related to the quantity r!�x� y�� More recently� techniques for
three�dimensional shape recovery from texture and for computed phase�based stereop�

sis making explicit use of spatially localized instantaneous frequency information have

been developed 
�������

��� Computed Modulation Models

Several techniques from the �elds of time�frequency analysis and multiresolution signal

processing� including the windowed Fourier transform 
�� ���� the complex spectro�

gram �Rihaczek distribution� 
��� ���� the Wigner distribution 
��� ���� the ambiguity

function 
������� Cohen class and a�ne time�frequency distributions 
������� the Choi�

Williams distribution 
���� and the wavelet transform 
������� could be used as bases

for an instantaneous frequency estimation scheme� However� only an approach based

on Gabor �lters estimates the spatially localized frequencies from responses that are

optimally conjointly localized in the joint space�frequency hyperspace� Furthermore� a

Gabor �ltering approach is motivated by processing that we know occurs in simple vi�

sual cortical cells of biological vision systems� With regards to the recently popularized

wavelet transform� it is worth noting that the responses of an appropriately chosen set

of Gabor �lters are� in many respects� strongly analogous both to a biorthogonal wavelet
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transform and to the wavelet transform of Morlet �cycle�octave transform� 
����

In ����� Bovik 
���� and Bovik� et� al� 
���� addressed in detail the problem of

estimating the modulations A�x� y� and r!�x� y� in ��� from Gabor �lter channel re�

sponses� For an image modeled as a sum of components of the form ���� they estimated

the quantities A�x� y� and r!�x� y� corresponding to the component that dominated
the local frequency spectrum on a spatially local basis� They referred to these dominant

component frequencies as emergent�

They considered �ltering the image with a complex�valued bandpass �lter of the

form

h�x� � w�x� exp


j�T

� x

�
� ����

where x � 
x y�T is an image coordinate� w�x� is a low�pass �lter� and �� � 
u� v��
T is

the center frequency of the bandpass �lter h�x�� The frequency response of h�x� is

H��� � W ������� ����

where W ��� is the Fourier transform of the low�pass equivalent �lter w�x��

The magnitude response of the �lter ���� to an image component t�x� of the form ���

is given exactly by

m�x���� � jt�x� � h�x�j � ���

In general� it is impossible to obtain a closed form expression for m�x���� in ����

This fact complicates the problem of estimating A�x� and r!�x� " a problem which

is already ill�posed since� corresponding to any real image component� there exist un�

countably in�nitely many pairs of modulating functions A�x� y� and r!�x� y� for which
the model ��� is exactly equal to the component�

In 
���� and 
����� Bovik� et� al�� approximated the magnitude response ��� using

the quantity

cm�x���� � A�x�
			W 
�� �r!�x��

			� ����

�



Approximations of this type are generally useful in the analysis of linear system re�

sponses to nonstationary inputs� and are now known as quasi�eigenfunction approx�

imations 
��������� In particular� note that if t�x� is monochromatic and takes the

form ���� then m�x���� � cm�x���� identically� Thus� Bovik� et� al�� introduced the

emergent frequency constraint equation

m�x���� � cm�x����� ����

In 
���� ����� they bounded the approximation error in ���� for an image component

admitting general modulating functions� They sought to estimate locally coherent

dominant modulations A�x� and r!�x� that would minimize the approximation error
in ���� using �lters h�x� also designed to minimize the error� arguing that such solu�

tions would at once be both the most physically meaningful and the most accurately

measurable from amongst the in�nite locus of possible solutions�

Minimization of the error bound required simultaneously minimizing both the gen�

eralized p�energy variances �spatial spreads� and the Sobolev norms �smoothness func�

tionals� of the equivalent low�pass �lter w�x�� In 
���� ���� they gave an uncertainty

relation generalizing those of Gabor 
���� MacKay 
���� and Daugman 
��� which placed

a lower bound on the degree to which the p�energy variances and Sobolev norms of w�x�

could simultaneously be minimized� They found that this lower bound was uniquely

realized by the Gabor functions� Intuitively this should come as no surprise� since min�

imization of the error bound on ���� is equivalent to demanding �lters h�x� which are

highly spatially localized to capture nonstationarities� but also highly spectrally local�

ized to e	ectively separate the dominant image component from subemergent compo�

nents� Consequently� for �lters h�x� they employed a bank of forty unity aspect ratio

Gabor �lters arranged in a polar frequency tesselation�

To compute the estimated emergent frequencies rb!�x�� they substituted the Gaus�

��



sian

W ��� � ��
p
�� exp

h
����T

�

i
����

into ����� and upon taking the logarithm of both sides obtained

M��x���� � cM��x����

�
�

��
logA�x�  

�

��
log

�
��
p
��

m��x����

�
� 
�� �r!�x��T 
�� �r!�x��� ����

Letting ���x� denote the center frequency of the channel �lter with maximum response

magnitude at domain coordinate x and cM��x� denote the value of cM��x���� for this

�lter� they formulated the penalty functional

P�rb!� � Z
R�

�h
�

��x��rb!�x�iT h���x��rb!�x�i� cM��x�
�

dx� ����

They then minimized the energy functional

E�rb!� � 	P�rb!�  S�rb!�� ����

where S�rb!� was a smoothness constraint term involving the Sobolev norms of rb!
and where 	 
 � was a Lagrange multiplier balancing the smoothness constraint against

agreement of the estimated emergent frequency solution with ����� The Euler�Lagrange

equations for ���� lead to a coupled system of partial di	erential equations� which they

solved numerically using an iterative relaxation� The estimated dominant amplitude

modulation function bA�x� was then obtained by backsubstitution of the estimated
emergent frequencies rb!�x� into ����� Using this technique� they obtained several
excellent texture segmentations by �nding the signi�cant zero crossings in the response

of a r�g �lter applied to the estimated emergent frequency magnitudesjrb!�x�j�

��



��� Multidimensional Teager�Kaiser Operator

In the course of his notable work on nonlinear speech modeling� Teager developed a

computationally e�cient discrete operator for estimating the energy required to gen�

erate a narrowband speech signal with instantaneous frequencies concentrated about

a formant 
��������� The operator was systematically developed by Kaiser 
���� �����

Ensuing research on the operator� now known as the Teager�Kaiser operator� estab�

lished that it may be used to e�ciently estimate amplitude and frequency modulations

in a signal� Hence� the operator is signi�cant to texture processing in that it represents

a direct� computationally e�cient alternative to the iterative constrained optimization

procedure used to solve ���� for the amplitude and frequency modulations in 
�����

The two�dimensional� discrete�domain Teager�Kaiser operator was �rst introduced

by Yu� Mitra� and Kaiser in ���� for performing edge detection 
����� For a two�

dimensional� real�valued image f�m�n� � Z� � R� the operator is de�ned by

#d 
f�m�n�� � �f ��m�n�� f�m� �� n�f�m �� n�
� f�m�n� ��f�m�n ��� ����

This operator was also used by Mitra and others for image enhancement 
������� and

noise removal 
����� The corresponding discrete�domain energy separation algorithm

was developed by Maragos� Bovik� and Quatieri 
����� For an image modeled by the

discrete equivalent of ���� viz��

f�m�n� � a�m�n� cos 
��m�n�� � ����

de�ne the components of the phase gradient vector �eld r��m�n� according to

U�m�n� �
�

�x
��x� y�

					
x�m�y�n

� ����

��



V �m�n� �
�

�y
��x� y�

					
x�m�y�n

� ���

Then the discrete two�dimensional energy separation algorithm of 
���� may be ex�

pressed as

jU�m�n�j � arcsin
���
�
#d 
f�m �� n�� f�m� �� n��

�#d 
f�m�n��

� �

�

��� � ����

jV �m�n�j � arcsin
���
�
#d 
f�m�n ��� f�m�n� ���

�#d 
f�m�n��

� �

�

��� � ����

ja�m�n�j �
�

#d 
f�m�n��

sin� 
U�m�n��  sin� 
V �m�n��

� �

�

� ����

In 
����� Maragos� Bovik� and Quatieri also introduced a multidimensional continuous�

domain Teager�Kaiser operator for a signal f�x� � Rn � R�

#c 
f�x�� � jrf�x�j� � f�x�r�f�x�� ����

With x � 
x� x� � � � xn�
T and f�x� � a�x� cos 
��x��� the energy separation algorithm

associated with ���� is 					 ��xi��x�
					 �

���#c

h
�
�xi

f�x�
i

#c 
f�x��

���
�

�

� ����

ja�x�j � #c 
f�x��nPn
i��#c

h
�
�xi

f�x�
io �

�

� ����

Conditions under which the approximate equalities in ���� � ����� ����� and ���� hold

accurately were investigated by Maragos and Bovik 
��������� who also gave examples

of applying the discrete algorithms ���� � ���� to several natural images� Extensions

of the multidimensional Teager�Kaiser operator applicable to vector�valued functions

were discussed in 
���� �����

��



�a� �b�

Figure �� Two sinusoidal gratings which demonstrate that negative frequency is
required to unambiguously represent signals of dimension greater than one� �a�
t�x� y� � cos�U�x  V�y�� �b� t�x� y� � cos�U�x� V�y��

��� Demodulation with Signed Frequency

For images and other signals with dimension greater than one� the signs of the com�

ponents of the frequency vector are generally signi�cant� Even for the case of a pure

sinusoidal grating� the relative signs of the spatial frequencies embody orientation� Fig�

ure ��a� shows the image t�x� y� � cos�U�x V�y�� The image t�x� y� � cos�U�x� V�y�

is shown in Figure ��b�� These two images di	er only in the relative signs of their

spatial frequencies� yet they are obviously distinct�

However� from ���� and ����� it is clear that the multidimensional Teager�Kaiser

operator is inherently incapable of estimating the signs of the components of the mul�

tidimensional instantaneous frequency vector�

However� it is straightforward to demodulate an arbitrary� complex�valued n�dimensional

signal

t�x� � a�x� exp 
j� �x�� � ����

where x � 
x� x� � � � xn�
T � a�x� � Rn � 
��	�� ��x� � Rn � R� and t�x� � Rn � C

with correctly signed instantaneous frequencies� The amplitude modulation function

��



a�x� is obtained through

a�x� � jt�x�j � ja�x� exp 
j� �x�� j� ����

Taking the gradient of t�x� yields

rt�x� � jt�x�r��x�  exp 
j� �x��ra�x�� ����

from which it follows that 
 x where a�x� �� ��

rt�x�
jt�x�

� r��x�� j
ra�x�
a�x�

� ���

Equation ��� leads immediately to the spatially local nonlinear frequency algorithm

r��x� � Re
�rt�x�
jt�x�

�
� ����

The demodulation algorithm ����� ���� is exact for any arbitrary complex�valued� n�

dimensional AM�FM signal interpreted as a single component� and gives correct signs

for the components of the instantaneous frequency vector r��x� 
�����
As a demodulation example� Figure � depicts the single�component complex�valued

image Bent Chirp� The real part of the image is shown in Figure ��a�� while the imag�

inary part is appears in Figure ��b�� Along curves which are everywhere normal to the

wavefronts� the phase of the image is a slowly varying quadratic� The estimated ampli�

tude modulation function for this image obtained by applying ���� is unity to within

�oating point precision� The estimated frequency modulation function is shown in Fig�

ure ��c�� where needle lengths are directly proportional to the magnitude frequency

jr��x�j� The needles point in the direction argr��x�� These frequency estimates are
in near perfect agreement with the model values�

Now consider an n�dimensional real�valued image s�x� � Rn � R� where x �

��
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�c�

Figure �� AM�FM analysis of Bent Chirp image� �a� Bent Chirp image� �b� Imaginary
part� �c� Estimated frequency modulation function� Needle length is proportional to
the frequency�
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x� x� � � � xn�
T � Denote the unit vector in the xi direction by

ei � 
� � � � � � � � � � � ��T � ����

where the solitary � appears in position i� The image s�x� may be demodulated by

applying the algorithm ����� ���� to the unique complex extension

t�x� � s�x�  jH 
s�x�� � ����

where

H 
s�x�� �
�

�

Z
R

s�x� �ei�
d�

�
� s�x� � �

�xTei

Y
k ��i

�xTek�� ����

is the multidimensional Hilbert transform of s�x�� The integral in ���� takes its Cauchy

principal value and the image t�x� in ���� is refered to as the analytic image associated

with the real�valued image s�x� 
�����

��� Dominant Component Texture Processing

Many signals of practical interest are inherently multipartite in character� For example�

an image may contain a single textured region that the human observer perceives as

having multiple distinct characteristics� An image patch textured by a crosshatched

pattern is one instance of such a region� Generally� no single�component interpreta�

tion of such signals will admit locally coherent modulating functions� Thus� single�

component demodulation of a multi�component image does not in general produce a

physically meaningful characterization or interpretation of the image texture� even if

the modulating functions of each individual image component are exceedingly smooth�

A complex�valued multipartite signal t�x� may be analyzed against theK�component

AM�FM model

t�x� �
KX
i��

ai�x� exp
j�i�x��� ����

��



where ai�x� � R
n � 
��	� and �i�x� � R

n � R� Uncountably in�nitely many such

decompositions exist for any signal t�x�� Of greatest interest are those decomposi�

tions which admit only a few locally coherent components� Since the multidimensional

Hilbert transform ���� is a continuous linear operator on L��Rn�� the multi�component

complex�valued image t�x� in ���� may be generated from a real�valued image s�x� by

setting t�x� � s�x�  jH 
s�x���

In this section� I will introduce a texture analysis paradigm called dominant com�

ponent analysis 
����� At each point in the image domain� the dominant component

paradigm estimates the modulating functions of the component that locally dominates

the image spectrum� Thus� dominant component analysis associates a single pair of

modulating functions with a multi�component image� just as did the variational ap�

proach of Bovik� et al� 
����� Since di	erent components may be dominant at di	erent

points in the domain� the modulating functions obtained via dominant component

analysis may not be everywhere locally smooth�

The dominant component frequency estimates are precisely the emergent frequen�

cies which characterize the local texture structure of the image 
����� For example�

many images arising from natural physical� chemical� biological� and erosive processes

contain textured regions or quasi�repetitive structures� Examples noted by Bovik� et

al� 
���� include crystals� rock strata� a zebra�s stripes� wind patterns in sand� and

wood grains� The emergent frequency estimates characterize the orientation� rough�

ness� or �ow of such patterns� Perspective distortion also gives rise to nonstationary�

quasi�regular patterns because the process of image formation involves projecting three�

dimensional surfaces onto the two�dimensional focal plane� Besides nonstationary signal

analysis� estimates of the dominant component modulating functions are also useful in

a variety of computer vision applications� They may be used for texture segmenta�

tion and classi�cation 
��������������� phase�based computational stereopsis 
�������

three�dimensional shape from texture algorithms 
������� and in the computation of

image �ow lines 
���� �����

��



However� the nonlinear demodulation algorithm ����� ���� is applicable only to an

image modeled as a single AM�FM function� With modi�cation� it may be used to esti�

mate the modulating functions of the various components of a multi�component image�

provided that the components are isolated from one another prior to the estimation�

This separation need not be e	ected on a global scale� Rather� what is required is

that the components be isolated from one another on a pointwise basis� This may be

accomplished using a multiband linear �lterbank� as described in 
���� �����

A suitable bank of conjointly spatio�spectrally localized Gabor �lters is depicted

in the frequency domain in Figure �� There are �� �lters arranged along eight rays

spaced equally at angles of approximately ��������� with �ve �lters per ray� Hence

the �lterbank comprises channels at eight orientations and at �ve magnitude spatial

frequencies� Recall from Section � that the research of Richards and Polit and of Caelli

and Bevan suggested that human visual function could be explained by the existence

of channels at �� orientations and at four magnitude spatial frequencies� However�

in analyzing complex�valued analytic images� only half of the �� orientations need be

explicitly implemented� which suggests that human visual function could be emulated

by a �lterbank comprising channels at nine orientations and at four magnitude spatial

frequencies� Thus� the channel structure of the �lterbank depicted in Figure � agrees

roughly with that proposed for the human visual system by the work of Richards

and Polit and of Caelli and Bevan� For display� each �lter in the �gure has been

independently scaled for maximum dynamic range in the available �� gray scales and

additional scaling has been applied to accentuate the intersections between individual

�lters�

Let t�x� be a complex�valued multi�component image and let g�x� be the complex�

valued impulse response of a particular one of the Gabor functions in an n�dimensional

multiband linear bank similar to the one depicted in Figure �� Suppose that the �lter

frequency response is G��� � F 
g�x��� Let y�x� � g�x� � t�x� be the �lter response
to input t�x�� and suppose that� for some particular point x in the image domain� this

�



            

Figure �� Frequency domain representation of multiband Gabor �lterbank suitable for
isolating image components from one another on a spatio�spectrally localized basis�
There are �� �lters arranged in a polar wavelet�like tesselation along eight rays with
�ve �lters per ray� Each of the �� �lters in the �gure has been independently scaled
for maximum dynamic range in the available gray levels�

response is dominated by the image component ti�x� � ai�x�e
j�i�x�� Then the modu�

lating functions ai�x� and r�i�x� may be estimated by the approximate demodulation

algorithm

r��x� � Re
�ry�x�
jy�x�

�
� ����

a�x� �
					 y�x�

G
r b��x��
					 � ����

The approximate algorithm ����� ���� is based on a quasi�eigenfunction theorem 
����

���� which guarantees that the approximation errors may be expected to be negligible

provided that t�x� is locally coherent and that g�x� is reasonably spatially localized�

A block diagram of the dominant component paradigm is shown in Figure �� where

the multicomponent image t�x� is analyzed with an M �channel multiband �lterbank

to isolate the components from one another on a spatio�spectrally localized basis� At

each point in the domain� the response of each �lterbank channel is demodulated in the

blocks marked ESA in Figure �� Amplitude and frequency estimates are computed from
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Figure �� Block diagram of the dominant component paradigm� The demodulation
algorithm is performed in the blocks marked ESA� The magnitude of each channel
response is divided by the peak value of the channel �lter frequency response magni�
tude to obtain the �lter selection criterion� On a pixel by pixel basis� the estimation
is performed using the demodulation results from the channel which maximizes this
quantity�

��



each �lterbank channel at each point in the image domain� The dominant component

demodulation problem is then that of determining which channel should be used at each

point� This determination cannot be based solely on the magnitudes of the channel

responses� since all of the �lters have identical octave bandwidths and unity L��norms�

Hence� the peak magnitudes of the frequency responses of low frequency channels are

much greater than those of high frequency channels� For each channel� a metric called

the �lter selection criterion is computed at each point in the domain� and estimates

of the dominant component modulating functions at a given point are taken from the

�lterbank channel which maximizes the �lter selection criterion at that point� The

�lter selection criterion $m�x� for channel m is de�ned by

$m�x� �
jym�x�j

max� jGm���j � ����

where ym�x� is the response of �lterbank channel m and where Gm��� is the frequency

response of them�th channel �lter� In view of ����� the quantity $m�x� may be regarded

as a crude estimate of the true amplitude modulation function of the image component

which dominates the response of channel m at the point x�

While reasonable estimates of the dominant component modulating functions could

in many cases be obtained from any one of several channel �lters having center frequen�

cies near the dominant instantaneous frequency vector� the technique based on ����

tends to select the channel with the best signal�to�noise ratio� Hence� it a	ords maxi�

mal rejection of cross�component interference and other out�of�band information such

as random noise�

As an example� dominant component analysis of the Brodatz texture image Tree

is shown in Figure � The original image appears in Figure �a�� A needle diagram

depicting the the emergent frequency estimates appears in Figure �b�� where one

needle is shown for each block of ��� �� pixels� The needle lengths in Figure �b� are
inversely proportional to the magnitude of the instantaneous frequency vector� Thus

they are proportional to the dominant instantaneous period� As before� the needles

��
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�b�            
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�d�

Figure � Dominant component analysis of Tree image� �a� Tree image� �b� Needle
diagram depicting estimated emergent frequencies� �c� Estimated dominant compo�
nent amplitude modulation function� �d� Reconstruction of dominant component from
estimated modulating functions�
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are oriented with the emergent frequency vector� Note that the needles are normal to

dominant texture features� as expected� The estimated dominant component amplitude

modulation function is shown in Figure �c�� and may generally be interpreted as

contrast in the dominant image component� A reconstruction of the dominant image

component from the estimated modulating functions is given in Figure �d�� Although

highly nonstationary� this image possess signi�cant locally coherent texture structure�

The similarity between the dominant component reconstruction and the original image

is striking and suggests that� over much of the image domain� a substantial fraction

of the total texture structure of the image has been captured in a single computed

AM�FM component�

� Example� Texture Segmentation

In this section I will illustrate how the estimated modulating functions delivered by the

dominant component analysis paradigm can be used to solve the classical texture seg�

mentation problem� The Laplacian of Gaussian� or LoG �lter is an edge detection �lter

with a circularly symmetric impulse response 
��� Let x � 
x y�T and r �
p
x�  y��

Then� the impulse response of the LoG �lter is given by

r�g�r� �

�
�� r�

��

�
exp

�
� r�

���

�
� ����

where �� the �lter space constant� controls the scale at which the �lter detects edges�

For large values of �� the �lter detects edges which are present across large regions in

an image� Likewise� small values of � yield a �lter which detects local edges�

If s�k� is a discrete real�valued image�r�g�k� is the unit pulse response of a sampled

LoG �lter� and y�k� � s�k� �r�g�k�� then y�k� will contain zero crossings where there

are edges present in s�k� at the scale �� If one constructs an edge map Y�k� by setting

Y�k� � � where y�k� contains zero crossings and setting Y�k� � � elsewhere� then

the edge contours in Y�k� will be connected and will be one pixel in width� In some

��



applications� it is of interest to suppress weak edges in s�k� from appearing in the edge

map Y�k�� This may be accomplished by thresholding the gradient magnitude of y�k��

one sets Y�k� � � only if y�k� contains a zero crossing at k and jry�k�j 
 � for some

threshold value � �

Figure ��a� shows the �� � �� image Mica�Burlap� which has a sample mean of

the zero and extremes of � and �������� A reconstruction of the dominant component
obtained by applying the dominant component analysis paradigm to the image is shown

in Figure ��b�� The estimated dominant component amplitude modulation function is

shown in Figure ��c�� while the estimated emergent frequencies are depicted in the

needle diagram of Figure ��d�� Arrow lengths in the needle diagram are proportional

to the instantaneous period� and have also been squared for display to accentuate

the di	erences between frequency estimates in di	erent image regions� Figure ��e�

presents the magnitudes of the estimated emergent frequency vectors as a gray scale

image� Thus� arrow lengths in Figure ��d� are reciprocally related to the gray scales in

Figure ��e��

A simple iterative search technique was used to �nd a LoG �lter space constant

� and threshold value � that would e	ectively segment the two textures in the Mica�

Burlap image� First� a sequence of LoG �lters with dyadically decreasing space con�

stants was applied to the magnitude frequency image of Figure ��e�� The �rst� second�

and third �lters in the sequence had space constants of � � ��� ��� and �� pixels�

None of the edge maps corresponding to these �rst three LoG �lters contained a closed

contour� For � � �� however� the edge map contained many closed contours� The space

constant search sequence was continued by decreasing � from ��� For � � � pixels

the LoG edge map contained �ve closed contours� and the space constant search was

terminated at this value�

A similar search procedure was then used to �nd a suitable threshold value for the

magnitude LoG response image� In the coarse stage of the search� thresholds with

values � � ���n were applied for n � N � For � � ���� no closed contours remained
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�d�
            

�e�

            

�f�

Figure �� Dominant component texture segmentation of Mica�Burlap image� �a� Mica�
Burlap image� �b� Dominant component reconstruction� �c� Estimated amplitude
modulation function� �d� Estimated emergent frequencies� �e� Estimated emergent fre�
quency magnitudes displayed as a gray scale image� �f� Texture segmentation computed
by applying a r�g �lter to the estimated emergent frequency magnitudes�
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in the edge map� A �ne search was then used to select a threshold value between ���

and ���� For � � ��� only one closed contour remained in the edge map� This contour

is shown overlayed on the original image in Figure ��f�� where it is seen to e	ectively

segment the two textures of the Mica�Burlap image�

In addition to the emergent frequency magnitudes� the other quantities delivered

by the dominant component analysis paradigm may also be used to perform texture

segmentation� For example� the image Wood�Wood is shown in Figure ��a�� This

��� �� image was generated by rotating the original image counterclockwise by ��

and subsequently replacing pixels in the central diamond�shaped region of the original

image with their counterparts in the rotated image� The sample mean of the Wood�

Wood image in Figure ��a� is zero and the extremes are ���� and��� A reconstruction
of the dominant component obtained from the dominant component paradigm is shown

in Figure ��b�� The estimated dominant component amplitude modulation function is

depicted in Figure ��c� and the estimated emergent frequencies are given in Figure ��d��

As before� arrows lengths in Figure ��d� are proportional to the instantaneous period

and have been squared for display� Figure ��e� gives the orientations of the estimated

emergent frequency vectors as a gray scale image� As in the example of Figure �� an

iterative search was applied to select the LoG �lter space constant and threshold values�

For a LoG �lter with space constant � � �� pixels and a threshold value of � � ���

the edge map computed from the orientations in Figure ��e� contained only one closed

contour� This contour is shown overlayed on the image in Figure ��f��

The examples of this section demonstrate that the estimated quantities delivered by

a dominant component image analysis are useful in solving the classical texture segmen�

tation problem� The main advantage of the texture segmentation technique illustrated

in this section is that the emergent frequency estimates are computed using the spatially

localized� computationally e�cient algorithm ���� as opposed to the computationally

expensive constrained iterative relaxation procedure described in 
�����
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Figure �� Dominant component texture segmentation ofWood�Wood image� �a�Wood�
Wood image� �b� Dominant component reconstruction� �c� Estimated amplitude modu�
lation function� �d� Estimated emergent frequencies� �e� Estimated emergent frequency
orientations displayed as a gray scale image� �f� Texture segmentation computed by
applying a r�g �lter to the estimated emergent frequency orientations�

��



� Conclusion

In this paper� I have contended that the philosophy and motivation behind modern

approaches to texture processing are fundamentally di	erent from from the philosophy

and motivation behind the early techniques� which constituted the state of the art in

texture processing c� ����� Speci�cally� the early techniques were primarily ad hoc� and

generally lacked strong physical� phenomenological� or biological motivation� Some of

the early methods were weakly motivated by biological considerations� most notably by

the Julesz conjectures and by the experimental work of Hubel and Wiesel� While some

of these techniques worked well and provided reasonable solutions to classical texture

problems for certain classes of images� none of them worked well in general� Methods

based on the gray level cooccurrence matrices of Haralick were probably the best from

among them�

The modern approaches characterize image texture in terms of nonstationary� lo�

cally coherent modulations occurring in frequency and orientation selective channels�

These modulations bear strong physical relationships to certain electrochemical cell

responses in mammalian biological vision systems� Thus� the modern texture process�

ing techniques posses stronger biological motivation than the early methods� This is

signi�cant� since the only known vision systems that work well in general are biological

vision systems� I argued for interpreting contrast and phase in textured images as mod�

ulations� and also for the representation of these quantities in image processing and ma�

chine vision algorithms by computed amplitude and frequency modulation functions� In

addition to being generally useful for nonstationary spatio�spectral analysis� computed

modulations have demonstrable utility in solving a broad range of texture processing

problems in image processing and machine vision� including identi�cation and classi�

�cation� object recognition� phase�based computational stereopsis� three�dimensional

shape from texture� and texture�based scene segmentation� Only the last of these was

demonstrated in this paper�

The main thesis of this paper was that the evolution of texture processing from the

�



early methods to the modern methods was driven in large part by a dramatic series of

developments in psychophysics and physiology that occurred between ���� and ����

In the context of image processing and machine vision� the most signi�cant results from

among these advances were the determination that certain elements of biological vi�

sion systems function as spatially localized� orientation selective narrowband frequency

�lters� that the responses of visual cortical cells explicitly convey contrast and phase

information� and that the spatial receptive �elds of simple visual cortical cells are well

modeled by complex�valued Gabor functions� The fact that we still know relatively lit�

tle about the higher�level cognitive processing that occurs in biological vision systems

suggests that texture processing techniques will continue to evolve and improve with

future psychophysical and physiological discoveries� as well as that the future of texture

processing research is indeed exciting�

��
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