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Abstract

We develop powerful approximations for the response of discrete-time linear systems with
wideband, nonstationary inputs modeled as AM-FM functions. On a temporally local basis, the
approximations are analogous in form to the eigenfunction interpretation of sinusoids in linear
system theory, and hence are called quasi-eigenfunction approximations. Using these approxima-
tions, we obtain straightforward solutions to several difficult problems in discrete AM-FM signal
demodulation. We bound the approximation error by functionals quantifying the time duration
of the system unit pulse response and the local coherency of the input, and for the first time
study the variation of the bound with the amplitude and frequency modulation signals.

1 Introduction

The analysis of wideband, nonstationary signals in terms of AM-FM modulation models is rapidly becoming
a standard technique [1-7]. AM-FM modeling is most useful when the signals of interest may be accurately
represented as a sum of one or more locally coherent complex-valued components, each of the form

§(k) = a(k) exp [jo(k)] 1)
where £ : Z — C and a,¢ : Z — R, or a sum of locally coherent real-valued components
z(k) = a(k) cos[p(k)] - 2)

In (1),(2), we assume that £(k), z(k), a(k), and (k) are samples of continuous domain functions &(t), z(t),
a(t), and ¢(t), taken with unity sampling interval. Note that £(t) and z(t) are uniquely related through
z(t) = Re[€(t)] and &£(t) = =(t) + jH [2(t)], where H [.] indicates Hilbert transform. By locally coherent,
we mean that the amplitude and frequency modulating signals a(t) and ¢'(t) do not vary too wildly or
rapidly with relation to the sampling interval (this notion will be made explicit in Section 2.1). Despite
being globally wideband, such signals may be considered narrowband on a local scale. Fractal, self-similar,
or grotesquely discontinuous signals, which are termed incoherent in this sense, are best treated by other
methods.

Given £(k), or equivalently z(k), the discrete AM-FM demodulation problem is concerned with estimating
the amplitude modulation a(k) and the emergent, or instantaneous, frequencies ¢'(k) that characterize the
structure of the signal on a temporo-spectrally local basis, where ¢'(k) = 4£¢(t)[—r. When multiple
components are present, it becomes necessary to isolate the individual components from one another by
linear filtering prior to demodulation. Without introducing certain simplifying approximations, the rigorous
development and analysis of discrete demodulation algorithms for components of the form (1),(2) is difficult,
and it is generally impossible for filtered components. In this paper we present a powerful approximation to
the response of general discrete linear systems to signals modeled with AM-FM functions, and demonstrate
how the approximation can be used with great efficacy in treating discrete demodulation schemes. On
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a temporally local scale, the approximation bears similarities to the eigenfunction interpretation of the
complex exponential in linear system theory, and hence has come to be known as the quasi-eigenfunction
approzimation (hereafter QEA). For the first time, we also study behavior of the approximation error bound.

2 Approximate Linear System Response

In this section, we approximate the response of square-summable discrete linear systems to AM-FM inputs,
bound the approximation error, and show examples applying the complex-valued approximation. Consider
an arbitrary discrete linear system g : Z — C with unit pulse response g(k) € £2(Z) and frequency response

G (/) =F[g(k)] =) g(n)e=9m. 3)

nez

Henceforth, we write g(k) < G (e7“) to mean that g(k) and G (e/*) are a Fourier transform pair. The
response of g to input &(k) is given exactly by

(k) = g(k) x&(k) = > g(n)é(k — n). (4)

neEZ

Without specific knowledge of the filter function, simplifications beyond (4) are generally impossible. How-
ever, if the modulating functions are sufficiently slowly varying (i.e. if £(k) is sufficiently locally coherent),
and if g(k) is sufficiently temporally localized, then on a local basis we expect that £(k) does closely resemble
an eigenfunction. This motivates the QEA

Ck) = ERNG (1'D) = a(k) exp[ig(k)] G (17 F)) . (5)

For an arbitrary real-valued discrete linear system h : Z — R with unit pulse response h(k) € ¢*(Z) and
frequency response H (e/“) < h(k), the exact response to input z(k) is given by

y(k) = h(k) x (k) = Y _ h(n)z(k —n), (6)

neZ

while the QEA to the response is

(k) = a(k) ‘H (ej“”(k)) ‘ cos {go(k) +/H (ej“"(k))} . (7)

Although it is true that an arbitrary AM-FM signal may bear little resemblance to a linear system eigen-
function on a global scale, it is important to observe that all of the quantities involved in (5) and (7) are in
fact localized. Except for the special case of a(k) and ¢'(k) constant, there will always be an error in the
QEA. However, when the duration of g(k) is short with relation to the nonstationary features of £(k), the
approximation error is generally insignificant. We bound the error in Section 2.1.

2.1 Approximation Error Bounds

Various instances of QEA error bounds have appeared previously. The 1-D continuous domain version was
proven in [8], the 2-D version in [9], the n-D version for the case of FM-only signals in [10], and the general n-
D case in [11]. The 1-D discrete domain bound was treated in [5]. Proof of the discrete domain n-D theorem
remains an important open problem. Here, in stating the bound, we will make use of several definitions.
First, denote the maximum value of a(k) by amax = supycz |a(k)|. Quantify the time duration of the linear
system by its k*" energy moment functional

1

A (g) = [Z it |g<n)|2] - li I

neEZ -

d
@ )

dw] 2 . (8)



Note that A (g) tends to increase with the duration of g(k). While it is true that the duration of G (e’*)
grows inversely with that of g(k), observe that the frequency domain relationship in (8) is through a Sobolev
norm. The degree to which the input signal is locally coherent is quantified by functionals of the form

D (a k) = |’ (k)] + v/7 /R 0! (u) s, (9)

where the integral is again a Sobolev norm, and

V7= lzi %1 ’ = \/16 ~ 1.2825 (10)

n=1
is the Riemann Zeta function. The following theorem bounds the error in the QEA (11):

Theorem Suppose a is differentiable, ¢ is twice differentiable, a'(t), ¢"(t) € L*(R), and a(k), a'(k),
©"(k) € £2(Z). Let ec(k) = |((k) — C(k)|, where (k) and ((k) are given by (4) and (5), and let kg(k),
k%*g(k) € ¢*(Z). Then

g¢(k) < amaxD2 (9) D (¢'3k) + A1 (9) D (as k) - (11)
Next, we give an analogous bound for the error in (7):

Corollary Take a and ¢ as in the preceding Theorem. Let ¢, (k) = |y(k) — 7(k)|, where y(k) and y(k)
are given by (6) and (7), and let kh(k), k2h(k) € ¢?(Z). Then

£y (k) < Gmaxz (1) D (@' k) + Ay (B) D (as ). (12)

In (11),(12), the error is bounded by terms involving the duration of the system unit pulse response and the
smoothness of the modulating functions, which is in agreement with the preceding intuitive discussions. As
the input tends toward a true eigenfunction, the bounds become tight in the sense that D (a; k) and D (¢'; k)
tend to zero.

2.2 Examples

In this section we present examples demonstrating behavior of the QEA error bound (11) applied to a Gabor
filter with center frequency f;, Hz/sample and time constant oy,
2

_1
g(k) = (27ra§) 4 exp (E) exp (j2n fok) , (13)
when the input amplitude modulation is Gaussian and the instantaneous phase (k) is the product of a
quadratic (linear chirp characteristic) and a Gaussian. The form of the input is

k2 A —k?
£(k) = exp (%) exp lj (”Tsz + 27rf,-k) exp <%>] : (14)

where o, is the AM time constant, o is the time constant of the Gaussian phase component, the FM chirp
component progresses from an initial frequency of f; Hz/sample to a final frequency of f; Hz/sample in S
seconds, and Ay = f; — f; is the frequency differential. Note that {(k) tends toward a true eigenfunction in
the limit as 04,07 = 00 and Ay — 0.

For a filter specified by f, = 0.4 and o, = 0.26, Figure 1(a) shows the variation of the QEA error bound
with o, for oy = 2048, S = 1024, and f; = f; = 0.4. Variation of the bound with Ay for o, = 1024,
of = 2048, S = 1024, and f; = 0.4 > f; is shown in Figure 1(b). In all cases, the bound is dominated
by the Sobolev norms in D (a; k) and D (¢'; k), which measure the smoothness of the infinitely supported
modulating functions on a global scale. Indeed, the local variations of each bound are small in relation to
their mean values. The real parts of the exact and approximated responses for fy = 0.1 are shown in the (c)
and (d) parts of the figure, respectively, while the bound and the actual error e¢(k) are shown in the (e) and
(f) parts. In this case, the peak error is four orders of magnitude below the amplitude of the response. We
have found that for reasonably localized filters and reasonably locally coherent inputs, the approximation is
typically excellent. In fact, the error shown in Figure 1(f) is larger than that which occurred in any of the
examples shown in the (a) and (b) parts of the figure except for the case Ay = —0.4, where the peak error
was 7.5 x 107°.
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Figure 1: Behavior of the QEA error bound. (a) variation of the bound with AM for fixed FM, (b) variation
of the bound with FM for fixed AM, (c) exact response for Ay = —0.3, (d) approximated response, (e) error
bound, (f) e¢(k), magnitude of the actual error.

3 Application to the Discrete AM-FM Demodulation Problem

In this section we use the discrete QEA (5) to develop two demodulation algorithms for complex-valued AM-
FM signals of the form (1). Consider a discrete domain linear system parameterized by constants ni,ns € Z
and ¢ = %1, where the unit pulse response and frequency response of the system are

g(k) = 6(k +n1) + gd(k + n2) & G () = /™ + ge?“™>. (15)
The exact response is
C(k) = g(k) = &£(k) = &(k +n1) + g€(k +na2), (16)
while the QEA is
E(k) = ¢(k) [ejmcp’(k) + qejnw’(k)] . (17)
Upon equating (16) and (17) subject to the approximation error, with n; = 1 and ns = ¢ = —1 we have
almost immediately that
~ ) k+1)—¢&k—-1)
"(k) ~ ¢'(k) = arcsin [6( . . 18
oK) ~ P (k) RO (15)
Alternatively, choosing ny = ¢ = 1 and ne = —1, we have
-~ E+1)+&k—-1)
"(k) =~ ¢'(k) = arccos [E( . 19
o (k) ~ P (F) e (19)

Using the QEA it was straightforward to obtain these frequency demodulation algorithms from (15), whereas
a naive discretization of the analogous continuous domain algorithms would fail to predict the presence of
the transcendentals. Since arcsin and arccos are not single-valued, there is some ambiguity in estimating
¢' (k) from either (18) or (19) alone. However, they can be used together to correctly place ¢’ (k) within 27
radians. Once ¢'(k) is known, a(k) is estimated by (k) = |E(K)]-

3.1 Multi-Component Demodulation

In many cases where no representation of the form (1) admits smooth modulating functions, the signals under
analysis may be best modeled as a sum of locally coherent components. Due to the highly nonlinear nature of



the algorithms (18),(19), it then becomes necessary to isolate the multiple components by linear filtering prior
to demodulation. In this section, we use the QEA to develop a demodulation scheme for the resulting filtered
AM-FM signal components. Let f(k) < F (e/*) be a discrete linear filter, and consider the response of the
cascade system f(k) * g(k) to input £(k), where g(k) is given by (15). The frequency response of the cascade
system is F (/) [e/“™ + qef“"2]. Define A(k) = £(k) * f(k), and (k) = (k) * g(k) = &£(k) * f(k) * g(k).
The exact response of G in terms of A(k) can be obtained directly from the convolution sum:

C(k) =D An)g(k —n) = A(k + n1) + gA(k +na). (20)

ne”Z

Apply the QEA to the cascade system to obtain
Z(k) =¢(k)F (ejw'(k)) [ejnltp'(k) + qejnch’(k)] ~ A(k) [ejnlcp'(k) + qejnztp'(k)] , (21)

where the approximate equality is obtained by applying the QEA to F' alone. Upon equating (20) and (21)
to within the approximation error, we obtain

Ak 4+ n1) + gAk +n2) = Ak) [ejm‘”'(k) + qejnw'(k)] . (22)

Taking ny = 1, no = ¢ = —1, (22) immediately validates applying (18) directly to a filtered component:

-~ AR+ = AE—=1)]
(k) = . 2
@' (k) = arcsin 273 0) (23)
Likewise, choosing ny = ¢ = 1, ny = —1, establishes that (19) can be applied directly to A(k):
¢ (k) = arccos Alk + 12)):]3% ) (24)
Once ¢' (k) has been obtained, the amplitude is estimated by
~ Ak
at) = |—2E__|. (25)
G (ejw(k))

Figure 2 shows demodulation of a filtered chirp signal with Gaussian AM using (23) and (24) together. The
frequency of the chirp varies from 0.4 to 0.25 Hz/sample. Re[(k)] is shown in the (a) part of the figure.
The filter is a half-octave Gabor wavelet with center frequency f, = 0.375, the real part of which is shown
in Figure 2(b). The estimated frequency and amplitude modulating functions are shown in the (c) and (d)
parts of the figure, while the estimation errors are shown in the (e) and (f) parts. The peak errors are on
the order of one percent of the signal amplitude.

4 Conclusions and Future Work

Used properly, quasi-eigenfunction approximations have powerful and natural application for the analysis
of discrete linear systems with AM-FM inputs, and have been employed to effect a rigorous analysis of the
Teager-Kaiser energy operator [5]. We demonstrated that several demodulation problems which are difficult
or impossible without the approximation become straightforward when the QEA is applied, and also gave
practical examples where the approximation error was negligible. We bounded the error by functionals
quantifying the duration of the filter and the local coherency of the input signal, but observed that, in
practice, the actual errors tended to be well below the bound, which is tight only in the sense that it
vanishes as the input tends toward a true eigenfunction. The bound (11) was dominated by Sobolev norms
of the continuous domain modulating functions, which are global measures of smoothness and reflect the
fact that a(t) and ¢'(¢) are infinitely supported. In practical applications, the support of the modulating
functions is always finite. Furthermore, in the computation of a given response sample, the effective support
of the input affecting the response can be no larger than that of the filter unit pulse response, and future
work will use these facts to achieve a tighter error bound.



15 05 15
10
g 3 /_\
g 2
3 £ o5
= [=%
g £ o3 g
5 g 00
3 < B
< o2 o
] £ 05
® o1 LR
12y 1024 2048 3072 4096 00 -15
0 1024 2048 3072 4096 0 1024 2048 3072 4096
sample sample sample
(a) (c) (d)
06 0.00010 0.01000
04
0.00005 0.00500
02 < <
= = <
% 00 'l || £ 000000 £ 000000
g []] 5 5
02 b 3
-0.00005 -0.00500
04
06 -0.00010 -0.01000
32 16 0 16 B 0 1024 2048 3072 4096 0 1024 2048 3072 4096
sample sample sample
(b) () (f)

Figure 2: Filtered demodulation example. (a) chirp with Gaussian AM, (b) real part of the filter, (c) @' (k),
(d) a(k), (e) frequency estimation error, (f) amplitude estimation error.
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