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Abstract 

Xu et al, [ I ]  proposed on effective wovelet based 
spotial selective denoising algorithm. The peflormance 
of the olgorithm depends on the noise power 
estimation. Pon et al. [2] tried to improve the 
performance vi0 o smoll modifcotion. However, our 
simulation slrowa that both of these methodr are 
sensitive to the noise estimation. Here we anolyze the 
sensilivify of these iwo methodr and introduce a new 
spatially selective noise filter based on the UDWT 
(Undecimated wovelet tronsform) that uses spotiol 
correlation thresholding. Theoretic analysis ond 
simulotions show our algorillrm improves the 
denoising effect. They olso show that our proposed 
method is robust to errors in the noisepower estimote. 
Because our oppraach is robusf, we can r e l a  tire 
requirements for the estimation of the threshold 
without sacrr9cing perfomonce, ond so our method is 
more computotionally efficient. We oh0 put some 
perspective on the impact of employing non- 
orthogonol representotioirs. Simulation results show 
the effectiveness of ourproposedalgorithm. 

1. Introduction 

Unlike the Fourier transform, the wavelet transform 
gives a multi-resolution analysis of a signal. It is used 
widely in signal processing applications such as 
denoising and coding. The wavelet shrinkage 
(denoising) method introduced by Donoho and 
Johnstone [3] is a popular method for image denoising. 
In this approach, large transform coefficients are 
assumed to be associated with the signal while small 
transform coefficients are assumed to be associated 
with the noise. However, this approach exhibits 
spurious oscillations and other visual artifacts. Lang, et 
al., proposed a denoising algorithm using an 
undecimated wavelet transform (UDWT) [4]. The shift 

invariance of the 

,in;: 

D1NT appears to improve the 
denoising performance in bothvision and mean square 
error sense [4]. Many re!;earchers have pointed out that 
the key factor in the performance of the wavelet 
shrinkage methods is the thresholding, which is related 
to the noise power estimation. Most methods do not 
incorporate the correlation information existing 
between scales. With this in mind, Xu, et al., proposed 
an effective spatially-selective nonlinear filter [I] .  Pan, 
et al., [2] modified the :Yn algorithm in its method of 
choosing the stopping point of the nonlinear filtering 
(iteration), yielding a slightly improved performance. 
Our simulations and analysis show that both the Xu 

method and the improvement offered by Pan are 
sensitive to the noise power estimate used in defining 
the nonlinear denoising filter. In this paper, we 
introduce a new spatially selective noise filter based on 
the UDWT that incorporates ideas fiom these three 
papers [1][2][4]. In Section 2, we analyze the Xu and 
Pan spatial selective methods and point out the cause 
of the sensitivity of these two methods. Then the 
undecimated wavelet transform and its properties are 
discussed in Section 3. The new spatial selective 
nonlinear filter based #on UDWT is introduced in 
Section 4. Simulation results are given in Section 5, 
while conclusions and discussion appear in Section 6. 

2. Previous work - some details 

The Xu [I] algorithm is a spatially-selective noise 
filtration technique that uses the nonorthogonal 
wavelet introduced by Mallat and B o n g  [5 ] .  The 
method extracts the signal at each scale through the 
direct correlation of the coefficients at several adjacent 
scales. We have the inter-scale correlation 

L-I  

C L ( m , n ) = n W ( m + i , n ) ,  n = l , 2  ,.._, N ,  (1) 
,=o 
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where W(m,n) are the wavelet transform detail 
coefficients of the signal x at level m and point n .  
The fmt step in the algorithm is to normalize 

where 

(3) 

The normalized inter-scale correlation e2 (m,n) is 
used as a dynamic intra-scale threshold function. 
Transform components larger than the threshold are 
called “signal” and saved. e2((m,n) is then 
recomputed based on the remaining components. This 
renormalization of the inter-scale correlation lowers 
the threshold function, and more components are 
classified as signal. The iterated in-scale classification 
is stopped according to the estimated noise power. The 
devil in the details, of course, is determining the 
stopping point because accurate estimation of the noise 
power can he quite difficult. Stopping too early will 
fail to save (extract) significant signal components, 
while stopping too late allows too much noise to he 
saved. Simulation shows that this algorithm will 
generate more visually pleasing results when some 
signal is lost. 

Pan observed in [2] that performance of the Xu 
algorithm can he improved by modifying the stopping 
poinf according to 

Pw (m)- th(m)( N - K)u; > O.05PR. (m)  , (4) 

which stops the iteration at a slightly earlier point. In 
(4), N is the total number of samples, K is the 
number of samples extracted as signal, and 
1.2 < th(m) < 1.8 is a scale-dependent value. 
Rewritine. we have 

I. 

N- G ( m )  > t h ( m ) d N  =(1.05xth(m))uiN. (5 )  
N-K 0.95 

The left side is the noise power estimated from the 
remaining wavelet coefficients. The right side is the 
noise power estimated fiom noise variance, which is 
P, (m) > c x estimation noise power at scale m , c > 1 . 

Simulations indicate that this alteration in 
threshold generates better results when the noise power 
estimate is reliable. Sirnulation results based on the 
two algorithms are given in Fig. 1 using a typical Lena 
image and added white Gaussian noise with MSE=600 
out of 256 gray levels (about lOdB S N R ) .  The 

horizontal axis gives the ratio of the estimated noise 
power to the true noise power; the vertical axis gives 
the percentage of noise extracted. We see that both 
algorithms can remove the noise effectively. However, 
the performance of both algorithms is very sensitive to 
noise power estimation errors. 

Analysis shows this sensitivity is caused by the 
extraction process. If the noise power estimate is too 
low, then the algorithm will continue extracting noise 
after the signal information has been extracted. On the 
other hand, if the noise power estimate is too high, the 
algorithm will stop when significant signal information 
remains in the unextracted wavelet coefficients. This is 
most pronounced in the fme scales, which are 
important for keeping sharp edges and are also 
frequently dominated by noise. 

I 

Pan’s I S I / ,  , , , , 1 
40 
0.8 0.9 1 1.1 1.2 1.3 

Estimated Noise Powerrhe  Noise Power 
Fig. 1: Noisa reduction vs. noise power ertlmation. 

Since the Xn and Pan algorithms are sensitive to the 
noise power estimate, this paper considers the 
development and analysis of a rohnst, spatially- 
selective filter based on the UDWT. 

3. Undecimated wavelet transform 

The UDWT generates an equal number of 
coefficients at all resolution levels, and so is 
overcomplete. Its joint localization in the time- 
frequency plane allows us to denoise an image using 
the spatial information. We will give a brief 
introduction to UDWT next. In an orthogonal wavelet 
transform, there exist a scaling function d(t)  and a 
mother wavelet ~ ( t )  . The scaling function ( ( t )  can 

he built &om a multiresolution analysis of C ( W )  . The 

set of functions (2”“~(2””21-ri)} is an orthonormal 

basis of V,. The set of fnnctions (2””*~(2””1-n)}  

forms an orthonormal basis of W,, where 
Vm+l =V,@Wm =V,@W,SF@.. .W,  . Using these 
facts, we can decompose a signal x( f )  E E ( W )  onto 
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{v,,w,,~...W,). An orthogonal wavelet 

decomposition of a continuous signal x( t )  E L2(W) 
with mother wavelet yr(l) results in 

An efficient algorithm for implementing the discrete 
orthogonal wavelet transform with %-band filters was 
developed by Mallat [7]. In the UDWT, we do not 
down sample in the analysis (decomposition) side or 
up sample in the synthesis (consbuction) side of the 
filter hank, as we would in the discrete orthogonal 
wavelet transform case. Instead, we up and down 
sample the wavelet filter coefficients. The UDWT is 
illustrated in Fig. 2. In the figure, H and L are 
identically those used in the discrete orthogonal 
wavelet transform. ? H and ? L mean dyadic 
upsampling of H and L by 2 . ,“??”  means two 
consecutive applications of dyadic upsampling, and so 
on [ti]. 

The UDWT generates an equal number of 
coefficients at all resolution levels. As in any wavelet 
transform, W ( m , n )  contain the detail information at 
scale rn and translation n . It is this joint time kequency 
localization that we exploit to denoise the image [6]. 

In Fig. 2, x is Gaussian white noise distributed as 
x -  N(0,  U ’ ) .  The contents of the UDWT at each 
level are just x filtered by an FIR filter, so the noise 
variance at each scale can be directly computed as 

where ‘ * ’ denotes linear convolution. The UDWT is 
shift invariant and redundant, and thus, in contrast to 
orthogonal wavelet transform denoising methods, may 
yield superior visual performance, e.g. no ringing. In 
[2] and [4], analysis and simulations show that using 
an appropriate threshold, the UDWT can generate a 
better denoising effect both visually and in the sense of 
mean square error. However, those metbods do not 
incorporate the spatially correlated information 
between different scales exploited in the Xu algorithm. 

4. A noise estimation error robust spatial 
selective fdter 

Now that we have seen what others have done, we 
examine ow method for altering the threshold 

selections in the nonlinear filtering so that the resulting 
algorithm is robust to the estimated SNR. 

4.1 Our proposed algorithm 

We retain (I) ,  in which B’(m,n) is the UDWT 
detail coefficients of a noisy signal x at scale m and 
sample n . Since we propose to use a different wavelet 
decomposition than Xu, we will distinguish between 
the two correlations. We use the notation C; (m,n)  to 
indicate our UDWT-based correlation. 

L I Z  

a) Decomposltlon 

Wi9 

b) Construction 
Fig. 2: UDWT block diagrams. 

In many respects, our proposed algorithm is 
similar to the Xu method, hut we use a different spatial 
selection criterion to extract the signal components. 
We give a brief description of our choice: 

1. Take the UDWT of the signal. 
2. Calculate C; ( m , n )  at each scale. 

3. If C; (rn,n) is Iwger than the threshold value, 
select the component as a signal compouent. 

4. Invert the UDWT of the signal components. 
Our algorithm can also be regarded as a 

generalization of the Lang algorithm. Like the Lang 
algorithm, our method does not require iteration. In the 
algorithms developed by Xu and Pan, the threshold 
value is very critical to the performance of the 
algorithm. However, we are going to show in the 
following discussion that our algorithm is insensitive 
to tbe noise power estimate and therefore does not 
require prior or precise howledge of the noise. 

4.2 Noise power estimation insensitivity 

C; (rn,n)  is the product of UDWT coefficients at 
adjacent levels and may be modeled as a product of 
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uncorrelated Gaussian processes 5 and y . Thus 5 and 
y are filtered sub-bands. Consequently, they are 
Gaussian, but not generally white. However, though 
the sub-hands are undecimated, each one is produced 
otherwise identically to one that would be orthogonal 
were the downsampling done; they are still 
approximately orthogonal to each other. For Gaussjan 
noise, orthogonal implies uncorrelated, and SO: 

E { C; ( w n ) }  = E { <} E { U) = 0 (6) 

(7) vm { C; (m, n)} = vor ( 5 )  v.r{ U) 

Calculating (8) can he difficult; however, Monte Carlo 
simulations indicate that the multiplication 
concentrates the distribution (see Fig. 3). As a result, if 
our threshold takes a relatively smaller value, most of 
the contents of C; ( m , n )  arising from the noise can 
still be subtracted. On the other hand, edges are 
relatively unaffected because they appear at all scales. 
Here the joint localization of the UDWT helps us 
immensely. C;(m,n)  is the product of two scales. 

Through C ; ( m , n ) ,  the noise information is 
suppressed while the signal information is amplified. 
Thus, we have that the difference of the parts of 
C; (m,n)  due to the noise and those parts due to the 
signal are much larger than the difference of the 
correlation to the wavelet coefficients themselves. Ow 
algorithm is thus robust to errors in the threshold value 
caused by misestimating the noise power. 

~ . t b  I_-- 

$I A a, 4 2  4 ,  I 0 3  0.2 0 ,  0 4  *.I 

Fig. 3: Sample distributions (level 5 top, lavel 6 middle. 
and product of the two at bottom). 

4.3 Threshold selection 

There are several ways to calculate the threshold. 
Here we provide two methods. In the first method we 
use the fact that the UDWT retains all spatial 

relationships. Consequently, to characterize the noise, 
we can estimate C;(m,n)  based on a region of the 
image where there is only noise present, yielding 

threshold =c*max(C;(m,n)),0.5Sc50.8 (9) 

The second approach for calculating the threshold is 
statistical - assume that the noise is AWGN, with 
distribution 5 - N(0,u' ) .  Then, we can use (6)-(8) to 
estimate the properties of C; (m, n) , yielding 

threshold = c*u iY ,2  5 c 5 3 (10) 
One significant difference from the Lang method [4] is 
that both of ow thresholds (9) and (IO) are not 
constant in the wavelet transform domain (though they 
are in the correlation domain). 

5. Simulation 

5.1 Sensitivity comparison 

We simulate ow algorithm and compare it to the 
other algorithms. We measwe the reduced noise power 
with respect to the different noise power estimations. 
The simulation result is shown in Fig. 4. It is evident 
that ow algorithm is very robust to the noise power 
estimation error. The "threshold" method shown is 
essentially the Lang method, or alternatively, the 
second variant given by Pan [2]. 

--, 
I Our Pmmsed AImrMm I 

I 

Estimated Noise Power/Tme Noise Power 

Fig. 4 Sensltlvltyanalysls for Lena Image, o'=WO. 

5.2 Visual comparisons 

The above sensitivity simulation compares MSE 
performances that may not be indicative of visual 
quality. Accordingly, we compare the methods 
visually. Figure 5 shows the noisy image, the best 
result generated by Xu's algorithm (when the noise 
estimate is 1.2 times the hue noise power), and ow 
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algorithm. In this case, the methods appear to be 
visually comparable. However, our result is 12, 1996. S .  
significantly better than the Wical results delivered by 
the Xu algorithm, as is expected by examining Fig. 4. 

discrete wavelet transform,” IEEE SP Len, 3, pp. 10- 

[51 Mallat and S .  Zhong, “Characterization of signals 60m 
multiscale edges,” IE3E T-PAM, vol. 14, no. 7, Jul 
1992. 

6. Discussion 

The Xu and Pan spatial-selective denoising 
algorithms are sensitive to the noise power estimate. In 
this paper, we introduced a spatially-selective filter 
based on the UDWT that is robust to the noise power 
estimation error. Our algorithm also displays better 
visual effects while improving the MSE above the 
Lang algorithm, as shown in Fig. 4. The improvements 
are achieved by using the shift-invariant nature of the 
UDWT and the spatial correlation between scales. As a 
result, we obtain MSE and visual performance that is 
equivalent to the best performances attainable by those 
previous algorithm and do so over a much wider 
range of power estimation errors. 

We note that Baa, er U/ ,  [SI recently proposed a 
novel algorithm based on spatial correlation 
thresholding simultaneously with our independently 
developed algorithm [9]. At fnst glance, their 
algonthm looks similar to ours. However there are 
several distinctions in the two algorithms. First, the 
Bao algorithm is based on a dyadic transform, while 
ours is based on the more general UDWT. More 
importantly, their algorithm requires a numerically 
complex S N R  computation to set the threshold - our 
method does not require this added computational 
burden. In fact, the point of our algorithm was to 
develop one that is robust to these errors! Finally, Baa 
[8] provides no comparisons of their algorithm with 
either that of Xu or Pan. In this paper, we begin this 
comparison. In the future, we intend to extend our 
comparisons. Also, we note that further improvements 
are possible by using a self-orthogonalizing matching 

[6] M. Jansen, “Noise reduction by wavelet thresholding,” 
Springer, 2001. 

[7] S .  Mallat, “A theory for multiresolution signal 
. decomposition: the wavelet representation,” IEEE T- 
PAM, vol. I I ,  no. 7, pp. 674-693, 1989. 

[a] P. Bao and L. Zhang, “Noise reduction for magnetic 
resonance ’ images vi:% adaptive multiscale products 
thresholding”, Medica/ Imaging, IEEE Tranracfion On, 
Vol. 22, no. 9, pp. 108!)-1099, Sep. 2003 

[9] D. Zhou, “Wavelet based image denoising”, tern 
project for ECE 52 73, OU, May 2002. 

a) Picture before denoislng 

- - - - 
pursuits algorithm. We expect to do this next, as well. b) Denoised plcture by our algorithm 
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