
VISUAL TARGET TRACKING USING IMPROVED AND
COMPUTATIONALLY EFFICIENT PARTICLE FILTERING

Y Zhait, M. Yearyt, J.-C. Noyer tt, J. Havlicekt, S. Nematit, and P. Lanvin tt

tSchool of Electrical and Computer Engineering
University of Oklahoma, Norman, OK USA

ttLaboratoire d' Analyse des Systemes du Littoral
Universite du Littoral Cote d'Opale, Calais Cedex, France

E-mail: yan.zhai@ieee.org, yeary@ieee.org

ABSTRACT

In this paper, we present a new particle filtering (PF) al-
gorithm for visual target tracking where Galerkin's projec-
tion method is used to generate the proposal distribution.
Galerkin's method is a numerical approach to approximate the
solution of a partial differential equation (PDE). By leverag-
ing this method in concert with L2 theory and the FFT, we ob-
tain a new proposal which directly approximates the true state
posterior distribution and is fundamentally different from var-
ious local linearizations or Kalman filter-based proposals. We
apply this improved PF algorithm to track a human head in a
video sequence. As predicted by theory and demonstrated by
our experimental results, this new algorithm is highly effec-
tive for tracking targets which exhibit complex kinematics.
The new proposal distribution given here captures the high
probability area in the state space, thereby gleaning increased
support from the true posterior distribution.

Index Terms- TV surveillance systems, nonlinear fil-
ters, computer vision

1. INTRODUCTION

The objective of visual target tracking is to estimate the po-
sition and velocity of an object given observations acquired
from a video sequence. This task is important in many appli-
cations including, e.g., surveillance, visual servoing, gestu-
ral human-machine interfaces, motion capture, robotics, and
many others [1,2]. Recently, a new tracking algorithm called
particle filtering has captured international attention because
of its exceptional performance in nonlinear and non-Gaussian
tracking problems [3-6]. This is in part due to the increas-
ing availability of low cost, high performance computing plat-
forms capable of accomodating the significant complexity of
practical particle filtering algorithms. In essence, a particle
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filter uses a set of weighted samples (called particles) to ap-
proximate the distribution of the target motion states based
on system measurements. At each iteration, the particles are
drawn from the proposal distribution, which ideally should
derive its support from the true state distribution. Tradition-
ally, the state transition prior is used as the proposal distri-
bution in standard PF algorithms such as, e.g., the conden-
sation algorithm [4]. But due to the fact that this proposal
does not account for the currently observed data, it is prone to
loss of track lock when a target exhibits unpredictable kine-
matics. Other improvements include the localization based
method [2], the unscented particle filter [5], and the state par-
tition based method [7]. However, these methods are based
on assumptions of Gaussianity, depend on a linearization pro-
cess, or both, which can result in nontrivial modelling errors.

In this paper, we propose a new particle filter algorithm
in which Galerkin's projection method is used to generate the
proposal distribution. The rationale behind Galerkin's method
is to assume that the state posterior distribution is in L2 (Rn).
Then, this distribution can be approximated by its projection
onto a finite set of orthogonal basis vectors. In addition, by
choosing a special set of exponential basis vectors, the pro-
jections can be approximated by the computationally efficient
FFT. This approach does not require any local linearization
of the nonlinear systems and also does not require imposing
any Gaussianity assumption on the system state distribution.
Thus, it is fundamentally different from the various Kalman
filter based PF algorithms such as those in [2,5,7].

2. PROBLEM FORMULATION

Target tracking is often formulated as a state estimation prob-
lem. Particle filtering is a nonlinear state estimation tech-
nique which is based on sequential importance sampling and
Bayesian inference. Consider the state space model: xt
f (xt-1) +wt- 1 and yt = h(xt) +vt, where xt and yt denote
the hidden states and the measurements, respectively. Both
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f (0) and h(.) could be nonlinear functions, wt and vt denote
the process and measurements noises. Our estimation goal
is to evaluate the posterior state distribution p(xt lYl:t) which
is governed by the Chapman-Kolmogorov equation and the
Bayes' formula given as follows [3]:

P(XtdYi:t- ) = p(xtlxt_i)p(xt_j1yi:t_ )dxt_1, (1)

P(XtYi:t) =
P(Yt Xt)P(xt iY )t-l )

fp(yt xt)p(xt Yj:t_ )dxt (2)

In the framework of particle filtering, the state posterior dis-
tribution can be approximated by a set of weighted samples
(also called particles) denoted by x(i), see [2] for details:

Ns

P(xd Y1 t)~ E z(0)(xt -x()), (3)
i=l

where D(i) = (i)/ zN 1 w) is the normalized importance

weight, and c(') is given as:

(i=) ( 1 Y(it);(y )PXlxt t1) 4t t 1 q(x(') ~xj' -I,yl:t)(4
Equation (3) is actually the discretized posterior distribution.
In addition, the distributions P(Yt ) and p(X(i) Ix(i)) rep-
resent the system's likelihood and the state transition prior,
respectively. At each iteration, the particles (or samples) are
drawn from a proposal distribution x(i) q(xt x i)1', Yo t)
which is effective provided that it has sufficient support from
the true posterior distribution. Choosing a good proposal is a
crucial and challenging step in designing a particle filter.

3. NEW TRACKING ALGORITHM

As indicated in Section 1, the traditional choice of the pro-
posal cannot provide enough support from the posterior when
tracking a target with complex kinematics. This is because the
state transition prior does not include the most recent mea-
surement information. In this section, we introduce an im-
proved technique, based on Garlerkin's method, for designing
the proposal distribution.
3.1. Galerkin's Method and Computational Efficiency

Galerkin's method is ubiquitous in the solution of PDEs, and
in fact forms the basis for the finite element, finite difference,
and boundary element methods. Galerkin's method is a dis-
cretization procedure that represents the solution in terms of
an orthogonal function expansion where each trial function
satisfies certain boundary conditions [8]. Let Y(x, t) = 0 de-
notes a PDE, which is a function of the temporal variable t
and spatial variable x. Assume p(x, t) C L2(IRJ). is the solu-
tion of the PDE, such that it can be decomposed according to
p(x, t) = E c01Ej(t)0j(x), where {$l(x)}-0 is a complete

orthogonal basis for L2 (Rn) and where cl (t) is the projection
of p(X, t) onto Xl (x) at time t defined by

(p(x, t), li(x) Jp(x,t)ol(x)*dx . (5)

Our objective is to find an approximation p(x, t) of p(x, t)
such thatp(x, t) = LNv l cl(t) 01 (X).

The approximation error in p arises from the use of only
N -1 as opposed to an infinite number of basis elements q5.
The projections cl(t),I = 0,-- ,N -1, are the values to
be determined. With this setup, we project Y(x, t) onto the
subspace span{q$(X)}IN- as: Y(x,t), 1(x)) = 0, 1
0, * *, N- 1. Here, instead of solving the original problem
Y(x, t) = 0, we solve it's projection, which is a collection of
N ordinary differential equations (ODE). Next we apply this
method to the nonlinear state estimation problem defined in
Section 2.

First we assume p(Xt lYit 1) L=o1 Cl(t) i, where
cl (t) will be determined later. for notational simplicity, we
drop the variable x. We apply Galerkin's method to equation
(2) by projecting it onto the span{ql (X)}IN0 as:

N-1

(P(Xt Yl:t), k) =E Cl (t)(, k)
1=0

ELN cl (t) (P(Yt Xt)9l, 9k

EL=o (t) (P(Yt Xt),O*)1
(6)

where k = o,... , N -1. Eq. (6) is the "projection version"
of the Bayes' formula given in (2). For simplification, (6) can
be written in a matrix form as

C(t) = vC(/)'(

where Yt is an N x N matrix with the elements [Ytlk,l =

(P(Yt |Xt)>i, Ok) The variables C(t), C(t) and vt are N x 1
vectors, with [vt]l = (p(yt xt), 0*). We choose the exponen-
tial basis as l(x) = a exp (j271 x )', where a and b
are the integral limits. It was shown in [8] that with this basis
the inner product can be approximated with an FFT as

F
(P(x), 0o)

(P(X;), ON-1)
1 N FFT[p(x)]

p(x), o1)
[ . b/ IFFT[p(x)]

_ (P(), ON*-1) _

Then, by using the FFT, (7) can be approximated as

[Yttli( ba(/N) FFT [p(yt xt) 475i]
vt b IFFT [p(yt |xt)]

(8)
(9)
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By applying Galerkin's method to equation (1) in a similar
way, cl (t) can be obtained according to

Cl(t) -(vb a/V)IFFT1 [cl(t-I)FFT,[p(xt xt- )]] (10)

where the FFT, [.] represents the Ith bin of the FFT of the
argument. In addition, cl (t) can also be calculated by

C(t) - FFT[ p(xtxt_1)IFFT[C(t -1)] (11)
Moreover, the prediction distribution and posterior distribu-
tion can be calculated according to

p(xt Yi:t_i) (N/vba) IFFT[C(t)] (12)
p(xt yi:t) - (N/vb a) IFFT[C(t)] (13)

As a summary, in order to approximate the posterior distri-
bution p(xt yi:t), we only need to update the vector C(t) at
each iteration.

3.2. The Improved Particle Filtering

In this section, we incorporate Galerkin's method within the
particle filter framework. Firstly, at each iteration, we use
C (t) and C (t) to approximate the posterior distribution by
leveraging the IFFT defined in (12) and (13). Secondly, we
draw particles from this approximated distribution and eval-
uate the particle weights. The final step is the resampling
and update stage. Since the proposal is generated by project-
ing the true posterior distribution onto a subspace of L2 (Ra),
the accuracy of the proposal is guaranteed by appropriately
choosing N in (6). Also in this algorithm, evaluating the pro-
jection is achieved by implementing FFT and IFFT which is
computationally efficient. The detailed algorithm is summa-
rized as follows:

Incorporating Galerkin's method in the PF algorithm:

* Sequential Importance Sampling (SIS) Step:

- Calculate the parameters C (t) and C (t)
using (8) to (10) or (11);

- Construct the proposal distribution using (13);
- Draw particles for the proposal as:

X;(i) q(x(') x(')_,, yl:t) - p(xt lyi:t)
- (N/Vba) IFFT[C(t)];

- Evaluate and normalize the importance weights
according to (4 );

* Resampling Step:Generate a new set of
particles x;* from x(') by sampling N5 times the ap-
proximate
distribution of so that Pr (t* (J);

* Output and Update Step:Approximate xt
by XCt IN sNxi*(t) and update the proposal.

4. LABORATORY EXPERIMENTS

As an illustrative example, we apply the improved PF algo-
rithm to track a human in a video sequence by using the fol-
lowing state space model:

[rt+i 1 0 1 0 Frtl 0.5 0

It+ = 0 1 0 1 St + 00
_Pt+lJ LO 0 0 1J [tJ [0 1J

where xt = [rt St rt st]j is the state vector, and wt is a
2 x 1 the process noise vector. To construct the observation
model of this tracking problem, we use a method similar to
that proposed in [5], in which the human head is modelled as a
moving ellipse. In addition, K equally spaced rays are drawn
from the center of the ellipse, which serves as the origin of a
local coordinate system (u, v). The intersections of these rays
with the ellipse boundary are taken as observations. In local
coordinates, the intersections along the kth ray are obtained
according to

Uk = a2Q32/(/2 + a2 tanOk 2) and

Vk =tanOk &2/( +2 tan Ok2)Ok (14)

by solving the ellipse equation (Uk2 + (Vk-n)2 = l and
the ray equation Vk = Uk tan 4k, where oa and Q denote the
major and minor axes of the ellipse, respectively. Let y repre-
sent the observation and convert the local coordinates (Uk, Vk)
back to image coordinates. The observation equation is then
given by Yt = [(Uk + rt, Vk + St)] + Vt, where vt is the mea-
surement noise. To reject clutter appearing in the video se-
quence, we apply edge detection along each ray. The edges
are labelled as j ... Jk, where Jk is the total number of
edges detected along the kth ray. The likelihood of the k-th

ray ispk (yt xt) =Nm j1 N (U V) ) where Nm
a normalizing factor. The overall likelihood computed across
all rays is given by p (Yt Xt) = HK IPk (Yt xt), which is a
simplified version of the likelihood given in [5].

To test the performance of our improved PF algorithm, we
choose a video in which the target has relatively complex mo-
tions. The digital video was recorded in a standard laboratory
environment with a frame size of 240 x 320 pixels. Both the
condensation method and the improved PF algorithm were
implemented for a comparison. Tracking results for the two
filters are shown in Fig. 1 and Fig. 2, where the estimated
target centroid is indicated by a white cross. In the first 10
frames the target's motion was nearly rectilinear with a con-
stant velocity and both filters performed well. However from
frame 11 to 15, the target begin to have obvious a negative ac-
celeration followed by a positive acceleration. The condensa-
tion method (with 100 particles) begin to lose its target around
frame 11, and it keeps a constant velocity. Finally, the esti-
mated centroid moves out of the image domain. On the other
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hand, our improved PF (with 100 particles) keeps tracking
the target throughout the whole video. Moreover, the target
makes another maneuver around frame 35 to frame 40, and
the proposed PF algorithm still keeps a close track. Figure 1
and 2 illustrate one typical realization of our simulations. It is
demonstrated that because of the improved proposal distribu-
tion, the new proposed PF algorithm is able to yield accurate
and robust estimations when tracking a target with complex
motions.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we present an improved particle filter algo-
rithm whose proposal distribution is calculated based on
Galerkin's method. The tracking result of the proposed
method is promising. Future improvements in several as-
pects are planned. To cope with complex target kinematics,
multiple-model methods will be used to describe the so-called
maneuvering target. Multiple-model target tracking is often
referred to as a jump Markov process, in which the target is
assumed to operate according to one model from a finite set of
hypothetical models. Multiple-model particle filter (MMPF)
has been successfully implemented in radar tracking appli-
cations [9]. We will apply a MMPF with a Galerkin-based
proposal to visual target tracking applications in the future.
In addition, multiple measurement cues will also be used to
improve the tracking algorithm.

(a) frame 1 (b) frame 5

(c) frame 13 (d) frame 15

(c) frame 11

(e) frame 20

Fig. 1. Visual tracking by using the condensation method.
These frames illustrates a dramatic motion.
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