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Abstract 

Accurate reference point detection is one of the first and 
most important signal processing steps in auromaticfngerprint 
identrfcation systems. Thefngerprint reference point, which is 
also !mown as the core point except in the case of arch type 
fingerprints, is defned as the location where the concave ridge 
cumatwe attains a maximum. In this paper we innoduce a 
multi-resolution reference point detection algorithm that 
calculates the Puincard index in the modulation domain using an 
AM-FM model of the fingerprint image. We present 
experimental results where this new algorithm is tested against 
the FVC 2000 Database 2 and a second database from the 
University of Bologna. In both cases, we find that the 
modulation domain algorithm delivers accuracy and consistency 
that exceed those of a recent competing technique based 011 

integration of sine components in two a&ocent regions. 

1. Introduction 

Automatic fingerprint recognition continues to assume an 
increasingly important role in biometric identification and 
verification applications. Two prints of the same fmger taken at 
different times and under different imaging conditions may be 
expected to differ by translation, rotation, elastic distortion, and 
noise; thus, a practical fingerprint recognition algorithm must 
tolerate all of these. Ptior to recognition and matching, it is 
therefore advantageous to register the hvo fingerprints with 
respect to one another using some well-defined set of reference 
paints that must be automatically extracted fiom the fingerprint 
images. In [ I ] ,  the (single) reference point was defined as the 
point of maximum curvature in the fingerprint concave ridges. 
This definition coincides with the traditional core point for loop 

fingerprints and with the upper core point for whorl and 
double loop type fingerprints. It also extends the notion of 
reference point to arch type fingerprints, which do not have a 
core point in the traditional sense. 

The ridges and valleys in ideal fmgerprint images tend to be 
highly coherent and characterized by slowly varying orientation 
and contrast. Thus fingerprints are ideally suited for AM-FM 
image modeling. The FM part of the model captures the local 
ridge orientation and inter-ridge distance, while the AM part 
captures the local contrast between ridges and valleys. In [2] ,  
AM-FM Dominant Component Analysis @CA) was used to 
extract the dominant AM-FM component from fingerprint 
images in the NIST database 13.41. By using the dominant AM- 
FM image component instead of the NIST-enhanced fingerprint 
image for input to the standard NIST PCASYS classification 
algorithm, the authors obtained significantly reduced 
misclassification rates. AM-FM DCA was also used with a 
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reaction-diffusion process in [SI to repair occlusions in 
fingerprint images. 

In this paper, we focus on the problem of automatically 
detecting the reference point in fingerprint images using the 
definition of reference point that was proposed in [I]. We 
introduce a new multi-resolution algorithm that estimates the 
reference point by calculating the P o i n c d  index in the 
modulation domain using the dominant AM-FM image 
component extracted by DCA. 

2. AM-FM Image Models 

AM-FM functions are nonstationary quasi-sinusoidal 
oscillations that admit simultaneous amplitude and fieequency 
modulations [3]. Let s(x,y) be a real-valued fingerprint image, 
Let t(x,y) be the complex analytic image associated with s(x,y) 
by adding an imaginary pari using the 2-D directional Hilbert 
transform [6]. Then f(x,y) can be modeled as a multi-component 
AM-FM function of the form [3,4] 

In (l), n , ( z , y ) t  0 is the AM function of component t&,y), 

which describes local contrast. The FM function Vpk(z,g) 
describes local texture orientation and granularity; it is related to 
the familiar horizontal and vertical frequency fields by 

At each pixel, our goal is to estimate the AM and FM 
functions of the component t&y) that dominates the local image 
structure at the pixel. Collectively, these are known as the 
dominant image modulations. The estimates of the dominant 
FM function en- also often refmed to as the emergent 
frequencies of the image. We isolate the multiple image 
components in ( I )  from each other by applying a multi-band 
Gabor filterbank as described in [4]. By construction, we define 
the component-wise decomposition of the image given in ( I )  
such that the response of each filterbank channel is dominated by 
exactly one image component . We have then that y,(x,y), the 
response of Gabor filter G,, is dominated by some component 

t d x , ~ )  in (I). Thus, y,tx,y) is given by y , ( x , y )  

= t ( x , y ) * g , ( x , y )  = r , ( ~ . s ) * g , ( x . y ) ,  where gi is the filter 
impulse response. Estimates of a k ( ~ , y )  andVpk(z,y) for all 

components can be obtained from the filterbank channel 
responses using the local nonlinear demodulation algorithm [3] 

VVk(Z>Y) = W&Y) W 8 Y ) l '  
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To perform DCA, we must identify at each pixel the 
filterbank channel that contains the dominant AM-FM image 
component. We do this by selecting the channel that maximizes 
the selection criterion 

(4) 

Use of this criterion was motivated in [3,4]. The dominant 
modulations are generally quite robust against noise and provide 
a rich, powerful description of the local fingerprin: structure. 
The argument of the emergent frequency vector is normal to the 
local ridge orientation, while the reciprocal of its magnitude 
gives the inter-ridge distance. The dominant AM function 
describes the intensity differences between a ridge and the 
surrounding valleys. However, we have found that the AM 
information is generally not required to obtain satisfactov 
performance in detecting the reference point. Thus, the 
reference point algorithm we propose here makes uses only the 
dominant FM information. 

3. Filterbank Design and Segmentation 

For general AM-FM image analysis, one mically utilizes a 
bank of Gabor filters that densely samples the entire 2-D 
frequency plane. However, since fmgerprint images tend to have 
well detined local frequencies and orientations that occur @ 
relatively narrow bands, it is possible to greatly reduce the 
processing complexity required for DCA in our application by 
designing a Gabor filterbank that is specifically tuned for 
fingerprint images. 

We have found that a 16-channel filterbank such as the one 
shown in Fig. I(a) is sufficient to isolate image components, 
CapNre ridge shllctures, and remove unwanted background 
regions. The frequency origin is located in the center of Fig. 
I(a) and the depicted quantity is IG,{u,v)l for 
U, U E 1-0.5, +0.5]. The positive horizontal frequency axis 
points to the right and the positive vertical frequency axis points 
down, Thus, quadrant I of the frequency plane is in the lower 
right sector of the figure, and a clockwise path beginning in 
quadrant I and encircling the origin traverses quadrants n, In, 
and IV. Note that the fiterbank covers only quadrants I. and IV. 
This is because the Fourier spectrum of the analytic image t(x,y) 
in ( I )  has no support in quadrants II and I11 [6].  A detail view is 
shown in Fig. I@), where filterbank channel numers are also 
superimposed. 

The filterbank design depends on a parameter that tunes the 
outer ring of filters to the average inter-ridge distance for the 
database. Let f be the average ridge frequency (reciprocal of the 
average inter-ridge distance) expressed in cycles per image (cpi). 
Then filters in the outer ring in Fig. 1 all have radial center 
frequency 1; while filters in the inner ring have radial center 
frequency f I 1.8. While our reference point detection algorithm 
is reasonably insensitive to the parameterf; at least a coarse a 

priori estimate off is needed, e.g., to distinguish between a 
database containing images of single fugerprints and a database 
where each image contains prints of multiple fmgers. 

Each filter in Fig. 1 has a half-peak radial bandwidth of one 
octave and any four adjacent filters intersect at a single 
frequency where all four ar: precisely at half-peak. Each ring 
consists of eight filters with center frequency orientations spaced 
equally in the right half-plane. Filters in the outer ring (those 
with odd channel numbers in Fig.1 @)) capture ridge structures 
in the fingerprint image, while those in the inner ring (even 
channel numbers in Fig. I@)) capture the background. Note that 
the exact angular spacing behveen filters is not critical: the FM 
algorithm (2) will estimate the dominant frequencies with a high 
resolution irrespective of the filter bandwidth. what is required 
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is that the filtkr spacing must he sufficiently dense to ;eject 
cross-component interference between multiple AM-FM image 
components. In other wordv, there must he enough filters to 
support an interpretation (1) of the image as a sum of K locally 
coherent AM-FM componenls tr(x,y). 

Our approach for obtaining an initial segmentation of the 
fingerprint from the hackgroilnd is exceedingly simple. For each 
pixel, if the dominant AM-FM component as defined by (4) is 
contained in a channel with an even number (inner ring of 
filters), then the pixel is classified as background. If instead the 
channel maximizing (4) has an odd,numher, then the pixel is 
classified as foreground (part of the fingerprint). This simple 
approach gives only a vety rough, approximate segmentation. 
We then refme the binarj map of region labels by first 
smoothing it with a morphological open-close filter and then 
applying connected components labeling with minor region 
removal to retain only the largest connected component - which 
will correspond to the fmgerprint. This segmentation procedure 
is illustrated in Fig. 2. Fig. 2(a) shows an original tingerprint 
image from the FVC 2000 LIB2 [7]. The initial segmentation is 
shown in Fig. 2@). Fig. 2(c) shows the refined result aller post- 
processing. The fmal segmonted fingerprint is shown in Fig. 
W). 

4. Orientation Field Estimation 

In this section, we describe our algorithm for estimating the 
fmgerprint local orientation field. This field is a smooth function 
that $ves the local orientation of the ridges and is generally 
orthogonal to the dominant frequency fieldVp,(z, y) .  Our 
algonrhm n bawd on the elcganr approach gi\en in 19.101 for 
s0Ivln.e the oncntanon field *om the gradient of the image Two - - 
main ideas are involved. First, the granularity of Vpn(z, y) is 
tax h e :  local spatial averaging is needed to estimate the desired 
smooth orientation field. Second, the orientation field generally 
comprises unsigned angles0 i 0 i K . Thus, two adjacent 

frequency vectors represented as complex numbers q = e" and 

should result in an averaged orientation not of zero, ,I".") 
I = e  

but of 0 mod n. 
Following [9,10], we achieve this hy spatially averaging the 

squared dominant frequency vectors. The effects of squaring are . .  
Gofold. First, the frequency magnitudes are squared,-but that is 
of no consequence here, since we are only interested in 
estimating orientation. Second, the angles of the dominant 
frequency vectors are doubled, which eliminates the problem of 



opposing vectors averaging to m orientation. With regards to 
the example above, we obtain for the average of the squared 

vectors % <(e'(20*2z', which has orientation 28. Using this idea, 
we avenge squared dominant frequency vectors over small 
spatial neighborhoods. By halving the orientations of these 
"average squared" vectors and adding dZ, we obtain the desired 
smooth estimates of the fmgerprint local orientation field. Let 
V??,(z,y) = [U,(., y) V D ( q  y)lT andconsidera complexvector 

fieldU,(z,y) + jV~(z,y).Thesquaredfieldthenhasrealpart 

U&,Y) = U&Y) - V,'(GY) and imaginary 

partV,,,(s,y) = 2UD(5,y)VD(z,y). These are spatially 
averaged over 3w x 3w windows with center points (xwyn) 
according to 

Fig. 1: (a) Frequency domain npnsentation of a l-hannei Gabw 
flitatbank fa capturing the ridges and backgrounds of flngsrpdnt 
images. (b) Ostall V I W  WIth fliterbank channel numben 
superimposed. Each RHer has b e n  independently scaled for display. 

. .  , . 
The local ridge orientation field is then given by 

The orientation field algorithm is illustrated in Fig. 3. The 
segmented fmgerprint image from Fig. 2(d) appears again in Fig. 
3(a). The orientations of the "average squared" frequency 
vectors (5),(6) are shown in Fig. 3@), while the ridge orientation 
field (7) appears in Fig. 3(c). 

5. Reference Point Detection 

The proposed multi-resolution reference point detection 
algorithm is described in this section. The following steps are 
iteratively applied to the foreground of the segmented fingerprint 
image staning with w = 16: 

1. Estimate the local orientation field B(m.n) using 
window size 3w x 3w as described in section 4. 

2. For each block pixel 8(m,n), compute the Poincad 
index [1,11] along a 2x2 counterclockwise c w e  
defined by (m.n) - (m+l,n)  - (m+l.n+l)- (m,n+l) - (m.4. 

3. Designate as reference points those block pixels 8(m,n) 
for which Poincad(ij> = n. For whorl and double loop 
'ype h g q r i n t s ,  this will include both the concave 
and convex tidge core points. 

4. In cases where two core points are detected, 
discriminate between the concave and convex ridge 
core points by summing the magnitudes of the local 
frequency orientation in the 3x3 neighborhood located 
above each core point (see Fig. 4(c); the cross mark is 
the location of the detected core point). The core point 
that gives the maximum sum is retained as the 
reference point. 

Steps 1-4 are then applied iteratively two more times at 
h e r  resolutions w ~ 8  and 4, but only in the neighborhood 
of the reference point that was detected at the previous 
(coarser) scale 

I 
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Fig. 4: Dotading the mference point (a) Segmented nngerprid Image. 
(b) Magnituds 01 the ridge orlentatlon flald wlth tho detected convex 
and conca~e core paints matked by White 611CIe8. (C) The 3x3 WlOn 
used for selecting the upper corn point as the reference Point 

6. Experimental Results 
Our reference point detection algorithm was implemented 

and tested against the FVC 2000 Database 2 [7] and against a 
second database &om the University of Bologna 181. The 
filterhank design parameter f described in Section 3 was 
calculated using estimated average inter-ridge distances for these 
two databases of 10 and 7 pixels, respectively. For comparison, 
we also implemented the reference point detection algorithm 
proposed recently in [I]. An unbiased graduate sNdent was 
trained in the definition of rqferencepoint given in [ I ]  and asked 
to manually identify the reference points of all 880 fingerprints 
in the FVC 2000 DE2 and all 168 fmgerprints in the Bologna 
database from [8]. The arch type fmgerprints were discarded 
from both databases because the core point is only poorly 
defined for fingerprints of the arch type; neither the algorithm of 
[ I ]  nor our proposed algorithm can deliver consistent 
performance on arch type pMts. 

For each database, Table 1 gives the average Euclidean 
distance in pixels between the manually detected reference point 
and the reference points estimated by both the modulation 
domain algorithm proposed here and the algorithm given in [I]. 
For each algorithm, the standard deviation of the distance is also 
given. Twical experimental results for FVC 2000 DB2 are 
given in Fig. 5 .  The arch ’ype fingerprint in Fig. 5(e) and (i), 
while not included in calculation of the results reported in Table 
I, represents an interesting arch type case where both algorithms 
were able to identify a reference point. 

Proposed algorithm 

I Proposedalgorithm I 16.35 

12.87 9.10 

26.45 

Algorithm horn [I]  45.04 48.34 

7. Conclusion 
We presented a new multi-resolution modulation domain 

algorithm for automatically detecting the reference point in 
fingerprint images. The mah  novelty of the approach is that the 
Poincari index is calculated over a ridge orientation field 
obtained from the frequency vectors in a computed dominant 
component AM-FM image model rather than from the simple 
gradient field of the image intensities. As shorn  in Tablel, for 
two well-known fingerprint databases the modulation domain 
algorithm achieves a tangible performance advantage over the 
technique proposed recently in [I] .  
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Fig. 5: ResuI11 horn FVC 2000 Database 2. (a)+). (k)io): proposed algorithm (estimated reference point ahown as a whit. circle). (I)%), (p)+): 
corresponding results from the algorithm given in [l] (reference polnl estimate shown as a w h b  square). 
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