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ABSTRACT

Sequential importance sampling (SIS), also known as par-
ticle filtering, has drawn increasing attention recently due
to its superior performance in nonlinear and non-Gaussian
dynamic problems. In the SIS framework, estimation accu-
racy depends strongly on the choice of proposal distribution.
In this paper we propose a novel SIS algorithm called PF-
SP-PEKF that is based on a state partition technique and
a parallel bank of extended Kalman filters designed to im-
prove the accuracy of the proposal distribution. Our results
show that this new approach yields a significantly improved
estimate of the state, enabling the new particle filter to ef-
fectively track human subjects in a video sequence where
the standard condensation filter fails to maintain track lock.
Moreover, because of the improved proposal distribution,
the new filter can achieve a given level of performance us-
ing fewer particles than its conventional SIS counterparts.

1. INTRODUCTION

Robust, accurate visual object tracking is fundamental to a
variety of computer vision applications including robotics,
human tracking and biometric identification, intelligent
transportation systems, smart rooms, and military target-
ing systems. Usually, the objects of interest in a video se-
quence are represented by state space models that may in-
volve strong nonlinearities. In addition, the noise and back-
ground clutter that are almost always present in real-world
video sequences make the visual tracking problem particu-
larly challenging. Conventional methods for dealing with
nonlinear and non-Gaussian problems include the extended
Kalman filter (EKF), Bayesian multiple-hypothesis filters,
and approximate variants including the probability data as-
sociation filter (PDAF) and joint probability data associa-
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tion filter (JPDAF) [1]. Hidden Markov models (HMM)
have also been widely used [2, 3].

More recently, a sequential importance sampling (SIS)
technique, viz. particle filtering (PF), has been recognized
as a significant target tracking algorithm because of its ac-
curacy, robustness and flexibility in non-linear and non-
Gaussian scenarios [4]. Various PF tracking approaches
have been reported, including the condensation method [5],
switching PF [6], unscented PF [7] and others. However,
performance of these techniques is strongly influenced by
the choice and accuracy of the proposal distribution (PD).
In this paper, we introduce a new PF approach where the
PD is generated using the state partition technique and mul-
tiple weighted EKFs. This technique provides highly accu-
rate and robust state estimates in the presence of noise and
strong clutter, which improves tracking performance while
simultaneously reducing the need for a large number of par-
ticles. As an illustrative example, we apply the new ap-
proach to track human perambulation in a highly cluttered
environment.

2. SEQUENTIAL IMPORTANCE SAMPLING

The conventional PF technique [4] is based on a nonlinear
system modeled in state space according to

x(t) =f(x(t− 1)) + v(t− 1)
y(t) =h(x(t)) + n(t) (1)

where x(t) and y(t) denote the state vector and observations
and where v(t) and n(t) are the process and observation
noises. The filtering objective is to simulate the posterior
distribution p(x(0:t)|y(1:t)) via a large set of randomly gen-
erated samples called particles. Applying Bayes’ theorem,
this distribution is given by

p(x(0 : t)|y(1 : t)) =
p(y(1 : t)|x(0 : t))p(x(0 : t))∫

p(y(1 : t)|x(0 : t)p(x(0 : t)) dx(0 : t)
.
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SIS approximates the posterior distribution according to

p(x(0 : t)|y(1 : t)) ≈
Ns∑

i=1

ω̃(i)(t)δ(x(0 : t)− x(i)(0 : t)) , (2)

where Ns is the number of particles. The normalized im-
portance weight ω̃(i)(t) is given by

ω̃(i)(t) =
ω(i)(t)∑Ns

j=1 ω(j)(t)
, (3)

where ω(i)(t) denotes the importance weight associated
with the ith particle at time t, given by

ω(i)(t) = ω(i)(t− 1)
p(y(t)|x(i)(t)) p(x(i)(t)|x(i)(t− 1))

q(x(i)(t)|x(i)(0 : t− 1), y(1 : t))
.

(4)
The particles x(i)(t) are drawn from the PD x(i)(t) ∼

q(x(t)|x(i) (0 : t− 1) , y (1 : t)). Designing a proper PD q(·)
associated with the SIS is one of the greatest challenges in
implementing a PF and can profoundly affect the filter per-
formance. In the next section, we introduce a new, robust
approach to this important task.

3. NEW PF ALGORITHM (PF-SP-PEKF)

It is well-known that using the state transition prior as the
proposal (also known as condensation) is not robust in
strongly cluttered environments, since this proposal does
not include the most recent observations [4, 7]. In this sec-
tion, we suggest a new PD based on the state partition tech-
nique and a parallel bank of EKFs (SP-PEKF) [8]. We
briefly review the SP-PEKF method and then show how it
can be incorporated within the PF framework.

SP-PEKF is a technique for calculating the statistics of
the states of a nonlinear system. The rationale is to generate
a set of samples xi, i ∈ [1, N ], associated with each state
x according to the given initial distribution N(x(0), R(0)).
These samples are partitioned as x(t) , xn(t) + xr(t),
where xn(t) and xr(t) denote the nominal and residual parts
of the true state, respectively. After partitioning, the sam-
ples are propagated through a parallel filter bank and the es-
timated states are generated as a weighted sum of the filtered
samples. Initially, samples xi(0) are generated according to
x̂(0) = xni(0) + x̂ri(0) and R(0) = Rni(0) + Rri(0),
where xni(0) = x̂(0), x̂ri(0) = 0, Rni(0) = R(0), and
Rri(0) = 0. Here, Rni and Rri represent the covariance of
the nominal state and the residual state, respectively.

The nominal state is updated according to xni(t) =
f(xni(t−1))+vni(t−1), where vni(t) is distributed iden-
tically to v(t) but is a different realization. The system state
trajectory is then linearized about xni(t) according to

x(t) ≈ f(xni(t− 1))
+ F(xni(t− 1))xri(t− 1) + v(t− 1), (5)

where F(·) denotes the Jacobian. From (5), we have that

xni
(t) + xri

(t) ≈ f(xni
(t− 1)) + vni

(t− 1)
− vni(t− 1) + F(xni(t− 1))xri(t− 1) + v(t− 1),

which can be simplified to obtain

xri
(t) ≈ F(xni

(t−1))xri
(t−1)+v(t−1)−vni

(t−1) . (6)

Manipulating the output equation in a similar way yields

y(t) ≈ h(xni
(t)) + H(xni

(t))xri
(t) + n(t), (7)

where H(·) is the Jacobian. Note that the dynamic model
given by (6) and (7) approximates the nonlinear system (1)
but is linear in the residual part of the state xri

(t). Thus, a
bank of EKFs can be applied to update xri

(t) and the overall
system state is estimated by the weighted sum

x̂(t|t) =
N∑

i=1

x̂i(t|t)wi(t), (8)

where x̂i(t|t) = xni(t) + x̂ri(t|t). The filter weights wi(t)
in (8) are given by

wi(t) =
Li(t|t)wi(t− 1)∑N
i=1 Li(t|t)wi(t− 1)

, (9)

where

Li(t|t) = |Ryi(t|t− 1)|−0.5 exp
[
−1

2
‖ y(t)

− ŷi(t|t− 1) ‖2 R−1
yi

(t|t− 1)
]
. (10)

Finally, the overall estimation error covariance Rtotal is

Rtotal(t|t) =
N∑

i=1

{Ri(t|t) + [x̂(t|t)− x̂i(t|t)]

× [x̂(t|t)− x̂i(t|t)]T}wi(t) . (11)

Our unique contribution in this paper is developing a new
PF algorithm (PF-SP-PEKF) which uses the SP-PEKF state
estimates for its PD q(·). At each iteration, particles are
drawn from a normal distribution with mean (8) and co-
variance (11). These particles are then propagated as in
the conventional PF according to (2)-(4) with a resampling
step. In order to take maximum advantage of the state es-
timates derived from the particle filter, the final estimates
from the combined approach are recursively fed back into
the SP-PEKF filter. This update stage serves as a “correc-
tion” step for the SP-PEKF filter at each iteration. We typ-
ically choose the number of filter bank channels N in (8)-
(11) much smaller than the number of particles Ns; our ex-
perience is that taking 10 ≤ N ≤ 20 is generally suffi-
cient to obtain significantly improved performance relative
to, e.g., a comparable condensation filter. The overall PF-
SP-PEKF algorithm is illustrated in Fig. 1 and summarized
below.



The PF-SP-PEKF algorithm:

• Sequential Importance Sampling (SIS) Step:

– Sample from the proposal distribution ac-
cording to (8) and (11):

x(i)(t) ∼ q(x(i)(t)|x(i)(0 : t− 1), y(1 : t))
=N (x̂(t|t), Rtotal(t|t)) ;

– Evaluate and normalize the importance
weights according to (3) and (4);

• Resampling Step: Generate a new set of particles
xi?(t) from x(i)(t) by sampling Ns times the ap-
proximate distribution of p(x(t)|y(1 : t)) so that

Pr
(
xi?(t) = x(j)(t)

)
= ω̃(j)(t);

• Output and Update Step: Estimate x(t) according
to x(t) ≈ 1

Ns

∑Ns

i=1 xi?(t) and update the proposal.

4. PF-SP-PEKF VIDEO TRACKING

As an illustrative example, we apply the PF-SP-PEKF algo-
rithm proposed in Section 3 to track the head of a peram-
bulating human in a real-time video sequence. We adopt a
Langevin process [2, 7] to model the head as a moving el-
lipse centered at image coordinates (row, col) = (r, s). The
state dynamics are given by



r(t + 1)
s(t + 1)
ṙ(t + 1)
ṡ(t + 1)


 =




1 0 1 0
0 1 0 1
0 0 ar 0
0 0 0 as







r(t)
s(t)
ṙ(t)
ṡ(t)


 +




0
0
br

bs


m(t) ,

where x(t) = [r(t) s(t) ṙ(t) ṡ(t)]T is the state vector, ar =
exp (βr∆T ), as = exp (βs∆T ), br = v̄r

√
1− a2

r , bs =
v̄s

√
1− a2

s, parameters βr and βs are rate constants, ∆T is
the discretization time step, v̄r and v̄s are the steady-state
root-mean-square velocity, and m(t) is the process noise.

K equally spaced rays are drawn from the center of the
ellipse, which serves as the origin of a local coordinate sys-
tem (u, v). The intersections of these rays with the ellipse
boundary are taken as observations. In local coordinates,
the intersections along the kth ray are obtained according to

uk =
√

a2b2/(b2 + a2 tan θk
2)

vk =tan θk ·
√

a2b2/(b2 + a2 tan θk
2) (12)

by solving the ellipse equation (uk−m)2

a2 + (vk−n)2

b2 = 1
and the ray equation vk = uk tan φk, where a and b denote
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Fig. 1. Block diagram of the PF-SP-PEKF algorithm.

the major and minor axes of the ellipse, respectively. Let y
represent the observation and convert the local coordinates
(uk, vk) back to image coordinates. The observation equa-
tion is then given by

y(t) = [(uk + r(t), vk + s(t))] + n(t), (13)

where n(t) is the measurement noise. To reject clutter, we
apply 1-D edge detection along each ray. The edges are la-
beled as j = 1 · · · Jk, where Jk is the total number of edges
detected along the kth ray. The likelihood of each ray is then

pk(yt|xt) = Nm

∑J
j=1 N

(
(uk, vk), σ2

kj

)
, where Nm is a

normalizing factor. The overall likelihood computed across
all rays is given by p (y(t)|x(t)) =

∏K
k=1 pk (y(t)|x(t)).

This likelihood model is a simplified version of the one
given in [7]. The innovation along each ray is yk(t)−ȳ(t|t−
1) =

∑J
j πkj((uk, vk)t,j − (uk, vk)t|t−1).

5. RESULTS AND DISCUSSION

Digital video data were acquired with a frame size of
480 × 720 pixels in a highly cluttered laboratory environ-
ment using a high-quality full motion video camera man-
ufactured by Cohu Electronics. The condensation method
and the PF-SP-PEKF algorithm were implemented for com-
parison. Tracking results for the two filters are shown in
Fig. 2 and Fig. 3, respectively, where the estimated target
centroid is indicated by a white cross. For the first 20 frames
the motion was nearly rectilinear with minimal acceleration
and both filters performed well. Beginning around frame
25, however, the motion became more complicated with
nontrivial accelerations and increased background clutter
around the head. While the PF-SP-PEKF filter maintained
a consistent track lock throughout the video sequence, it
may be seen in Fig. 2 that the condensation filter progres-
sively diverged in frames 30 through 50, ultimately lock-
ing onto the clutter structure and losing the tracked object
all together. These results, which are typical of those we
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(f) Frame 50

Fig. 2. Condensation method results. Divergence is ob-
served in frame 30 with complete track loss by frame 50.

have obtained, demonstrate the performance advantage that
can be gained with the PF-SP-PEKF approach by explic-
itly considering the most recent observation when construct-
ing the proposal distribution. Due to its improved accuracy
and robustness, the PF-SP-PEKF is also capable of achiev-
ing a given level of tracking performance with fewer par-
ticles than its conventional PF counterparts, which consti-
tutes a significant advantage in real-time implementations.
Our future research is focused on combining the SP-PEKF
approach with Markov Chain Monte Carlo methods such
as the Metropolis-Hastings algorithm to address the well-
known “sample impoverishment” problem that is typically
seen in conventional particle filters when a small number of
heavily weighted particles cause a loss of sample diversity.
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Fig. 3. PF-SP-PEKF tracking result: a consistent track lock
is maintained throughout the entire video sequence.
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