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Abstract 
 

This paper introduces a novel signal exclusive 
adaptive average (SEAA) filter that offers good image 
denoising performance in applications characterized 
by impulsive or impulse-like noise. The proposed 
algorithm works well in suppressing impulse noise 
with noise ratios from 3% up to 60%. We begin by 
introducing a digital differentiation preprocessing step 
to quantify the increments in each local neighborhood 
of the noisy image. A homogeneity level map is then 
derived by adaptive thresholding and used to designate 
pixels as noise candidates. The initial selection is 
refined using a novel connected components labeling 
algorithm.  Finally, the noise is attenuated by 
estimating the values of the noisy pixels with a linear 
filter applied exclusively to those neighborhood pixels 
not labeled as noise candidates. This approach bears 
similarity to several nonlinear techniques including 
alpha-trimmed means, selective averaging, and 
WMMR filters.  Simulation results indicate that SEAA 
is better able to preserve 2-D edge structures from the 
original image and delivers better performance with 
less computational overhead as compared to 
competing nonlinear denoising algorithms. 
 
 
1. Introduction 
 

In acquisition and transmission applications, 
images are frequently corrupted by impulse-like noise 
arising from, e.g., faulty sensors, “stuck-at” bit errors, 
quasi-stationary channel defects, and other nonlinear 
effects [1]. Noise models of this type can be well 
described as follows.  Let ( , )I i j  be a pixel from the 
original gray scale image I  that is located at position 
coordinates ( , )i j , where ( , )I i j takes values in the 
range min max[ , ]I I . Let ( , )J i j be the noise corrupted 
image. We consider that 
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where min max( , ) [ , ]N i j I I∈ are random deviates with 
noise ratio p  and an underlying distribution that is 
assumed known. One well-known special case is when 

( , )N i j takes the values minI  and maxI  with equal 
probability; this is called fixed-value impulse noise or 
salt and pepper noise [2]. More generally, noise 
processes of this type are referred to as random 
impulse noise, where the values of ( , )N i j are often 
uniformly distributed in the range min max[ , ]I I .  

The most popular approaches for dealing with 
such noise have been based on median filtering and/or 
on the rich class of order statistic filters that have 
emerged from the study of median filters [2]. Recently, 
variations on the median filtering theme have been 
shown, under various specific signal/noise models, to 
deliver improved performance relative to the 
corresponding traditional methods.  Examples include 
the exclusive mean filter (MMEM) [3], the adaptive 
center-weighted median filter (ACWMF) [4], and the 
median filter based on homogeneity information 
(CSAM) [5]. These filters have all demonstrated 
excellent performance, but at the price of significant 
computational complexity. The main drawback that 
characterizes all approaches of this type is that they 
involve computational overhead to determine one or 
more of the local order statistics.  Moreover, while 
such filters are generally superior to linear filters for 
attenuating heavily tailed and impulse-like noise, order 
statistic filters and their relatives still tend to blur or 
degrade intrinsically 2-D edge structures such as 
corners that are reasonably expected to occur in typical 
images of the type found in most practical applications. 

To ameliorate these problems, we propose in this 
paper a new algorithm that is computationally much 
simpler and that exhibits improved performance in 
removing impulse noise while preserving fine details 
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of the 2-D image structure. This proposed approach 
works well not only for small noise ratios of about 3%, 
but also for noise ratios as high as 60%.  

 The signal exclusive adaptive average (SEAA) 
algorithm is presented in Section 2, while its 
effectiveness is studied by simulation in Section 3. In 
Section 4, we compare the SEAA algorithm with the 
recently proposed CSAM method. Conclusions appear 
in Section 5.  
 
2. The SEAA filter algorithm 
 

SEAA is a nonlinear adaptive filtering algorithm 
consisting of two major components: corrupted pixel 
detection and spatially localized noise filtering, which 
are implemented in five processing steps as shown 
below in Fig. 1 and described in the following 
paragraphs. 

  

 
 

Figure 1. SEAA block diagram. 
 

Step 1: Digital differentiation preprocessing.  In 
order to obtain a quantitative characterization of the 
local variations in the observed noisy image ,J we 
compute the local increments in a 3 3×  window 
centered about each pixel ( , ),J i j which may be 
thought of as a crude discrete approximation of the 
image gradient field.  Define four linearly filtered 
difference images according to 
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The images 1FJ  through 4FJ are used to construct the 
3 3× window of 8-neighbor increments ,i jW  associated 
with the pixel ( , )J i j as shown in Fig. 2 below.  By 
convention, we take , (2, 2) ( , ).i jW J i j=  If the image 
J is being processed on the fly in raster scan order, it is 
worth noting that only the four increments ( , )kFJ i j , 

1, ,4k = … , need be calculated explicitly to construct 

,i jW : the other four increments in ,i jW will already 
have been obtained during the construction of previous 
windows ,r sW that are causal with respect to ,i jW in the 
sense that r i<  or that r i= and .s j<  
 

2 ( , )FJ i j2 ( , 1)FJ i j − ( , )J i j

4 ( , )FJ i j
1( , )FJ i j 3 ( , )FJ i j
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Figure 2. Window of increments , ( , ),i jW k l  
1 , 3,k l≤ ≤ associated with the pixel ( , ).J i j  

 
Step 2: Calculation of homogeneity map by 
thresholding. In this step, we make use of the notion 
of homogeneity level from [5], which is defined based 
on the pairwise correlations between neighboring 
image pixels. We extend this notion to derive the 
3 3× homogeneity level map ,i jM associated with each 
pixel ( , )J i j by adaptively thresholding the window of 
increments ,i jW according to 
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where 1 , 3,k l≤ ≤  ( , ) (2, 2).k l ≠  Thus, e.g., 

, (2,1) 0i jM =  indicates a homogeneity or 
“connectedness” condition in the sense that the 
observed pixel value ( , 1)J i j − supports the hypothesis 
that ( , )J i j  is noise free — an event that, according to 
(1), occurs with probability 1 p− , whereas 

, (2,1) 1i jM = ±  indicates that the observed value 
( , 1)J i j −  supports the hypothesis that ( , )J i j  has 

been corrupted by noise.  In (2), α is a nonlinear 
adaptive threshold that should be designed as a 
function of ( , )J i j  based on the particular noise 
model.  

In the case of eight-bit pixels corrupted by salt and 
pepper noise with min 0I =  and max 255,I =  we take            

      241 0.00234 [ ( , ) 127.5] .J i jα ⎡ ⎤= − ⋅ −⎢ ⎥          (3) 

While empirical in nature, this approach is both simple 
and reasonable: unless supported by the occurrence of 
accompanying zero entries in , ( , ),i jM k l  isolated 
instances of max min( , ) ,J i j I I=  are very likely to be 
caused by noise when the original image is corrupted 
by a salt and pepper noise model.  From (3), it is 
readily seen that α  is close to its minimum value when 

( , )J i j is close to 0 or 255 and is larger otherwise.  
 
Step 3: Noise and noise candidate detection.  
Initially, all pixels ( , )J i j  are labeled as noise free.  
The homogeneity level maps ,i jM  are then processed 
to detect noise and noise candidate pixels. If the 8-
neighbors of ( , )J i j  are all labeled with 1+  or all 
labeled with 1−  in ,i jM , then  ( , )J i j  is labeled as a 
noise pixel.  Otherwise, if ,i jM  contains a mix of the 
labels 1+ , 1− , and 0, then it is possible that ( , )J i j is 
part of an edge structure in the image.  We consider the 
hypothesis that ( , )J i j is noise free to be supported if 
the number of zero labels in ,i jM  is at least ,β  where 
we choose 3 7β≤ ≤  depending on the assumed value 
of p  in (1).  Larger values p  generally require 
smaller choices for .β  If ,i jM  contains a mix of labels 
and the number of zeros is less than ,β  then ( , )J i j  is 

labeled as a noise candidate.  Four examples ,i jM  
leading to this designation are depicted in Fig. 3. 

 

1−

1−

( , )J i j

1−

1+

1+

0

1−

1−

0

1−

( , )J i j

1−

1+

1−

0

1−

1−

0

1−

( , )J i j

1−

0

1+

0

1−

1+

1+

1+

( , )J i j

1−

1+

0

0

1−

1−

 
Figure 3. Examples of noise candidate maps , .i jM  

Step 4: Refinement of noise candidate selection. 
Each observed pixel ( , )J i j is connected to those 8-
neighbors for which the corresponding homogeneity 
map entry , ( , )i jM k l  is zero.  Thus, the collection of 
maps ,i jM  defines connected components (sets of 
mutually connected pixels) within the observed image 

.J  For each pixel labeled as a noise candidate, this 
notion of connected components is used to refine the 
label to noise or to noise free as follows.  First, the set 
of pixels connected to  ( , )J i j  is searched for pixels 
that have already been assigned a label of noise or of 
noise free.  The label of ( , )J i j is then changed to the 
label of the closest such pixel.   

In case all of the pixels connected to ( , )J i j are 
noise candidates, a final label is assigned to ( , )J i j  
based on the size of this connected component.  If the 
number of pixels in the component exceeds ,λ  then 

( , )J i j is labeled as noise free.  Otherwise, ( , )J i j is 
labeled as noise.  The threshold λ must be tuned based 
on the noise model and the size of the image.  For a 
512 512× image corrupted by salt and pepper noise, 
the choice 100 pλ = generally works well, where p  is 
given in (1). 

 
Step 5: Replace designated noise pixels by filtering. 
In SEAA, each pixel ( , )J i j  designated as noise is 
replaced by the average of the noise free pixels in a 
3 3×  neighborhood about ( , ).J i j   Since the median is 
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also an unbiased estimator of location that is known to 
be robust against heavily tailed noise, it is reasonable 
to alternatively consider replacing the noise pixels with 
the median of the noise free pixels in the surrounding 
neighborhood; this is called Signal Exclusive Adaptive 
Median filtering (SEAM).  Our empirical studies to 
date suggest that the performances of SEAA and 
SEAM are similar, with SEAA being consistently 
better with respect to PSNR when the noise ratio is 
significant ( 20%≥ ). 
 
3. Results 

 
We evaluated and compared the proposed SEAA 

algorithm against other existing filtering techniques in 
terms of peak signal-to-noise-ratio (PSNR) defined as 
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The competing techniques include the standard 3 3×  
median filter, minimum-maximum exclusive mean 
filter (MMEM) [3], adaptive center-weighted median 
filter (ACWMF) [4] and conditional signal-adaptive 
median filter (CSAM) [5]. 

Denoised image results obtained by applying 
SEAA to three instances of the 512 512×  gray scale 
Lena image corrupted by fixed-value impulse noise 
with various noise ratios are presented in Figure 4.  For 
a 3% noise ratio, the PSNR of the denoised image is 
44.9 dB.  A PSNR of 43.3 dB is obtained when the 
noise ratio is increased to 5%.  With the noise ratio 
dramatically increased to 40%, 50% or even 60%, we 
obtain, respectively, a PSNR of 33.71 dB, 32.33 dB 
and 29.89 dB.  It is worth noting that even better 
results with regard to PSNR can be obtained from 
SSEA in the presence of high noise ratios if the 
window size is increased from 3 3×  to 5 5× , although 
this involves increased computational complexity. The 
denoising performance of SSEA and SEAM in terms 
of PSNR relative to competing recent nonlinear 
techniques is summarized in Table 1, where it can be 
seen that SSEA offers an attractive tradeoff between 
noise suppression, detail preservation, and 
computational complexity. 
 
4. Differences between SSEA and CSAM  
 

The homogeneity level concept was first proposed 
by Pok et al. in [5]. In SSEA, we have further 
developed and exploited this concept. Here, we 

highlight several major conceptual differences between 
SSEA and the CSAM algorithm: a) In CSAM, any two 
pixels are classified as either homogeneous or non-
homogeneous. In SEAA, we have used the count of the 
number of zeros in the map ,i jM to introduce a 
quantitative homogeneity measure providing a 
spectrum of descriptions between the extremes of 
homogeneous and non-homogeneous. b) SEAA unifies 
the notion of “connectedness” that is associated with 
the CSAM algorithm with the traditional notion of 
connected components labeling. In particular, the 
notion of connectedness in the CSAM algorithm is not 
transitive, whereas that associated with SEAA is 
transitive.  c) SEAA eliminates the need for the 
computationally expensive recursive search process 
required by CSAM.  d) finally, the estimation filter 
used in SEAA and SEAM considers only the noise-
free pixels within the relevant neighborhood, whereas 
the estimator in the CSAM algorithm involves all the 
pixels in a 3 3× or 5 5× window. 

 
Table 1. PSNR (dB) of denoised images obtained from 

the impulse noise corrupted Lena image. 
 

PSNR (dB) results for 512 x 512 Lena image 
Noise 
ratios Median 

3 3×  
MMEM 

[3] 
ACWMF 

[4] 
CSAM 

[5] SEAA SEAM

10% 31.51 35.67 40.60 39.23 40.66 41.16 

20% 29.69 33.86 36.54 36.44 37.58 37.55 

30% 27.20 32.60 33.68 34.32 35.57 35.22 

 
 

5. Conclusion 
 

We presented a novel signal exclusive algorithm 
for removal of impulse noise. Corrupted pixels were 
estimated using a linear (SEAA) or nonlinear (SEAM) 
location estimator applied selectively to only those 
pixels labeled as noise free. We developed an extended 
notion of the concept of homogeneity level map and 
used it to detect noise and noise candidate pixels. We 
also introduced a new approach for reducing the labels 
of noise candidate pixels to noise or signal.  The 
results in Table 1 show that SEAA is an attractive 
alternative in terms of denoising performance traded 
against computational complexity.  The main novelty 
of this approach lies in the estimation of the true values 
of noisy image pixels from only the noise free values 
in a local neighborhood of the observed image.  Within 
this framework, the linear estimator performed best in 
high noise environments. 
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Figure 4. Simulation results for (a) 10%, (b) 20%, and (c) 30% impulse noise corrupted “Lena” image, with 

corresponding restored image results produced by SEAA (d)-(f). 
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