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Abstract - Real-time implementation of many digital signal
processing (DSP) algorithms and multimedia applications is
performance limited by the available speed, energy efficiency,
and area requirement of multiplication. This is exacerbated in
handheld multimedia devices due to the small size and limited
battery lifetimes. In our previous work, we introduce a novel
canonical signed digit (CSD) iterative multiplier structure in
which the conversion from 2's complement to CSD
representation is implicitly implemented in real-time. In this
work, we further improve the iterative multiplier performance
by introducing explicit radix-8 hardware support in which the
multiplier is shifted by one octal digit in each iteration as
opposed to only one or two bits. Thus, this new structure further
reduces the power consumption while simultaneously increasing
the computational bandwidth significantly with only a small
sacrifice in area consumption. This new design also uses a bypass
technique to further reduce the need for devices such as carry
save adder (CSA) arrays and adder trees for partial product
reduction operations. Therefore, the new structure introduced
here greatly improves the multiplier throughput and energy
efficiency. Moreover, the number of iterations required to
complete a fixed length multiply is data dependent as a result of
a novel variable shifting technique; hence there is no energy and
time overhead expended for unnecessary iterations as observed
in multipliers where the number of iterations is fixed. Our
results show that this new iterative structure delivers significant
performance improvements with respect to speed, area, and
power consumption relative to previous iterative multiplier
designs.

I. INTRODUCTION

Hardware implementation of digital signal processing
(DSP) algorithms and multimedia applications in technologies
such as field programmable gate arrays (FPGAs) and digital
signal processors requires a large number of multiplications.
Often, the overall performance of the design is limited by
constraints on the speed, energy consumption, and area
requirements of the available multiplier design options.

This is particularly true for applications centered around
modern handheld multimedia devices, where physical size,
chip real-estate, power, and battery life are all at a premium.
Consequently, intense recent research has been focused on the
development of efficient, advanced multiplier techniques to
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support these demanding applications [1]-[8].
Multiplication involves two basic operations: generation of

partial products and accumulation of partial products. Hence,
all techniques for speeding up multiplication can be
categorized into to two main groups: those that seek to reduce
the number of nonzero partial products and those that seek to
accelerate the accumulation of partial products. The three
main classes of multipliers include parallel multipliers, array
multipliers and iterative multipliers [9]. Parallel multipliers
generate partial products in parallel and accumulate them
using a fast multi-operand adder. With this type of multiplier
design, the execution speed is increased (relative to a typical
iterative multiplier) at the expense of the increased area that is
required for the generation of multiple partial products in
parallel. Further speed up can be achieved by using an array
multiplier where an array of identical cells generates new
partial products and accumulates them simultaneously, such
that separate circuits are not required for generation and
accumulation. Array multipliers are used widely when high-
speed multiplication is required. However, in addition to
requiring large area, array multipliers usually do not seek to
optimize energy efficiency though exploitation of the specific,
data dependent patterns of digits that occur in the multiplier
and multiplicand; typical array multipliers are inherently
energy inefficient in this regard. These two considerations
limit many practical applications of both parallel and array
multipliers.

In contrast, typical iterative multipliers utilize a few
hardware functional units repeatedly to generate partial
products sequentially and add each newly generated product
to those previously accumulated. The main characteristics of
iterative multipliers are small area consumption; reduced pin
count and wire length, and high clock rate. Moreover, by
executing a number of iterations that are data dependent, the
energy efficiency can be greatly improved relative to array
and parallel multipliers. Here, energy efficiency refers to the
energy required per operation, e.g., nano-Joules/op [2].
Therefore, the choice between implementing a parallel or
array multiplier as opposed to an iterative multiplier in any
given design is generally a trade-off of computational speed
against area requirement and energy efficiency. In this paper,
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we introduce a new iterative multiplier design that provides
simple structure, high throughput, and high energy efficiency,
making it particularly suitable for deployment in low power
and low area applications.

In an iterative multiplier, the partial products are generated
and added together sequentially or iteratively to obtain the
final product using shift/add functional blocks [9]. The
number of shift/add operations that occur in a given multiply
is directly related to the power consumption of the circuit.
Thus, the number of iterations required in a multiply directly
impacts both the throughput and the energy efficiency of the
multiplier. A variety of techniques have been developed to
reduce the number of iterations, thereby increasing the
efficiency of the shift/add operations [2], [3], [10]; detailed
descriptions of several of these are given in Section II below.

Typically, the shift/add functional blocks implemented in
an iterative multiplier shift the operand by a fixed number of
bits and a fixed number of iterations are required to produce
the final product. With this straightforward approach, the
control and energy overhead required per machine cycle are
constant throughout the entire multiplication operation. The
new iterative multiplier structure proposed in this paper
employs a variable number of iterations to convert one
operand (the multiplier) from 2's complement to a Canonical
Signed Digit (CSD) representation in real-time by using a
new CSD recoding method where the number of iterations is
data dependent. This novel real-time CSD recoding is very
simple to implement and requires only a few combinational
logic gates. In fact, the actual CSD representation of the
multiplier operand is never explicitly present in the hardware;
rather, only the control signals that are required for
accumulation of the partial products based on the value of the
multiplicand are generated. By exploiting the inherent
properties of the CSD number system, the proposed multiplier
increases the number of zero partial products to
approximately 66.7%. Each time a zero partial product occurs,
the corresponding add (accumulate) operation is automatically
bypassed. Consequently, the number of partial product
reduction operations, as are often implemented with carry
save adder (CSA) arrays and/or adder trees, is greatly
reduced. This in turn dramatically reduces the power
consumption of the overall multiplier circuit. Compared to a
typical iterative multiplier where the number of iterations is
fixed, this approach saves energy and time by bypassing
iterations that are not required for the generation of the
product.

In this paper, we introduce a new radix-8 iterative
multiplier structure that provides simple structure, high
throughput, and high energy efficiency, making it particularly
suitable for deployment in low power and low area
applications.
As in Booth recoding, the CSD representation [11] is a

radix-2 number system using the digit set {1, 0, 1} with the
"canonical" property that no two consecutive bits in the CSD
number are nonzero. This representation replaces the

additions arising from a string of ones in a binary number
with a single subtraction, so that the "shift-and-add"
algorithm becomes "shift-and-add/subtract". CSD
representations have proven to be useful in implementing
multipliers with reduced complexity, because the cost of
multiplication is a direct function of the number of nonzero
bits in the multiplier. Under the assumption that all realizable
n-bit operand values are equally likely to occur, the
probability that a CSD digit bj is nonzero is given by [6]

(1)

From (1), we can see that for an n-bit 2's complement
multiplier the number of non-zero bits in its CSD
representation never exceeds n/2 and can be reduced to n/3 on
average, as the wordlength of the multiplier grows. Therefore,
if we can incorporate the CSD number representation into our
multiplier, we can significantly reduce the number of non-
zero partial products, which in turn increases the multiplier
throughput and energy efficiency.

The new real-time CSD recoding multiplier technique and
structure are presented in Section II. Performance
comparisons of this new multiplier against other existing
iterative multipliers are given in Section III, while
conclusions appear in section IV.

II. REAL-TIME CSD MULTIPLIER STRUCTURE

The conversion of a 2's complement binary number to CSD
representation can be implemented in hardware using look-up
tables [4], a canonical recoding algorithm [12], or
complicated digital circuits [7], [13], but these all are costly in
terms of area and power consumption. As a result, many
current applications that utilize CSD representations avoid the
issue of real-time 2's complement to CSD conversion by
limiting CSD optimization to a fixed set of operand values
that can be converted a priori. This allows the CSD
representation to be calculated offline. These approaches can
be further improved by multiple constant multiplier (MCM)
techniques [14]-[16] or similar techniques. Fixed number
CSD representation techniques have been applied to
efficiently implement the multiplications for fixed-coefficient
digital filters, but these techniques are not applicable to
adaptive filters [17] and other inner-product computations in
which the multipliers are not know a priori.

In this section, we will introduce our iterative multiplier
structure, which is based on a novel real-time CSD encoding
technique [18]. Instead of converting a binary number into its
CSD representation, the CSD recoder in our design only
generates the corresponding control signals. Controlled by
these signals, the multiplier operation is based on the CSD
logic. For better understanding of our method, we first present
a new way to convert a 2's complement binary number to its
CSD representation.
To reduce the multiple additions arising from a string of

ones, we use the simple concept that x = 2x -x to convert x to
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another form we refer to as the difference form signed (DFS)
number [13]. In the DFS representation, a number may
contain instances of the digit pairs " 1 1" and "11 ," but
sequences of two consecutive ones or two consecutive
negative one digits cannot occur. DFS conversion is
illustrated in the following example:

I 0'<1 111 00 1) U( I
2\x I 1011111010010110010
-X I I 0 :1 1 :1 1 0 1 0 a 1 0 X 1 0 0 1 Sign exentlSo[

XD o IIoo1100001111iI iI1011

We now summarize some of the key properties of the DFS
number representation [18].

Property 1: No two consecutive nonzero bits in the
difference form of x have the same sign.

Property 2: To convert a 2's complement number x to the
CSD representation, we only need to replace occurrences of
the bit pair " I 1" with " 0 1 " and/or the bit pair "1 1 " with
"01" in the DFS representation of x starting from the least
significant bit (LSB).
The DFS number is not encoded directly in the hardware

circuit, since each DFS number needs twice as much memory
space compared to a binary number. However, it serves as a
tool to understand our real-time CSD recoding.

Therefore, as a DFS number XDFS is scanned in 3-bit
segments from right to left (least to most significant), there
are several possible situations:

1) Whenever there are 3 zeros or the number of nonzero
digits is one and that nonzero digit is not located at the
beginning position (such as "001", "010", "0 10 " or
"00 1 "), we leave them unchanged.
2) Whenever there are 3-bit segments which contain a
pair of " 1I" and "1 1" and with a 'O' bit (such as " 01 1",
" 10", "1 1 0 "or 0 1 1), we convert the bits based on
property 2;
3) Whenever the 3-bit segments start with a nonzero bit
that is followed by a 'O' bit (such as "10 1 ", "100", " 100
or " 101 "), we leave the least significant two bits
unchanged and continue scanning the remaining digits in 3-
bit segments.
4) Whenever there are 3-bit segments with all three digits
are nonzero (such as " 11", "T 1 1 "), we convert the least
significant two bits based on property 2 and leave them
unchanged, then continue scanning the remaining digits in
3-bit segments.

In this way, we obtain the CSD representation of the
number XDFS The following example illustrates this
algorithm for conversion of a DFS number to its CSD
representation:

XDFS 01I1 0 00 1 1 1 0 1 1 1 0 1 0 11

XCSD 00100001 01 01 01001

In our proposed multiplier structure, we do not convert a
number explicitly into the DFS or CSD representations.
Instead, based on the relationship between the two's
complement number and its DFS representation, as well as
Properties 1 and 2, we obtain the digit-set relationships
between a two's complement number, its DFS representation
and its CSD representation, which provides us with the
corresponding signals that are needed to control the
accumulation of partial products in the multiplier. These
relationships are shown in Table I, where c1, C2, C3 and C4 are
control signals based on CSD number conversion. Signal c1 is
used to control the add or subtract operation, i.e. addition is
performed if c1= 0 and subtraction is performed if c1= 1,
Signal c2 is used to control the number of bits that are shifted
in each iteration, i.e. c2 = 1 indicates a right shift by 2 bits

and c2 = 0 enables right shifting by 3 bits. Signal c3is the

bypass control signal, where c3 = 1 enables the bypass
operation. Finally, C4 indicates that a nonzero multiple is 2.
These signals (defined in Table I) are given by (2) and may be
efficiently implemented in hardware using the circuits as
shown in Fig. 1.

Cl = b1+l (bi1® bil ) + bi+2 (bi+l + bibi-, )

C2 = bi+2 ®) (bi+l bi-I )+ bi+2®) (bi+, bi)
C3 = bi+,1(bibi-, )

C4 = bi+, 1) (bibi-, )

(2)

TABLE I
RECODING SCHEME OF CSD ALGORITHM

2's Complement DFS CSD | Control

bi+2 b,1 b1 b-1 bi+2b, b,| bi2bA12 bi| Cl C2 C3 C4

0 0 0 0 0 0 0 0 0 0 x 0 1 0
0 0 0 1 0 0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 1 0 0 1 0 0 0 0
0 0 1 1 0 1 0 0 1 0 0 O 0 1
0 1 0 0 1 1 0 0 1 0 0 O 0 1
0 1 0 1 1 1 1 1 0 1 11 0 0
0 1 1 0 1 0 1 1 0 1 11 0 0
0 1 1 1 1 0 0 0 0 x 1 0
1 0 0 0 1 0 0 0 0 x 1 0
1 0 0 1 1 0 1 1 0 1 O 1 0 0
1 0 1 0 1 1 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 0 1 0 0 1
1 1 0 0 0 1 0 0 1 0 1 0 0 1
1 1 0 1 0 1 10 0 1 00 0
1 1 1 0 0 0 1 0 0 1 I 0 0 0
1 1 1 1 0 0 0 0 0 0 x 0 1 0

means don't care. -#" in CSD column means no CSD bit is generated and wait till next bits
come.
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3-bit shift when c2 =0O
2-bit shiift when cQ =T1

To adder input

Init 0

Bypass Add/suibtract
coitrol coiitrol

Fig. I Real-time CSD multiplication based on our novel CSD recoder

III. COMPARISON WITH BOOTH RECODING AND OTHER CSD
RECODING TECHNIQUES

Compared to existing techniques of varying complexity, the
new approach proposed here successfully reduces the
implementation overhead by avoiding the need to explicitly
represent the CSD number in hardware altogether; only the
control signals derived from the DFS number concept are
explicitly present in the hardware.

Iterative multipliers with radix-4 and radix-8 based on the
Modified Booth's Recoding (MBR) algorithm are most
commonly used in modem hardware design due to the low
area requirement, low energy consumption and high
throughput [9],[11]. In radix-4 MBR, sequential 3-bit
segments of a 2's complement number are converted into the
digit set {+2, +1, 0 }. For an n by n bit multiplication, this
technique reduces the number of partial products by 50% as
compared to straightforward 2's complement based
multiplication, where, moreover, approximately 25% of the
partial products are zeros. In practice, a radix-4 MBR based
multiplier generates on average 0.375n non-zero partial
products. However, after the partial products are generated,
they are typically all passed on to the accumulator, including
those partial products that are zero. In this way, the number of
arithmetic operations in the carry-save structure is not
reduced. So, the zero partial products are not fully exploited
to improve the multiplier performances.

Compared with a radix-4 Modified Booth's Recoding
(MBR) based iterative multiplier which reduces the number of
iterations to half, our proposed structure is much faster since
the number of iterations has been reduced to 39.58%. Also,
instead of computing the five required multiples of the

multiplicand a (0, i a, i 2a) required for radix-4 Booth's
recoding, only +a and +2a are required for our multiplier.
Thus, the complexity of structure is competitive with radix-4
MBR.

Compared with a radix-8 MBR based iterative multiplier,
our proposed structure is much simpler and has competitive
speed. Instead of computing the nine multiples
(0, +a, +2a, +3a, +4a)of the multiplicand a that are
required for radix-8 Booth's recoding, only +a and +2a are
required for our multiplier. Consequently, some complex
multiplexers are avoided. Furthermore, unlike the multiplier
based on radix-4 and radix-8 MBR, once the zero bits in our
CSD number are detected, there is no accumulation required-
only shifting is required and there is no carry propagation
whatsoever. Most of the time, the accumulation process is
bypassed. Therefore, our algorithm reduces the latency of the
operation, as well as the power consumption of the circuit.
On average, the radix-8 real-time CSD recoding multiplier

proposed in this paper eliminates more than 60% of the partial
product generation operations that would be required for
straightforward two's complement multiplication. The
quantitative performance comparisons with other multipliers
in terms of the number of partial products, required multiples,
non-zero multiples generated and bypassed null partial
products are listed in Table II. These data indicate that the
proposed multiplier structure is capable of delivering superior
performance in terms of low area requirement, high energy
efficiency and high throughput. Moreover, it may be
conveniently implemented using either synchronized circuits
or asynchronous circuits [2].

TABLE II
COMPLEXITY COMPARISON ON AVERAGE PERCENTAGE OF DATA IN THE TRADITIONAL MULTIPLIER,

RADIX-4 BOOTH S RECODING MULTIPLIER, RADIX-8 BOOTH S RECODING MULTIPLIER AND
PROPOSED CSD RECODING MULTIPLIER

Total Nonzero Bypassed
Reqird ulipesof nullpartial multiplicand a multiples partial

products generated products
2's

complement I00% 0, a 50% 0o%
multiplier
Radix-4
Booth's 50% o, ±a, ±2a 37.5% 0o%
recoding
Radix-8
Booth's 33.3% o, ±a, ±2a, ±3a,±4a 29.17% o%
recoding
Proposed
CSD 39.58% ±a, ±2a 39.58% 60.42%

recoding

IV. CONCLUSIONS

We have presented an efficient high radix iterative
multiplier structure based on a novel real-time CSD recoding
circuit. Because of the iterative multiplier nature, the
proposed design requires lower area compared with array
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multipliers. Furthermore, the real-time CSD conversion
ensures that the proposed design has the simplest structure
among all radix-8 multipliers. Also, this multiplier has the
minimum number of nonzero partial products based on the
CSD number property. The number of add/subtract operations
is further reduced through the use of bypass techniques. Thus,
the complexity of the hardware implementation is
dramatically reduced as compared to conventional methods,
including modified Booth recoding and competing CSD
recoding techniques. This approach achieves an overall speed-
up as well as reduced power consumption which is
particularly critical in mobile multimedia applications.

Finally, unlike other CSD number based multipliers, the
structure proposed here uses real time CSD recoding, and
does not require a fixed value for the multiplier input to be
known a priori; as a result, the proposed multiplier can be
used for the efficient implementation of digital filters with
non-fixed filter coefficients, such as adaptive filters [17].
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