
RESEARCH Open Access

Automated target tracking and recognition using
coupled view and identity manifolds for shape
representation
Vijay Venkataraman1, Guoliang Fan1*, Liangjiang Yu1, Xin Zhang2, Weiguang Liu3 and Joseph P Havlicek4

Abstract

We propose a new couplet of identity and view manifolds for multi-view shape modeling that is applied to
automated target tracking and recognition (ATR). The identity manifold captures both inter-class and intra-class
variability of target shapes, while a hemispherical view manifold is involved to account for the variability of
viewpoints. Combining these two manifolds via a non-linear tensor decomposition gives rise to a new target
generative model that can be learned from a small training set. Not only can this model deal with arbitrary view/
pose variations by traveling along the view manifold, it can also interpolate the shape of an unknown target along
the identity manifold. The proposed model is tested against the recently released SENSIAC ATR database and the
experimental results validate its efficacy both qualitatively and quantitatively.
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1 Introduction
Automated target tracking and recognition (ATR) is an
important capability in many military and civilian appli-
cations. In this work, we mainly focus on tracking and
recognition techniques for infrared (IR) imagery, which
is a preferred imaging modality for most military appli-
cations. A major challenge in vision-based ATR is how
to cope with the variations of target appearances due to
different viewpoints and underlying 3D structures. Both
factors, identity in particular, are usually represented by
discrete variables in practical existing ATR algorithms
[1-3]. In this paper we will account for both factors in a
continuous manner by using view and identity mani-
folds. Coupling the two manifolds for target representa-
tion facilitates the ATR process by allowing us to
meaningfully synthesize new target appearances to deal
with previously unknown targets as well as both known
and unknown targets under previously unseen
viewpoints.
Common IR target representations are non-parametric

in nature, including templates [1], histograms [4], edge

features [5] etc. In [5] the target is represented by inten-
sity and shape features and a self-organizing map is
used for classification. Histogram-based representations
were shown to be simple yet robust under difficult
tracking conditions [4,6], but such representations can-
not effectively discriminate among different target types
due to the lack of higher order structure. In [7], the
shape variability due to different structures and poses is
characterized explicitly using a deformable and para-
metric model that must be optimized for localization
and recognition. This method requires high-resolution
images where salient edges of a target can be detected,
and may not be appropriate for ATR in practical IR
imagery. On the other hand, some ATR approaches
[8,1,9] depend on the use of multi-view exemplar tem-
plates to train a classifier. Such methods normally
require a dense set of training views for successful ATR
tasks and they are often limited in dealing with
unknown targets.
In this work, we propose a new couplet of identity and

view manifolds for multi-view shape modeling. As
shown in Figure 1, the 1-D identity manifold captures
both inter-class and intra-class shape variability. The 2-
D hemispherical view manifold is used deal with view
variations for ground vehicles. We use a nonlinear
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tensor decomposition technique to integrate these two
manifolds into a compact generative model. Because the
two variables, view and identity, are continuous in nat-
ure and defined along their respective manifolds, the
ATR inference can be efficiently implemented by means
of a particle filter where tracking and recognition can be
accomplished jointly in a seamless fashion. We evaluate
this new target model against the ATR database recently
released by the Military Sensing Information Analysis
Center (SENSIAC) [10] that contains a rich set of IR
imagery depicting various military and civilian vehicles.
To examine the efficacy of the proposed target model,
we develop four ATR algorithms based on different
ways of handling the view and identity factors. The
experimental results demonstrate the advantages of cou-
pling the view and identity manifolds for shape interpo-
lation, both qualitatively and quantitatively.
The remainder of this paper is organized as follows. In

Section 2, we review some related work in the area of
3D object representation. In Section 3, we present our
generative model where the identity and view manifolds
are discussed in detail. In Section 4, we discuss the
implementation of the particle filter based inference
algorithm that incorporates the proposed target model
for ATR tasks. In Section 5, we report experimental
results of target tracking and recognition on both IR
sequences from the SENSIAC dataset and some visible-
band video sequences, and we also discuss the limita-
tions and possible extensions of the proposed generative
model. Finally, we present our conclusions in Section 6.

2 Related Work
This section begins with a review of different ways to
represent a 3D object and the reasons for our choice of
a multi-view silhouette-based method. Then we focus
on several existing shape representation methods by
examining their ability to parameterize shape variations,
the ability to interpolate, and the ease of parameter
estimation.
There are two commonly used approaches to repre-

sent 3D rigid objects. The first approach suggests a set
of representative 2D snapshots [11,12] captured from
multiple viewpoints. These snapshots may be repre-
sented in the form of simple shape silhouettes, contours,
or complex features such as SIFT, HOG, or image
patches. The second approach involves an explicit 3D
object model [13] where common representations vary
from simple polyhedrons to complex 3D meshes. In the
first case, unknown views can be interpolated from the
given sample set, whereas in the second case, the 3D
model is used to match the observed view via 3D-to-2D
projection. Accordingly, most object recognition meth-
ods can be categorized into one of two groups: those
involving 2D multi-view images [14-19] and those sup-
ported by explicit 3D models [20-23]. There are also
hybrid methods [24] that make use of both the 3D
shape and 2D appearances/features.
In this work, we choose to represent a target by its

representative 2D views due to two main reasons. First,
this is theoretically supported by the psychophysical evi-
dence presented in [25] which suggest that the human
visual system is better described as recognizing objects by
2D view interpolation than by alignment or other meth-
ods that rely on object-centered 3D models. Second, it
could be practically cumbersome to store and reference
a large collection of detailed 3D models of different tar-
get types in a practical ATR system. Moreover, it is
worth noting that many robust features (HOG, SIFT)
used to represent objects were developed mainly for
visible-band images and their use is limited by some fac-
tors such as image quality, resolution etc. In IR imagery,
the targets are often small and frequently lack sufficient
resolution to support robust features. Finally, the IR sen-
sors in the SENSIAC database are static, facilitating tar-
get segmentation by background subtraction. Thus the
ability to efficiently extract target silhouettes and the
simplicity of silhouette-based shape representation moti-
vates us to use the silhouette for multi-view target
representation.
There are two related issues for shape representation.

One is how to effectively represent the shape variation,
and the other is how to infer the underlying shape vari-
ables, i.e., view and identity. As pointed out in [26], fea-
ture vectors obtained from common shape descriptors,
such as shape contexts [27] and moment descriptors

Figure 1 Coupled view-identity manifolds for multi-view shape
modeling. We decompose the shape variability in the training set
into two factors, identity and view, both of which can be mapped
to a low dimensional manifold. Then by choosing a point on each
manifold, a new shape can be interpolated.
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[28], are usually assumed to lie in a Euclidean space to
facilitate shape modeling and recognition. However, in
many cases the underlying shape space may be better
described by a nonlinear low dimensional (LD) manifold
that can be learned by nonlinear dimensionality reduc-
tion (DR) techniques, where the learned manifold struc-
tures are often either target-dependent or view-
dependent [29]. Another trend is to explore a shape
space where every point represents a plausible shape
and a curve between two points in this space represents
a deformation path between two shapes. Though this
method was shown successful in applications such as
action recognition [26] and shape clustering [30], it is
difficult to explicitly separate the identity and view fac-
tors during shape deformation as is necessary in the
context of ATR applications.
This brings us to the point of learning the LD embed-

ding of the latent factors, e.g., view and identity, from
the high-dimensional (HD) data, e.g., silhouettes. In an
early work [31], PCA was used to find two separate
eigenspaces for visual learning of 3D objects, one for the
identity and one for the pose. The bilinear models [32]
and tensor analysis [33] provide a more systematic
multi-factor representation by decomposing HD data
into several independent factors. In [34], the view vari-
able is related with the appearance through shape sub-
manifolds which have to be learned for each object
class. All of these methods are limited to a discrete
identity variable where each object is associated with a
separate view manifold. Our work draws inspiration
from [35] where a non-linear tensor decomposition
method is used to learn an identity-independent view
manifold for multi-view dynamic motion data. A torus
manifold was also proposed in [36,37] for the same pur-
pose that is a product of two circular-shaped manifolds,
i.e., the view and pose manifolds. In [36,37,35], the style
factor of body shape (i.e., the identity) is a continuous
variable defined in a linear space.
Our work presented in this paper is distinct from that

in [36,37,35] primarily in terms of two main original
contributions. The first is our couplet of view and iden-
tity manifolds for multi-view shape modeling: unlike
[36,37,35] where the identity is treated linearly, for the
first time we propose a 1D identity manifold to support
a continuous nonlinear identity variable. Also, the view
and pose manifolds in [36,37,35] have well-defined
topologies due to their sequential nature. However, in
our IR ATR application the topology of the identity
manifold is not clear owing to a lack of understanding
of the intrinsic LD structure spanning a diverse set of
targets. Finding an appropriate ordering relationship
among a set of targets is the key to learning a valid
identity manifold for effective shape interpolation. To
better support ATR tasks, the view manifold used here

involves both the azimuth and elevation angles, com-
pared with the case of a single variable in [36,37,35].
The second contribution is the development of a parti-
cle filter-based ATR approach that integrates the pro-
posed model for shape interpolation and matching. This
new approach supports joint tracking and recognition
for both known and unknown targets and achieves
superior results compared with traditional template-
based methods in both IR and visible-band image
sequences.

3 Target Generative Models
Our generative model is learned using silhouettes from a
set of targets of different classes observed from multiple
viewpoints. The learning process identifies a mapping
from the HD data space to two LD manifolds corre-
sponding to the shape variations represented in terms of
view and identity. In the following, we first discuss the
identity and view manifolds. Then we present a non-lin-
ear tensor decomposition method that integrates the
two manifolds into a generative model for multi-view
shape modeling, as shown in Figure 2.

3.1 Identity manifold
The identity manifold that plays a central role in our
work is intended to capture both inter-class and intra-
class shape variability among training targets. In parti-
cular, the continuous nature of the proposed identity
manifold makes it possible to interpolate valid target
shapes between known targets in the training data.
There are two important questions to be addressed in
order to learn an identity manifold with the desired
interpolation capability. The first one is which space
this identity manifold should span. In other words,
should it be learned from the HD silhouette space or a
LD latent space? We expect traversal along the identity
manifold to result in gradual shape transition and valid
shape interpolation between known targets. This would
ideally require the identity manifold to span a space
that is devoid of all other factors that contribute to the
shape variation. Therefore the identity manifold should
be learned in a LD latent space with only the identity
factor rather than in the HD data space where the
view and identity factors are coupled together. The
second important question is how to learn a semanti-
cally valid identity manifold that supports meaningful
shape interpolation for an unknown target. In other
words, what kind of constraint should be imposed on
the identity manifold to ensure that interpolated
shapes correspond to feasible real-world targets? We
defer further discussion of the first issue to Section 3.3
and focus here on the second one that involves the
determination of an appropriate topology for the iden-
tity manifold.

Venkataraman et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:124
http://asp.eurasipjournals.com/content/2011/1/124

Page 3 of 17



The topology determines the span of a manifold with
respect to its connectivity and dimensionality. In this
work, we suggest a 1D closed-loop structure to represent
the identity manifold and there are several important
considerations to support this seemingly arbitrary but
actually practical choice. First, the learning of a higher-
dimensional manifold requires a large set of training
samples that may not be available for a specific ATR
application where only a relatively small candidate pool
of possible targets-of-interest is available. Second, this
identity manifold is assumed to be closed rather than
open, because all targets in our ATR problem are man-
made ground vehicles which share some degree of simi-
larity with extreme disparity unlikely. Third, the 1D
closed structure would greatly facilitate the inference
process for online ATR tasks. As a result, the manifold
topology is reduced to a specific ordering relationship of
training targets along the 1D closed identity manifold.
Ideally, we want targets of the same class or those with
similar shapes to stay closer on the identity manifold
compared with dissimilar ones. Thus we introduce a
class-constrained shortest-closed-path method to find a
unique ordering relationship for the training targets.
This method requires a view-independent distance or
dissimilarity measure between two targets. For example,
we could use the shape dissimilarity between two 3D
target models that can be approximated by the accumu-
lated mean square errors of multi-view silhouettes.
Assume we have a set of training silhouettes from N

target types belonging to one of Q classes imaged under

M different views. Let yk
m denote the vectorized silhou-

ette of target k under view m (after the distance trans-
form [29]) and let Lk denote its class label, Lk Î [1, Q]

(Q is the number of target classes and each class has
multiple target types). Also assume that we have identi-
fied a LD identity latent space where the k’th target is
represented by the vector ik, k Î {1, · · ·, N} (N is the
number of total target types). Let the topology of the
manifold spanning the space of {ik|k = 1,..., N} be
denoted by T = [t1 t2 ··· tN+1] where ti Î [1, N], ti ≠ tj
for i ≠ j with the exception of t1 = tN+1 to enforce a
closed-loop structure. Then the class-constrained short-
est-closed-path can be written as

T∗ = arg min
T

N∑
i=1

D(iti , iti+1 ), (1)

where D(iu, iv) is defined as

D(iu, iv) =
M∑

m=1

‖ yu
m − yv

m ‖ + β · ε(Lu, Lv), (2)

ε(Lu, Lv) =
{

0 if Lu = Lv,
1 otherwise,

(3)

where ||.|| represents the Euclidean distance and b is
a constant. The first term in (2) denotes a view indepen-
dent shape similarity measure between targets u and v
as it is averaged over all training views. The second
term is a penalty term that ensures targets belonging to
the same class to be grouped together. The manifold
topology T* defined in (1) tends to group targets of
similar 3D shapes and/or the same class together, enfor-
cing the best local semantic smoothness along the iden-
tity manifold, which is essential for a valid shape
interpolation between target types.

Figure 2 Illustration of the generative model for shape interpolation along the view manifold (the blue trajectory) and given some
points on the identity manifold. In this case the identity manifold is an illustrative one that minimizes (1) for the six target classes considered
in this paper.
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It is worth mentioning that the identity manifold to be
learned according to T* will encompass multiple target
classes each of which has several sub-classes. For exam-
ple, we consider six classes of vehicles in this work each
of which includes six sub-class types. Although it is easy
to understand the feasibility and necessity of shape
interpolation within a class to accommodate intra-class
variability, the validity of shape interpolation between
two different classes may seem less clear. Actually, T*

not only defines the ordering relationship within each
class but also the neighboring relationship between two
different classes. For example the six classes considered
in this paper are ordered as: Armored Personnel Carriers
(APCs) ® Tanks ® Pick-up Trucks ® Sedan Cars ®
Minivans ® SUVs ® APCs. Although APCs may not
look like Tanks or SUVs in general, APCs are indeed
located between Tanks and SUVs along the identity
manifold according to T*. It occurs because that (1)
finds an APC-Tank pair and an APC-SUV pair that
have the least shape dissimilarity compared with all
other pairs. Thus this ordering still supports sensible
inter-class shape interpolation, although it may not be
as smooth as intra-class interpolation, as will be shown
later in the experiments.

3.2 Conceptual view manifold
We need a view manifold to accommodate the view-
induced shape variability for different targets. A com-
mon approach is to use non-linear DR techniques, such
as LLE or Laplacian eigenmaps, to find the LD view
manifold for each target type [29]. One main drawback
of using identity-dependent view manifolds is that they
may lie in different latent spaces and have to be aligned
together in the same latent space for general multi-view
modeling. Therefore, the view manifold here is designed
to be a hemisphere that embraces almost all possible
viewing angles around a ground vehicle as shown in Fig-
ure 1 and is characterized by two parameters: the azi-
muth and elevation angles Θ = {θ, j}. This conceptual
manifold provides a unified and intuitive representation
of the view space and supports efficient dynamic view
estimation.

3.3 Non-linear Tensor Decomposition
We extend the non-linear tensor decomposition in [35]
to develop the proposed generative model. The key is to
find a view-independent space for learning the identity
manifold through the commonly-shared conceptual view
manifold (the first question raised in Section 3.1).

Let yk
m ∈ �

d be the d-dimensional, vectorized distance

transformed silhouette observation of target k under
view m, and let Θm = [θm, jm], 0 ≤ θm ≤ 2π, 0 ≤ jm ≤
π, denote the point corresponding to view m on the LD

view manifold. For each target type k, we can learn a

non-linear mapping between yk
m and the point Θm using

the generalized radial basis function (GRBF) kernel as

yk
m =

Nc∑
l=1

wk
l κ(‖ �m − Sl ‖) + [1 �m]bl, (4)

where �(.) represents the Gaussian kernel, {Sl| l = 1,...,
Nc} are Nc kernel centers that are usually chosen to
coincide with the training views on the view manifold,

wk
l are the target specific weights of each kernel and bl

is the coefficient of the linear polynomial [1 Θm] term
included for regularization. This mapping can be written
in matrix form as

yk
m = Bkψ(�m), (5)

where Bk is a d × (Nc + 3) target dependent linear

mapping term composed of the weight terms wk
l in (4)

and ψ(�m) = [κ(‖ �m − S1 ‖), · · · , κ(‖ �m − SNc ‖), 1, �m)]

is a target independent non-linear kernel mapping.
Since ψ(Θm) is dependent only on the view angle we
reason that the identity related information is contained
within the term Bk. Given N training targets, we obtain
their corresponding mapping functions Bk for k = {1,...,
N} and stack them together to form a tensor C = [B1 B2

... BN] that contains the information regarding the iden-
tity. We can use the high-order singular value decompo-
sition (HOSVD) [38] to determine the basis vectors of
the identity space corresponding to the data tensor C.
The application of HOSVD to C results in the following
decomposition:

C = A×3ik, (6)

where {ik Î ℝN |k = 1,..., N} are the identity basis vec-
tors, A is the core tensor with dimensionality d × (Nc +
3) × N that captures the coupling effect between the
identity and view factors, and ×j denotes mode-j tensor
product. Using this decomposition it is possible to
reconstruct the training silhouette corresponding to the
k’th target under each training view according to

yk
m = A×3ik×2ψ(�m). (7)

This equation supports shape interpolation along the
view manifold. This is possible due to the interpolation
friendly nature of RBF kernels and the well defined
structure of the view manifold. However it cannot be
said with certainty that any arbitrary vector i Î span
(i1,..., iN) will result in a valid shape interpolation due to
the sparse nature of the training set in terms of the
identity variation.
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To support meaningful shape interpolation, we con-
strain the identity space to be a 1D structure that
includes only those points on a closed B-spline curve
connecting the identity basis vectors {ik |k = 1,..., N}
according to the manifold topology defined in (1). We
refer to this 1D structure as the identity manifold
denoted by M ⊂ �

N . Then an arbitrary identity vector
i ∈ M would be semantically meaningful due to its
proximity to the basis vectors, and should support a
valid shape interpolation. Although the identity manifold
M has an intrinsic 1D closed-loop structure, it is still
defined in the tensor space ℝN. To facilitate the infer-
ence process, we introduce an intermediate representa-
tion, i.e., a unit circle as an equivalent of M
parameterized by a single variable. First, we map all
identity basis vectors {ik |k = 1,..., N} onto a set of angles
uniformly distributed along a unit circle, {ak = (k - 1) *
2π/N|k = 1,..., N}.
Then, as shown in Figure 3, for any a’ Î [0, 2π) that

is between aj and aj+1 along the unit circle, we can
obtain its corresponding identity vector i(α′) ∈ M
from two closest basis vectors ij and ij+1 via spline inter-
polation along M while maintaining the distance ratio
defined below:

| α′ − αj |
| α′ − αj+1 | =

D(i(α′), ij | M)

D(i(α′), ij+1 | M)
, (8)

where D(· | M) is a distance function defined along
M . Now (7) can be generalized for shape interpolation
as

y(α, �) = A×3i(α)×2ψ(�), (9)

where a Î [0, 2π) is the identity variable and
i(α) ∈ M is its corresponding identity vector along the
identity manifold in ℝN. Thus (9) defines a generative
model for multi-view shape modeling that is controlled
by two continuous variables a and Θ defined along
their own manifolds.

4 Inference Algorithm
We develop an inference algorithm to sequentially esti-
mate the target state including the 3D position and the
identity from a sequence of segmented target silhouettes
{zt|t = 1,...,T}. We cast this problem in the probabilistic
graphical model shown in Figure 4. Specifically, the state
vector Xt = [xt yt zt �t vt] represents the target’s position
along the horizon, the elevation, and range directions,
the heading direction (with respect to the sensor’s optical
axis) and the velocity in a 3D coordinate system. Pt is the
camera projection matrix. Considering the fact that the
camera in the SENSIAC dataset is static, we set Pt = P.
We let at Î [0, 2π) denote the angular identity variable.
In addition to at, the generative model defined in (9)

also needs the view parameter Θ, which can be com-
puted from Xt and Pt, in order to synthesize a target
shape yt. Target silhouettes used in training the genera-
tive model are obtained by imaging a 3D target model
at a fixed distance from a virtual camera. Therefore yt
must be appropriately scaled to account for different
imaging ranges. In summary, the synthesized silhouette
yt is a function of three factors: at, Pt and Xt. Given an
observed target silhouette zt, the problem of ATR
becomes that of sequentially estimating the posterior
probability p(at, Xt|zt). Due to the nonlinear nature of
this inference problem, we resort to the particle filtering
approach [39] that requires the dynamics of the two
variables p(Xt|Xt-1) and p(at|at-1) as well as a likelihood
function p(zt|at, Xt) (the condition on Pt is ignored due
to the assumption of a static camera in this work). Since
the targets considered here are all ground vehicles, it is
appropriate to employ a simple white noise motion
model to represent the dynamics of Xt according to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕt = ϕt−1 + wϕ
t ,

vt = vt−1 + wv
t ,

xt = xt−1 + vt−1 sin(ϕt−1)	t + wx
t ,

yt = yt−1 + wy
t ,

zt = zt−1 + vt−1 cos(ϕt−1)	t + wz
t ,

(10)
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Figure 3 The mapping between the unit circle and the identity
manifold.
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Figure 4 Graphical model for ATR inference.
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where Δt is the time interval between two adjacent
frames. The process noise associated with the target

kinematics is Gaussian, i.e., wϕ
t ∼ N(0, σ 2

ϕ ) ,

wx
t ∼ N(0, σ 2

x ) , wx
t ∼ N(0, σ 2

x ) , wy
t ∼ N(0, σ 2

y ), and

wz
t ∼ N(0, σ 2

z ). The Gaussian variances should be cho-
sen to reflect the possible target dynamics and ground
conditions. For example, if the candidate pool includes

highly maneuvering targets, then large values σ 2
ϕ and

σ 2
v are needed while tracking on a rough or uneven

ground plane requires larger values σ 2
y .

Although the target identity does not change, the esti-
mated identity value along the identity manifold could
vary due to the uncertainty and ambiguity in the obser-
vations. We define the dynamics of at to be a simple
random walk as

αt = αt−1 + wα
t , (11)

where wα
t ∼ N(0, σ 2

α ) . This model allows the esti-
mated identity value to evolve along the identity
manifold and converge to the correct one during
sequential estimation. There are two possible future
improvements to make this approach more efficient.
One is to add an annealing treatment to reduce σ 2

α

over time and the other is to make σ 2
α view-depen-

dent. In other words, the variance can be reduced
near the side view when the target is more discrimi-
native and increased near front/rear views when it is
more ambiguous.
Given the hypotheses on Xt and at in the tth frame as

well as Pt, the corresponding synthesized shape yt can
be created by the generative model (9) followed by a
scaling factor reflecting the range zt Î Xt. The likelihood
function that measures the similarity between yt and zt
is defined as

p(zt | αt , Xt) ∝ exp
[
−‖ zt − yt‖2

2σ 2

]
, (12)

where s2 controls the sensitivity of shape matching
and ||·||2 gives the mean square error between the
observed and hypothesized shape silhouettes. Pseudo-
code for the particle filter-based inference algorithm is
given below in Table 1.

5 Experimental results
We have developed four particle filter-based ATR algo-
rithms that share the same inference framework shown
in Figure 4 and by which we can evaluate the effective-
ness of shape interpolation. Method-I uses the proposed
target generative model involving both the view and
identity manifolds for shape interpolation (i.e., both the
identity and view variables are continuous). Method-II
applies a simplified version where only the view mani-
fold is involved for shape interpolation (i.e., the identity
variable is discrete). Method-III involves shape interpo-
lation along the identity manifold only (i. e., the view
variable is discrete). Finally, Method-IV is a traditional
template-based method that only uses the training data
for shape matching without shape interpolation (i.e.,
both the view and identity variables are discrete).
We report three major experimental results in the fol-

lowing. First we present the learning of the proposed
generative model along with some simulated results of
shape interpolation. Then we introduce the SENSIAC
dataset [10] followed by detailed results on a set of IR
sequences of various targets at multiple ranges. We also
include three visible-based video sequences for algo-
rithm evaluation, among which two were captured from
remote-controlled toy vehicles in a room and one was
from a real-world surveillance video. Background sub-
traction [40] was applied to all testing sequences to
obtain the initial target segmentation result in each
frame and the distance transform [29] was applied to
create the observation sequences that were used for
shape matching.

5.1 Generative Model Learning
We acquired six 3D CAD models for each of the six tar-
get classes (APCs, tanks, pick-ups, cars, minivans, SUVs)

Table 1 Pseudo-code for the particle filter-based ATR algorithm

• Initialization: Draw Xj
0 ∼ N(X0, 1) , and α

j
0 = α0 ∀j Î {1,..., Np}. Here X0 and a0 are the initial kinematic state and identity values, respectively.

• For t = 1,..., T (number of frames)

1. For j = 1,..., Np (number of particles)

1.1 Draw samples Xj
t ∼ p(Xj

t | Xj
t−1) and α

j
t ∼ p(αj

t | α
j
t−1) as in (10) and (11).

1.2 Compute weights wj
t = p(zt | α

j
t, Xj

t) using (12).

End

2. Normalize the weights such that
∑Np

j=1 wj
t = 1 .

3. Compute the mean estimates of the kinematics and identity X̂t =
∑Np

j=1 wj
tX

j
t and α̂t =

∑Np

j=1 wj
tα

j
t .

4. Set [αj
t , Xj

t] = resample(αj
t, Xj

k, wj
k) to increase the effective number of particles [39].

• End
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for model learning, as shown in Figure 5. All 3D models
were scaled to similar sizes and those in the same class
share the same scaling factor. This class-dependent scal-
ing is useful to learn the unified generative model and
to estimate the range information in a 3D scene. For
each 3D model, we generated a set of silhouettes corre-
sponding to training viewpoints selected on the view
manifold. For simplicity, we only considered elevation
angles in the range 0 ≤ j < 45° and azimuth angles in
the range 0 ≤ θ < 360°. Specifically, 150 training view-
points were selected by setting 12° and 10° intervals
along the azimuth and elevation angles, respectively,
leading to non-uniformly distributed viewpoints on the
view manifold. Ideally, we may need less training views
when the elevation angle is large (close to the top-down
view) to reduce the redundance of training data. Our
method of selecting training viewpoints is directly
related to the kernel parameters set in (4) to ensure that
model learning is effective and efficient. After model
learning, we evaluated the generative model in terms of
its shape interpolation capability through three
experiments.
- Shape interpolation along the view manifold: We

selected one target from each of the six classes and cre-
ated three interpolated shapes (after thresholding)
between three training views, as shown in Figure 6(a).
We observe smooth transitions between the interpolated
shapes and training shapes, especially around the wheels
of the targets.

- Shape interpolation along the identity manifold
within the same class: We generated six interpolated
shapes along the identity manifold between three adja-
cent training targets for each of the six classes, as
shown in Figure 6(b). Despite the fact that the three
training targets are quite different in terms of their 3D
structures, the interpolated shapes blend the spatial fea-
tures from the two adjacent training targets in a natural
way.
- Shape interpolation along the identity manifold

between two adjacent classes: It is also interesting to see
the shape interpolation results between two adjacent
target classes, as shown in Figure 6(c). Although the ser-
ies of shape variations may not be as smooth as that in
Figure 6(b), the generative model still produces inter-
mediate shapes between two vehicle classes that are rea-
listic looking.
The above results show that the target model supports

semantically meaningful shape interpolation along the
two manifolds, making it possible to handle not only a
known target seen from a new view but also an
unknown target seen from arbitrary views. Also, the
continuous nature of the view and identity variables
facilitates the ATR inference process.

5.2 Tests on the SENSIAC database
The SENSIAC ATR database contains a large collection
of visible and midwave IR (MWIR) imagery of six mili-
tary and two civilian vehicles (Figure 7). The vehicles

Figure 5 All 36 3D CAD models used for learning. There are six models for each target type (from left to right: APCs, tanks, pick-ups, cars,
minivans and SUVs, ordered according to the manifold topology determined by (1)) and shown by arrowed lines.
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(a)

(b)

APC
BMP1

Tank
M60

Tank
AMX30

Hummer
Pickup

Galant

Honda
Odyssey

Silverado

BMW
z3

Honda
Odyssey

SUV Chevy
Suburban

APC CGC-
V100

SUV Land
Rover

(c)

Figure 6 Shape interpolation along the view and identity manifolds for six target classes. (a) Shape interpolation along the view
manifold: the shapes of the first, middle and last columns are training cases that are adjacent on the view manifold, while the others are
interpolated. The first and second training shapes are 12° apart along the azimuth angle, and the second and third ones are 10° apart in the
elevation angle. (b) Shape interpolation along the identity manifold: the shapes of the first, middle and last columns are training cases that are
adjacent on the identity manifold, while the others are interpolated. (c) Shape interpolation between two adjacent target classes along the
identity manifold.
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were driven along a continuous circle marked on the
ground with a diameter of 100 meters (m). They were
imaged at a frame rate of 30 Hz for one minute from
distances of 1,000 m to 5,000 m (with 500 m increment)
during both day and night conditions. In the four ATR

algorithms, we set σ 2
ϕ = 0.1 , σ 2

v = 1 , σ 2
x = 0.1 ,

σ 2
z = 1 , σ 2

z = 1 in (10) and σ 2
α = 0.01 in (11). We chose

48 night time IR sequences of eight vehicles at six
ranges (1000 m, 1500 m, 2000 m, 2500 m, 3000 m, and
3500 m). Each sequences has approximately 1000
frames. Additionally, the SENSIAC database includes a
rich set of meta data for each frame of every sequence.
This information includes the true north offsets of the
sensor (in azimuth and elevation, Figure 8(a)), the target
type, the target speed, the range and slant ranges from
the sensor to the target (Figure 8(b)), the pixel location
of the target centroid, heading direction with respect to
true north, and aspect orientation of the vehicle (Figure
8(c)). Furthermore, we defined a sensor-centered 3D

world coordinate system (Figure 8(d)) and developed a
pinhole camera calibration technique to obtain the
ground-truth 3D position of the target in each frame.
The tracking performance is evaluated based on the
errors in the estimated 3D position and aspect
orientation.
5.2.1 Tracking Evaluation
We computed the errors in estimated 3D target posi-
tions along the x (horizon) and z (range) axes as shown
in Figure 8(d), as well as of the aspect orientation of the
target (Figure 8(c)). All tracking trials were initialized by
the ground truth data in the first frame. The overall
tracking performance averaged over eight targets with
the same range is shown in Figure 9. All four algorithms
achieved comparable errors of less than one meter along
the horizon direction, with Method-I delivering perfor-
mance gains of 10%, 20% - 40%, and 30% - 50% over
Methods-II, III and IV, respectively. Method-I also out-
performs the other three methods on the range and
aspect estimation with over 10% - 50% and 20% - 80%

Figure 7 The eight vehicles of the SENSIAC dataset used in algorithm evaluation.

(b)

(c)(a)

(d)

x

yz

Up

North

Figure 8 Spatial geometry of the sensor and the target in the SENSIAC data. (a) The sensor orientation in a world coordinate system; (b)
The slant and ground ranges between the sensor and target (side view); (c) The aspect orientation and the heading direction (top-down view);
(d) Sensor-centered 3D coordinate system used for algorithm evaluation.
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improvements. These results show that shape interpola-
tion along the view manifold is more important than
that along the identity manifold and that using both of
them yields the best tracking performance. Even at a
range of 3500 m, the averaged horizontal/depth/aspect
errors of Method-I are only 0.5 m, 25 m, and 0.5 rad
(28.7°), compared to the Method-IV errors of 0.9 m, 45
m, and 1.1 rad (63.1°). We also present some tracking
results for Method-I against four 1000 m sequences in
Figure 10, where the interpolated shapes are overlaid on
the target according to the estimated 3D position and
aspect angle as well as the given camera model. All of
these results demonstrate the general usefulness of the
generative model in interpolating target shapes along
the view and identity manifolds for realistic ATR tasks.
5.2.2 Recognition Evaluation
As mentioned before, the lD closed-loop identity mani-
fold learned from the tensor coefficient space can be
mapped into a unit circle to ease the inference process.
The identity variable then becomes an angular one a Î
[0, 2π). Correspondingly, the six target classes, i.e.,
tanks, APCs, SUVs, picks-ups, minivans and cars, can be
represented by six angular sections along the circularly

shaped identity manifold (as shown in Figure 1). Since
the target type is estimated frame by frame during
tracking, we define the overall recognition accuracy as
the percentage of frames where the target is correctly
classified in terms of the six classes. Also, it is interest-
ing to check the two best-matched training targets for a
given sequence that can be found along the identity
manifold. The overall recognition results of the four
methods for 48 sequences are shown in Table 2, where
the accuracy of Tanks is averaged over the T72, ZSU23,
and 2S3 target types and that of the APCs is averaged
over those of BTR70, BMP2, and BRDM2 target types.
Overall, Method-I outperforms the other three methods,
again showing the usefulness of shape interpolation
along both of the two manifolds. The improvements of
Method-I are more significant for long-range sequences
when the targets are small and shape interpolation is
more important for correct recognition. The reason that
recognition accuracies are below 80% for tanks and
APCs at long ranges (≥ 2500 m) is mainly because of
small target sizes and poor segmentation results, as
shown in Figure 11, which shows the targets in the ori-
ginal IR sequences as well as the segmented silhouettes.
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Figure 9 Overall 3D tracking performance of Method-I (shape interpolation along the view and identity manifolds, the first error bar),
Method-II (shape interpolation along the view manifold only, the second error bar), Method-III (shape interpolation along the identity
manifold only, the third error bar) and Method-IV (no shape interpolation, the fourth error bar) averaged over eight IR sequences
with the same range. (a) Horizontal errors (m). (b) Range errors (m). (c) Aspect angle errors (rad).

BTR70
APC

T72
Tank

ISUZU
SUV

Ford
Pick-up

BRDM2
APC

BMP-2
APC

ZSU23
Anti-aircraft

Tank

2S3
Hotwitzer

Tank

Figure 10 Target tracking results for eight 1000 m sequences showing actual SENSIAC IR frames overlaid with interpolated shapes
produced by the proposed generative model with interpolation on both the view and identity manifolds.
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We used a simple morphological opening operation to
clean up the segmentation results. However, when the
targets are small, morphological opening has to be mod-
erate to ensure the target shapes are well preserved,
which also results in noisier segmentations.

More details on the recognition results of Method-I for
the eight 1000 m sequences are shown in Figure 12, which
shows not only the frame-by-frame target recognition
results but also the two best-matched training targets. In
most frames, the estimated identity values are in the

Table 2 Overall recognition accuracies (%) of four methods (Method-I/Method-II/Method-III/Method-IV) against 48
SENSIAC sequences

Targets/ranges Tanks APCs SUV Pick-up

1000 m 96/94/91/90 94/92/89/88 100/100/99/99 100/100/100/99

1500 m 93/91/88/86 88/86/85/82 100/99/98/98 100/100/100/98

2000 m 86/83/82/81 85/83/80/80 98/96/96/95 97/96/97/95

2500 m 78/73/72/69 76/72/71/70 92/90/89/86 90/88/88/86

3000 m 70/65/62/60 72/69/66/65 86/84/82/79 82/80/79/77

3500 m 68/62/58/57 70/65/64/62 78/76/75/70 73/72/70/65

IR imagery
(1000m)

Target segmentation
(1000m)

IR imagery
(1500m)

Target segmentation
(1500m)

IR imagery
(2000m)

Target segmentation
(2000m)

IR imagery
(2500m)

Target segmentation
(2500m)

IR imagery
(3000m)

Target segmentation
(3000m)

IR imagery
(3500m)

Target segmentation
(3500m)

Pick-up SUV BTR70 BRDM2 BMP2 T72 ZSU23 2S3

Figure 11 Snapshots of the original IR sequences of eight targets at six ranges along with the segmented targets.
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correct region of class and misclassification usually occurs
around the front/rear views when the target is not very
distinguishable. Interestingly, the two best matches for the
BTR70 and ISUZU-SUV sequences include the exact cor-
rect target model. Also, the best matches for the other
sequences include a similar target model. For example,
BMP1, T72, BRDM1, and AS90 are among the two best
matches for BMP2, T80, BRDM2 and 2S3, respectively.1

We do not have 3D models for the Ford pick-up and the
ZSU23 in our training set, but their best matches (Chevy/
Toyota pick-ups and T62/T80 tanks) still resemble the
actual targets in the SENSIAC sequences.

5.3 Results on Visible-band Sequences
We also tested the four ATR methods on three visible-
band video sequences. Two of them (the car and the

SUV) were captured indoors using a remote controlled
toy vehicle where both the target pose and 3D position
were estimated by making use of the camera calibration
information, and one was a real-world surveillance video
(the cargo van) for which camera calibration is not
available and only pose estimation was performed from
the normalized silhouette sequences. To compare the
four methods, we used an overlap metric [41] to quan-
tify the overlap between the interpolated shapes and the
segmented target. Let A and B represent the tracking
gate and the ground-truth bounding box respectively.
Then the overlap ratio ζ is defined as

ζ =
#(A ∩ B) × 2
#(A) + #(B)

, (13)
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Figure 12 Target recognition results (frame by frame) for eight sequences (1000 m range) (we down-sampled 1000 frames to 500
frames for display purposes). The vertical axis is the estimated identity in terms of an angular variable a Î [0, 2π) and the ranges of a with
respect to six target classes are also shown. Additionally, the actual target type is also shown along with the two adjacent training target types.
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where # is the number of pixels. A larger ζ ratio
implies a better tracking performance, as shown in Fig-
ure 13. The overlap ratios of all four methods on three
visible-band sequences are shown in Figure 14. It is
clearly seen that Method-I is again superior to other
three methods.
We now focus on the recognition results of Method-I, as

shown in Figure 15. Although the three targets are pre-
viously unknown, the recognition accuracy is still 100% for
the first two sequences and close to 100% (97%) for the
last one. Note that the two best matches do indeed resem-
ble the unknown target for each sequence. In particular,
the cargo van in the third sequence is very different from
all training models of minivan. Yet the two best matches,
VW Samba and Nissan Elgrand, give a reasonable approxi-
mation. Detailed tracking results of the three sequences
are shown in Figure 16. Although target segmentation
results are not ideal in many frames, especially for the
cargo van, the estimated pose trajectories along the view
manifold are still smooth and represent the actual pose
variation of the target during the sequence. Moreover, the
interpolated shapes match reasonably well with the seg-
mented targets, indicating the correct estimation for both
the view and identity variables.

5.4 Discussion and Limitations
Although these results are promising, we still consider
this work preliminary for three main reasons. First, the
computational complexity of the proposed algorithm
(Method-I) is relatively high due to the shape interpola-
tion using the generative model. Our experimental
results are based on a non-optimized Matlab implemen-
tation. Shape interpolation requires approximately 0.03s
on a PC i7 computer (without parallel computation),
and the inference with 200 particles requires about 6.9s
per frame. Fast implementation is still needed to sup-
port real-time processing. Second, we use a silhouette-
based shape representation that requires target segmen-
tation. The background subtraction used here assumes
that the camera platform is not moving. In the case of a
moving camera platform, the initial target segmentation
could become a challenging issue. Third, we did not

19.0 40.0

65.0 00.1

onsegmetnatitarget  :A

gate Tracking :B

area gOverlappin
        BA

Figure 13 Illustration of the overlap metric for a few example
cases.

Figure 14 The overlap ratios between the segmented target
region and the synthesized target shape for all four algorithms
against three real-word sequences (from left to right: Methods-
I, II, III and IV).
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Figure 15 Recognition results for the car (a), the SUV (b) and
the cargo van (c) along with the two best matched training
models.
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consider the issue of occlusion that has to be accounted
for in any practical ATR system. The silhouette is a glo-
bal feature that could be sensitive to occlusion. An
extension to other more salient and robust features such
as SIFT and HOG would increase the applicability of

the proposed method for real-world applications. Never-
theless, our main contribution is a new shape-based tar-
get model where, for the first time, both the view and
identity variables are continuous and defined along their
own respective manifolds.
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Figure 16 Tracking results for the car (a), SUV (b) and cargo van (c), including pose trajectories on the view manifold (left-top) and
identity estimation on the identity manifold (left-bottom) as well as selected frames, segmented targets, and interpolated shapes and
super-imposed shapes (from the first to the fourth rows). Super-imposed results are not available for the cargo van where only pose
estimation was performed due to the lack of camera calibration information.
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6 Conclusion and Future Work
We have presented a new shape-based generative model
that incorporates two continuous manifolds for multi-
view target modeling. Specifically, the identity manifold
was proposed to capture both inter-class and intra-class
shape variability among different target types. The hemi-
spherical view manifold is designed to reflect nearly all
possible viewpoints. A particle filter-based ATR algo-
rithm was presented that adopts the new target model
for joint tracking and recognition. The experiments on
both IR and visible-based video sequences show the
advantages of shape interpolation along both the view
and identity manifolds.
However, the current work only considers the silhou-

ette-based shape for target representation that may not
be sufficiently distinctive in some challenging cases.
This work could be extended to other more salient and
robust features thereby making the proposed model
more promising for real-world applications. Another
issue that needs further research is the structure and
dimensionality of the identity manifold. In some sense,
the lD identity manifold used here is a practical simplifi-
cation where a small set of training models (e.g., six
models for each of the six classes, totally 36 in this
work) is used for learning the generative model. It is
possible we can learn a 2D or even 3D identity manifold
for more generalized target modeling given sufficient
training data. However, there will be two major chal-
lenges in going to a higher dimension space. One is
how to learn an appropriate manifold topology in 2D or
3D, which is much harder than the lD learning we con-
sidered here. The other is how to infer the identity vari-
able effectively in a 2D or 3D identity manifold. There
should be a balanced consideration of both the com-
plexity and efficiency when using the couplet of view
and identity manifolds for real-world ATR applications.

Notes
1Both1 AS90 and 2S3 are self-propelled howitzers.
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