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ABSTRACT

System identification for structural engineering has received 
significant attention in the last thirty years. With the ever 
increasing capacity of computing technology, system identification 
has been applied to important structures such as bridges and 
aircraft. In the case of bridges, the output can easily be measured 
by accelerometers. Considerable research in system identification 
on bridges has been done using output–only models. Of course, it 
is difficult to measure the inputs on an in–service bridge. In this 
paper, we see how the inputs can be estimated from the output 
measurements. We then use an input–output model to develop an 
improved system identification technique for identifying bridges. 
We show that the proposed method using the estimated inputs 
yields superior identification in a simulated case (i.e., where 
everything is controlled). We then use the method on the in-service 
Walnut Creek Bridge located on the north-bound lanes of U.S. 
Interstate I–35 between Dallas, TX and Oklahoma City, OK. 

Index Terms — system identification

1. INTRODUCTION 

 System identification of large structures such as bridges, 
aircraft and buildings has received considerable attention. Through 
identification, we can determine whether the properties of the 
observed structures are changing over time. This is an essential 
component of the structural health monitoring problem. Structural 
engineers monitor structural response in order to detect damage. 
They are also interested in the modal (natural) frequencies of the 
system because any matching between input frequencies and 
modal frequencies can cause the structures to resonate, causing 
significant structural response with attendant damage. 
 Previously, the stochastic subspace identification algorithm 
was applied to identify bridges using an output–only model [1]. 
This algorithm assumes that the inputs are white processes, which 
is never the case. In system identification, the more information we 
possess and use properly, the better our produced estimation. In 
this paper, we will show that the deterministic–stochastic subspace 
identification method using an input–output system model 
improves the identification results over the stochastic subspace 
identification using the output–only system model. 

2. METHODOLOGY 

2.1. System Modeling 

 The complete system modeling algorithm is found in [2]. In 
this section, we only summarize the algorithmic base that is used 
in this paper. A bridge system under a moving load can be 
modeled using the following input–output state space model. 
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where x(k) is the state vector, u(k) is the vector of input forces of 
the moving load and y(k) is the vector of output measurements. 
The system is assumed to be stationary. The process noise (k) is 
caused by traffic, variations in the moving load, and modeling 
error. The measurement noise of the sensors is accounted for in the 
process v(k). We assume (k) and v(k) are zero mean and white 
sequences with the covariance given in (1). 

2.2. Algorithm 

 Block Hankel matrices can be built from the input and output 
sequences. The input block Hankel matrix is found in equation (2), 
with each element being a column vector of the input sequence. 
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The value of i must be greater than the maximum order of the 
system that we want to identify. The input block Hankel matrix 
can be divided into two parts, Up and Uf, which denote past and 
future, respectively. The output block Hankel matrix can be 
derived similarly. Notice that we have to choose j such that 2i + j – 
2 is within the observed input and output sequences. The number 
of columns j must also be much larger than the number of block 
rows i for the algorithm to work accurately. 
 A combination matrix of input and output can be defined 
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An oblique projection Obi of the row space of Yf along Uf on Wp is 
computed as in (4). The oblique projection removes all of the 
future input information from the future output using only the past 
information.
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The † denotes the Moore–Penrose pseudo-inverse discussed by 
Ben-Israel in [3]. The main deterministic–stochastic subspace 
identification theorem states that the oblique projection Obi is 
equal to the product of the extended observability matrix i and the 
state sequence Xi, i.e. 
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The extended observability matrix and state sequence can be 
extracted using the singular value decomposition of Obi.
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U and V are unitary matrices, and S is a diagonal matrix; U1, V1
and S1 are similar to U, V and S without their zero singular values.
 The extended observability matrix i is derived as following: 

1/ 2
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The state sequence Xi is the other half of the decomposition or can 
be calculated as in (8) 
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The first block rows of the future block Hankel matrices can be 
moved into the past block Hankel matrices to yield we the Hankel 
matrices , , ,p f p fU U Y Y  and the input–output matrix 

pW .

Another oblique projection is defined. 
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 The main theorem also holds for the new oblique projection. 
1 1 1i i iOb X  (10) 

The state sequence Xi can be derived from the new oblique 
projection.

†
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The system matrices (A, B, C, D) can be determined in a least 
square sense in the following equation system. 
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The above system matrices are the true system matrices up to a 
similarity transformation. 

2.3. Input estimation 

 In the case of real bridges, it is difficult to measure the inputs 
due to hardware and access limitations. In our experience 
inspecting the bridge accelerations, we have found that only traffic 
that significantly impacts the bridge is heavy trucks. Therefore, we 
propose to estimate the truck inputs using our estimated output (the 
easily measured bridge accelerations). In our approach, we want to 
find the initial position of the truck (the position of the truck when 
we start collecting data) and the velocity of the truck. 
 From the measured output accelerations, we determine that the 
vibration amplitudes are strongest when the vehicle is directly 
above the accelerometer. At other times, there are only small 

changes in accelerations. Consequently, a straightforward 
estimation process for our required inputs can be developed. First, 
we sum the energy from the outputs of the bridge as the truck 
crosses. We determine the amount of time in this observation that 
divides that energy into two equal portions. Now we estimate the 
time required by the truck to reach the sensors. Now, since we 
know the position of the sensors on the bridge and the time that the 
truck required to reach each sensor, we can determine the initial 
position and velocity of the truck using the least square method. 
The resulting estimates can now be plugged into a bridge-load 
model to generate the inputs required in the system identification 
algorithm.

2.4. Modal Analysis 

 A mode of a structure is a pattern of deformation of the 
structure at a specific harmonic frequency [4]. Modes are of 
concern to structural engineering because significant damage due 
to resonance can result if a structure is excited by an external force 
having a frequency that coincides with one of the modes. The 
frequencies of the structural modes can be found by taking the 
imaginary parts of the eigenvalues of the continuous–time state 
matrix A [4]. These natural frequencies may be determined as 

arg( )
2

i
i

fs
f (13)

where i is the ith eigenvalue of the discrete-time state matrix A, fs
is the sampling frequency, and fi is in Hz. 

2.5. Order Determination 

 Theoretically, after all the zero singular values are removed 
from the diagonal matrix S, the dimension of S1 is the order of the 
system. In real systems, all signals are subject to noise and so there 
are no identically zero singular values. It is hard to determine the 
correct order when noise is added to the signals. One of the tools 
for order determination is the stabilization diagram described in 
[5]. The basic idea of the stabilization diagram is that we can pick 
the n highest singular values from the S matrix and compute the 
natural frequencies of the structure. We iterate n from 2 to the 
maximum order that we want to identify for the structure and 
compare the natural frequencies of the current order with those of 
one order lower. If the frequencies are within a given tolerance, we 
will accept them as stable estimates of natural frequency. In this 
paper, we choose the tolerance to be 2%, so that the criterion for 
accepting a new mode is given by 
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Although the stabilization diagram can be used to identify and 
retain the physical poles, it does not show us the energy or the 
strength of those modes. For our purposes, we want to find the 
most important modes and get rid of the insignificant ones. 
 The whole system can be decoupled into individual modes. 
Each mode can be represented by a state space equation. 
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where i is the ith eigenvalue of the identified state matrix A, bi is 
the ith row of the input matrix B

�

and ci is the ith column of the 
output matrix C

�

. B
�

 and C
�

 are obtained from the identified 
matrices B and C by a similarity transformation such that the 
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matrix A becomes a diagonal matrix. The feed–through matrix D
can be ignored since the inputs are the same for all the modes. 
 The transfer function of each mode is defined as: 
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We compute the norms of the transfer functions of the modes to 
determine which modes are significant in the system. In this paper, 
we use the H2 norm described in [4] 
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Where the tr() denotes the sum of the diagonal elements and * is 
the conjugate transpose. 
 There are several approaches to determine the model order of 
the system. One approach is that we truncate at the point that has 
the biggest gap in H2 norms. The disadvantage of this method is 
that there may be no clear gap between the modes. A better 
approach appears to be based on thresholds. For example, a hard 
threshold of 90% would mean that we retain only those largest 
norm modes that contribute 90% of the total energy computed, and 
thus remove those smallest norm modes contributing only 10% of 
the total. The 90% threshold corresponds to a 9.54 dB “SNR” 
where the signal is the large norm components and the noise is the 
small norm components. After analyzing the identified system 
through the stabilization and the H2 norm, we can determine the 
order of the system consisting of significant modes. 

3. EXPERIMENTAL CASES 

3.1. Bridge–Load Simulation 

 An effective, practical bridge–load simulation was thoroughly 
described in [6]. This simulation consists of two parts: bridge 
simulation and load simulation. The bridge is simulated using a  
finite element analysis for a beam. The load is simulated by a 
three–force constant speed load such as would be found by a truck 
wheel loading. The input forces and output accelerations are 
collected for identification. 
 The true modal frequencies can be computed and compared 
with the results of the system identification methods. Table 1 
shows the first six true modal frequencies of the bridge simulation. 

Mode Frequency 
1 0.8244 Hz 
2 2.2667 Hz 
3 4.4054 Hz 
4 7.1289 Hz 
5 10.1888 Hz 
6 14.1084 Hz 

Table 1: True modal frequencies of the bridge simulation 

 The test case in this paper has 39 dB input noise and 57 dB 
output noise. Fig. 1 illustrates the stabilization diagram of the 
bridge–load simulation using our proposed deterministic–
stochastic subspace identification (input–output model). We 
observe that it can detect the first six modes. Modes 2 and 3 are 
more susceptible to the noise than are the other modes. Fig. 2 
illustrates the stabilization diagram of the bridge–load simulation 
using stochastic subspace identification (output–only model) 
which was used in [1]. We also use the same set of data as in Fig. 1 

for a fair comparison. Modes 2 and 3 cannot be detected by this 
method. So, our proposed method outperforms the existing one. 
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Fig. 1: Stabilization diagram using deterministic-stochastic 
subspace identification on bridge-load simulation. 
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Fig. 2: Stabilization diagram using stochastic subspace 
identification on bridge-load simulation. 

More analyses can be found in [6] which show that the stochastic 
subspace identification sometimes introduces spurious modes. This 
is explained by the fact that stochastic subspace identification 
assumes white  noise inputs, which is rarely ever the true case in 
practice. Therefore, a better system model can be obtained by 
estimating the true system inputs. 
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Fig. 3: H2 norms of the modes of the bridge simulation.
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The H2 norm diagram of the modes is shown in 
Fig. 3. The modal energies are concentrated in the lower frequency 
modes of the system, as expected by structural engineers. 

3.2. Walnut Creek Bridge 

 Walnut Creek Bridge (Purcell, Oklahoma) is the bridge on 
Interstate highway I–35, near mile marker 91 in the northbound 
direction (see Fig. 4). The bridge is 400 ft long. It consists of 4 
spans; each span is 100 ft. long. The test span is chosen to be the 
third span. The outputs were collected from the accelerometers 
placed on the underside of the bridge along the girders. The inputs 
were estimated by the input estimation method discussed above. 
Fig. 5 illustrates the stabilization diagram after identification using 
our algorithm. We find 13 modes with frequencies below 10 Hz. 

Walnut Creek Bridge on  I-35 near mile 
marker 91 built in 1971

2 Lanes of  South to North 400’ continuous 
girders (5) Piers at 100’ intervals

122m (400 ft) overall length; 11.6m (38 ft) wide

Four span – steel girder bridge

Concrete deck carries two lanes of  traffic

45° skew to accommodate creek below

Avg. Daily Vehicle Traffic…18,000

Avg. Daily Heavy Truck Traffic … 2,500

Fig. 4: Walnut Creek Bridge 
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Fig. 5: Stabilization diagram using deterministic-stochastic 
subspace identification on Walnut Creek Bridge. 

Fig. 6 shows the strength of the modes. We observe that the energy 
is concentrated in the low frequency modes except for the modes 
at 74.25 Hz and 101.42 Hz. 

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

X= 9.178
Y= 10.6443

X= 8.6271
Y= 2.1998

X= 3.5052
Y= 4.2114

X= 3.625
Y= 2.4565

X= 101.4269
Y= 4.0722

X= 74.2539
Y= 3.1226

X= 8.6271
Y= 2.1998

X= 7.6953
Y= 5.2389

Frequency (Hz)

H
2 

N
or

m

Fig. 6: H2 norms of the modes of the Walnut Creek Bridge

 It is difficult to verify the results with the true modes of the 
bridge because the bridge has been in service for more than 40 
years. Visual inspection of the bridge confirms extensive structural 
damage to the structure (e.g. a twisted girder is present in the 
observed span of the bridge). However, we can compare our 
results with previous (imperfect) identification on this bridge. The 
impulse response method [7] was applied by using a dropped 
hammer on the Walnut Creek Bridge in 1996, and the stochastic 
subspace identification method was used in 2004 [1]. 

deterministic–stochastic impulse stochastic 
1.2191 Hz - - 
2.0665 Hz - - 

- 2.500 Hz - 
2.8201 Hz  2.9579 Hz 

- 3.125 Hz - 
- - 3.3124 Hz 

3.5052 Hz 3.500 Hz - 
3.6250 Hz 3.625 Hz - 

- 3.875 Hz - 
4.2309 Hz 4.250 Hz - 

- 4.375 Hz 4.3435 Hz 
- 4.750 Hz - 
- 5.000 Hz - 
- - 5.2461 Hz 

5.4159 Hz - - 
- 5.625 Hz - 

6.4455 Hz - - 
7.0118 Hz - - 

- - 7.2101 Hz 
7.6953 Hz 7.625 Hz - 

- 8.000 Hz 8.0368 Hz 
Table 2: Comparison among deterministic-stochastic, stochastic 

subspace identification and impulse methods 

 Inspecting Fig. 6 and Table 2, we observe that the high energy 
modes in our deterministic–stochastic subspace identification 
match with the impulse response method (at 3.5052Hz, 3.625 Hz, 
4.2309 Hz and 7.6953 Hz). The stochastic subspace identification 
does not produce results that closely match with either of the two 
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other methods. This is probably explained by the fact that that 
algorithm assumes the inputs are white while they are, in fact, not 
white. The high frequency modes that we detected can be 
explained by either the characteristic of the moving load or the 
uncertainty that was created when we estimated the inputs. 

4. BRIDGE MONITORING SYSTEM 

 The Bridge Monitoring System (BMS) has been developed at 
the Dynamic Structures Sensing and Control (DySSC) Center at 
the University of Oklahoma with the intention to acquire bridge 
data continuously over long periods of time. The BMS has four 
major components: central computer, sensor prototypes, network 
devices and power system. The sensor nodes collect output data 
(mainly acceleration). The central computer acquires the data from 
the sensor prototypes and archives them. The network devices 
maintain the connection between the central computer and sensor 
prototypes. The power system gets energy from solar panels. It 
provides the power for the whole system to ensure that the BMS 
can operate continuously. Using the TCP/IP protocol, the BMS can 
theoretically handle up to four million sensors in one local network 
with high speed communication. The protocol also allows us to 
connect to the system remotely. The detailed implementation of 
the system is described in [6] and [8]. The system provides the real 
data for us to identify bridge systems. The system will also be used 
for other purposes such as bridge health monitoring/damage 
detection and real–time feedback control on moving trucks. 
 Currently, the system has been successfully implemented at 
the Walnut Creek Bridge, and a similar system with improved 
electronics was successfully deployed at the Canadian River 
Bridge on the southbound lanes of Interstate I-35 in Oklahoma 
(Fig. 7). A test system was also implemented at the Walnut Creek 
Bridge. Additional analysis from the Walnut Creek Bridge data 
can also be found in [6]. 

Fig. 7: The Bridge Monitoring System at Canadian River Bridge 

5. CONCLUSIONS AND FUTURE WORK 

 The deterministic-stochastic subspace identification with 
estimated inputs significantly improves the results of identification 
of bridge systems compared to the stochastic output-only 
algorithm. Our input-output system model is able to more 

appropriately handle the unknown inputs compared to the 
stochastic algorithm that is built on the implicit erroneous 
assumption that the inputs are white. 
 The identification results can be used by structural engineers to 
monitor the health conditions of the bridges and detect the damage 
by tracking any changes in the structural modes over time. They 
can also be used to alter the frequencies of the truck chassis in 
order to attenuate any resonance of the truck chassis with the 
bridge.
 Our identification results from Walnut Creek Bridge show 
several high energy modes at high frequencies which could be 
from the truck chassis, from estimation errors that creep into the 
results when we estimate the inputs of the trucks, or physically 
present in the structure. This must be clarified in the future. 
 For future research, we can incorporate the Kalman filter state 
into the state space model to improve the results. We can also 
study several bridge and truck models to have better identification 
results. Furthermore, measuring the initial position, velocity and 
weight of the trucks by hardware will help to reduce the errors on 
estimation of the inputs. The subspace identification also 
introduces the spurious mode at DC which can also be 
investigated.

6. REFERENCES 

[1] V. DeBrunner, L.S. DeBrunner, P. Wang, J. David Baldwin, 
A. Medda and H. Thai, “Stochastic sub-space identification 
methods for Bridges”, Proceedings of the 39th Asilomar 
Conference on Signals, Systems and Computers, pp. 1153-
1157, 2005. 

[2] P. Van Overschee and B. De Moor, Subspace Identification 
for Linear Systems: Theory-Implementation-Applications,
Dordrecht, The Netherlands, 1996. 

[3] A. Ben-Israel, “The Moore of the Moore-Penrose inverse”, 
Electronic Journal of Linear Algebra, vol. 9, pp. 150-157, 
2002.

[4] W. K. Gawronski, Advanced Structural Dynamics and 
Active Control of Structures, Springer-Verlag, New York, 
2004.

[5] H. Van der Auweraer and B. Peeters, “Discriminating 
physical poles from mathematical poles in high order 
systems: use and automation of the stabilization diagram”, 
Instrumentation and Measurement Technology Conference 
IMTC 04, vol. 3, pp.2193-2198, 2004. 

[6] H. Thai, System Identification of Bridges under a Moving 
Load and Implementation of the Bridge Monitoring System,
Master Thesis, The School of Electrical and Computer 
Engineering, University of Oklahoma, 2007. 

[7] J. Pang, Modeling and Experimental Modal Analysis of 
Highway Bridges, PhD Thesis, The School of Aerospace and 
Mechanical Engineering, University of Oklahoma, 1996. 

[8] K. Ford, Computer Hardware for Vibration Mitigation and 
Monitoring, Master Thesis, The School of Electrical and 
Computer Engineering, University of Oklahoma, 2007. 

753


