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ABSTRACT 
This paper implements the discrete wavelet transform in the 
discrete Fourier domain. The need for such an approach 
arose out of our desire to find a convenient means of re- 
alizing a new class of non-separable orientation selective 
2-D wavelet filter hanks that are designed directly in the 
DFT domain. The filter bank design process begins with 
a conventional separable 2-D perfect reconstruction paral- 
lel filter bank that is not orientation selective. In the D I T  
domain; each non-low pass channel is decomposed into the 
sum of two orientation selective frequency responses that 
are each supported on only two quadnnts of the 2-D fre- 
quency plane. The resulting filter bank possesses the good 
joint localization properties of orthogonal wavelet transforms 
and offers both perfect reconstruction and orientation se- 
lectivity. However, the orientation selective channels are 
non-separable - they cannot be implemented as iterated 1-D 
convolutions according to the usual separable 2-D wavelet 
transform paradigm. To overcome this difficulty, we de- 
velop straightforward techniques for implemening the DWT 
directly in the DFT domain. 

1. INTRODUCTION 

It is well known that convolution of two signals in the time 
domain corresponds to pointwise multiplication of their re- 
spective Fourier transforms. Provided that the signal and/or 
filter is sufficiently large, multiplication in frequency gener- 
ally offers a lower computational complexity than time do- 
main convolution. Although we are not directly motivated 
here by concerns about computational efficiency, we do find 
that implementing the discrete wavelet transform (DWT) di- 
rectly in the DFT domain results in a computationally em- 
cient approach. especially when considering the DWT of 
long yet finite sequences or multi-dimensional signals in- 
cluding images and video. 

The work of Daubechies has popularized the use of 
multi-resolution analysis and has connected quadrature mir- 
ror filter hanks (QMF) to compactly supported continous 
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functions for which appropriate sets of dilations and trans- 
lations constitute a hasis for LZ(R) [l] .  The Mallat al- 
gorithm described in [2], a.k.a the DWT, has provided a 
method to construct multi-channel frequency selective fil- 
ter banks. Both the l-D and the separable 2-D DWT have 
been used in many signal and image processing algorithms. 
Most notably, the 2-D wavelet transform is used in the JPEG 
2000 image compression standard [3]. Some recent meth- 
ods for decomposing an image into oriented components 
can be found in [4,5]. Generally, such decompositions re- 
quire a transform that is selective in both the magnitude of 
frequency and in the orientation. 

Our motivation stems from the desire to create invertible 
AM-FM image transforms [61 to facilitate image process- 
ing in the modulation domain. Banks of densely spaced but 
nonorthogonal Gabor filters have traditionally been used for 
decomposing an image into locally coherent components 
prior to AM-FM demodulation. These filters are attractive 
because of their excellent joint localization properties and 
orientation selectivity. However, because such filterbanks 
cannot be made orthogonal, the possibility of an invertible 
AM-FM transform is precluded when Gabor analysis filters 
are used. 

Alternatively, separable 2-D orthogonal wavelet trans- 
forms are attractive because they can provide perfect re- 
construction. However, it is clear that they cannot provide 
orientation selectivity. So we set out to determine a filter 
bank structure that would provide perfect reconstruction, 
frequency selectivity, orientation selectivity, and good joint 
localization. What emerged was a simple and elegant fre- 
quency domain decomposition of the non-low pass channels 
in a separable 2-D filter bank into non-separable orientation 
selective channels without loss of the perfect reconstruction 
property. As a result of their genesis, such filter banks are 
very straightforward to implement directly in the D E  do- 
main. 

2. DISCRETE WAVELET TRANSFORM 

A QMF consist of four half-band filters, the low pass anal- 
ysis, the high pass analysis, the low pass synthesis, and the 
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(8) 
high pass synthesis filters are denoted as fa, g,, f,, and g,, 
resp. In the I-D time domain the filtering process takes the 

for k E (0, $ - 11 
fork  E I ~ . N  - 11. / 61 V [ k ]  = 

L '1 L ' ,  

forh of convolving the sequence either linearly or circularly 
with the impulse responses of each filter. The outputs of the 
analvsis filters are downsamnled by a factor of two by dis- 

We implement the synthesis filters in the DFT domain 
as the multiplication 

carding every other sample. Prior to filtering, i.e., convolv- Xl[k1 = U[klFs[kl, (9) 

Xh[kl = V[klG^,[kl, (10) 
ing in time by the synthesis filters, the downsampled outputs 
of the analysis filters are upsampled by a factor of two by 
inserting zeros between every pair of samples. If the four 
filters fa, g,, f, and ga constitute a perfect reconstruction 
QMF, then the sum of the outputs of the synthesis filters is 
a delayed version of the input. 

The action of the analysis filters can be implemented in 
the discrete Fourier domain as multiplication of the DFT 
of the N-point input sequence and the DFT of the analysis 
filters (zero padded to lene@ N). Precisely, let z[n] be any 
finite even length-N seqynce. If necessary, we append a 
zero to make N even. Let fa [n] and [n] to be the low pass 
analysis and high pass analysis filters zero padded to lenpth- 
N ,  resp. We compute the output of the analysis filters prior 
to downsampling as pointwise multiplication of DET's: 

( 1 )  

( 2 )  

DFT Y[K] = x[k]Fa[k]  U ~ [ n ] ,  

IV[k] = X[k]G^,[k] 44,  E T  

where Xjk], p , [ k ] ,  B,[/i] are the N-point DFT's of z[n],  
E [ n ] , & [ n ] ,  resp., and n ,  k E [0, N - 11. 

To downsample and subsequently upsample, let p [ k ]  
and G[k] denote the analysis filter bank outputs downsam- 
pledbyafactoroftwoandletU[k], V[k]deno teP[k ] ,E [k ]  
upsampled by a factor of two, resp. It is easy to verify the 
r-transform relation of the down sampling and subsequent 
upsampling as 

where [k] and d,[k] are the DFT's of fs [n] and g. [n] after 
zero padding to length N ,  resp. Let r?[k] and E[n] be a DFT 
pair, so that 

R [ k ]  = X~l:k] + Xh[k] DAT Pjn]. (11) 

If fa, g,, f,, and g, constitute aperfect reconstruction QMF, 
then+] = P[(n+l) mod N] forsomecirculardelay1 E Z 
and for all n E 10, N - :l]. The circular delay is determined 
by the length of the input sequence (N)  and by the original 
lengths of the filters fa. g,, f,, and g,. For perfect recon- 
struction QMF's comprising length-six filters, the delay is 
accounted for according to 

(12) 
1 /10  - NI i f 6 5 N 5 1 0  

= ( i ( N  + 1 - 11.0 -Ail) if 10 < N. 
The analysis filter bank and the synthesis filter bank can 

be cascaded to constitut,: a multi-level DWT. Fig. 1 shows 
the wavelet transform analysis filter hank cascaded to three 
levels. Fig. 2 shows the inverse wavelet transform synthesis 
filter bank cascaded to three levels. The Noble identities 
shown in Fig. 3 x e  stated as the following: 

1. Down-sampling by Af then filtering by G ( t )  is equiv- 
alent to filtering by G(z"') then down-sampling by 
AI. 

1 
2 

U ( t )  = -(Y(2) + Y(-2)) 2. Filtering by G(z) then up-sampling by A f  is equiva- 
lent of up-sampling by A4 then filtering by G(r"'). (3) 

(4) 

The z-transforms (3) and (4) are easily converted into D I T S  
by equispaced sampling around the unit circle of the i- 
plane: 

1 
2 

V ( z )  = - (Y(r )  + Y(-2)). 

P [ k ] = ' ( Y [ k ] + Y  2 [ F t k ] ) ,  ( 5 )  

where k E [0, 6 - 11. Thus gn] and Q[n] are length-$ 
sequences. The upsampling of f[n] and G[n,] can be ac- 
counted for in the D I T  domain by the following: 

(7) 
fo rk  E [O, 6 - 1) { ;I?- $1 f o r k  E [$, N - 11 

U[k] = 

These identities allow the construction of an equivalent, par- 
allel L-channel multi-rat,: analysis and synthesis filter bank. 
An arbitrary L-channel filter bank constructed from a L - 1 
level DWT is shown in :Fig. 4. This construction yields L 
analysis filters denoted as H i ( r )  and L synthesis filters de- 
noted as E i ( z )  where i ci [0, L - l]. Though our consttuc- 
tion applies to any positive integer L, we will use the case 
L = 5 as an illustrative example. For a five-channel paral- 
lel filter bank which is equivalent to a four-level DWT, the 
Noble identities yield the. following five analysis filters: 

Ho(=) = F,I:=)F~(Z~)F,(~~)F,(Z~), (13) 

~ d z )  = F,I:z)F,(z~)G.(=~), (15) 

H4(=) = G,(z); (17) 

Hi(2) = F,I:Z)F,(Z~)F,(~~)G,(~'), (14) 

& ( z )  = Fal~)G.,(=4), (16) 
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the five synthesis filters are given by 

Fig. 1. The three-level discrete wavelet transform filter 
bank. 1 C.12) f-' q t z ,  f.,Zl 

C,iZ> 

Fig. 2. The three-level inverse discrete wavelet transform 
filter bank. 

Fig. 3. The Noble identities 

An L2-channel 2-D filter bank can be constructed sep- 
arably from the analysis filters H,(z ) ,  where i E 10, L - 
11. Each 2-D filter is given by a product H,,k.[zl,v] = 

H , ( u ) H k ( ~ ) , w h e r e i , k ~  [ O , L - l ] a n d u , v E  [O.N-11. 
In our case, using a five-channel parallel filter hank, we get a 
twenty-five channel 2-D filter bank. This separable 2-D fil- 
ter bank is magnitude frequency selective as shown by the 
log magnitude spectrum (LoMS) of the 2-D filters Ho,o = 
Ho(u)Ho(u), Ho,i = Ho(u)Hi(u), Hz,o = Hz(u)Ho(u). 
and H3,3 = H ~ ( u ) H ~ ( T I )  in Fig. 5. The LoMS of the ap- 
propriately zero padded separable 2-D filters are shown in 

Fig. 4. A L-channel parallel filter bank 

Fig. 5, where they are frequency shifted so that the center 
of each image corresponds to origin of the 2-D frequency 
plane. 

3. ORIENTATION SELECTIVE FILTER BANK 

Though the 2-D filter bank created in the last section is 
frequency selective, it is not orientation selective. Orien- 
tation selectivity is important in many applications such as 
the AM-FM image model found in [6]. To achieve orien- 
tation selectivity, we decompose each non-low pass, non- 
Orientation selective filter bank channel Hi ,k .  i ,  k E 11, L]. 
into a sum of two channels that are orientation selective, 
but are not separable. In decomposing the non-low pass 2- 
D filters, it is necessary to consider the following theorem 
concerning the 1-D filter H i ( z )  in (14), (15). (16), and (17): 

Theorem 1 If the high pass analysis filter G,(z) has a root 
at z = 1, then the non-low pass filters Hl(z), Hz(z), . . .. 
HL-,(z) of an L channel parallel filter bank as shown in 
Fig. 4 exhibit zeros at t = 1. 

Proof: omitted for brevity. 
From Theorem 1, it is easy to see that the LoMS of the 

2-D separable filters Hi,lc, i, k E 11, L - 11, are equal to 
zero on the hortizontal (U = 0) and vertical (U = 0) axes of 
the frequency plane. We partition the non-orientation selec- 
tive channel filter H,,k into a sum H,,k,* + Hi,li,b of non- 
separable orientation selective channels according to 

(23) 
for quadrants I and I11 
for quadrants I1 and IV 

Hi ,k , t  = { ?,li  

and 

(24) 
for quadrants I1 and IV 
fur quadrants I and 111. 

Hi,k,b = { 7,k 
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(a) LoMS of Ho,o 

(c) LoMS of H2.0 

(b) LoMS of Ho.1 

(d) LoMS of H3.3 

quent L-channel paralld filter bank. the QMF used in this 
section is the well-know Daubechies orthogonal length six- 
wavelet filter bank. The high pass analysis filter in this 
QMF satisfies the condition of Theorem I .  Thus the de- 
composition of the non-low pass 2-D channels is possible. 
We use the common 256x256 Lena image to show that 
the filters provide the necessary selectivity. All filtering is 
implemented directly in the frequency domain. After the 
non-low pass 2-D filters are decomposed into orientation 
selective channels, the :I-D D I T  of the Lena image is mnl- 
tiplied pointwise with cach filter frequency response. The 
original Lena image is shown in Fig. 7(a). Fig. 7(b) gives 
the output of the non-orientation selective filter H3.3. Re- 
sponses of the orientation selective filters H S . ~ , ~  and H3.3,~ 
are shown in Fig. 7(c) and (d). In Fig. 7 (b), the response 
of the non-orientation selective filter H3,3 clearly exhibits a 
combination of noncoherent features from multiple orienta- 
tion; this is highly undesirable in AM-FM image modeling 
and a number of other applications. As demonstrated by 
Fig. 7, this problem Is effectively solved by decomposing 
the H3.3 filterbank channel into a pair of equivalent orien- 
tation selective channels. 

Fig. 8 (a) and (b) show the responses of the non- 
orientation selective filters HI;* and H2.1. rmp. These two 
figures exhibit many instances of noncoherent features that 
intersect at perpendicular angles. Fig. 9 (a)-(d) depict the 
responses obtained by filtering the Lena image with the ori- 
entation selective filter:; HI,?.{,   HI,?,^, Hz.l.?, and H2.1.b~ 

Reconstruction of the original image is straightfonvard, 
except that the relationrihip of the circular delay of the cas- 
caded system is not evident when implementing the tran- 
form as an equivalent ],arallel filter bank realization. Re- 
solving this issue will require future work in number theory 
and is beyond the scope. of this paper. 

Fig. 5. Log Magnitude Spectra 

Fig. 6 s h o w  the LoMS OfH3.3. t  and H3,3.b. This increases 
the number of analysis channels from twenty-five to fOUrtY- 
one, and the resulting filters can no longer be implemented 
separably. However, we have achieved both orientation se- 
lectivity and perfect reconstruction. 

5. CONCLUSION AND FUTURE WORK 

In this paper, we begari by describing an algorithm to im- 
plement a general QMF in the DFT domain. As with time 
domain implementations, the frequency domain QMF can 
be cascaded at multi-levels as orininallv described bv Mal- ~, 
lat. This frequency domain DWT implementation could 
potentially be exploited to realize a fast frequency domain 
wavelet transform algorithm. However, this was not our mo- 
tivation here and we did not concern ourselves with record- 
ing the number of floating point calculations required. 

Instead, our interest was in developing a 2-D perfect 
reconstruction filter bank with orientation selectivity and 
good join localization properties. The filterbank design we 
presented achieves this, but at the expense of separability. 
Nevertheless, this design admits an elegant and straightfor- 
ward frequency domain implementation. Our experimental 

Fig. 6.  
channels. 

H3.3 decomposed into two orientation selective 

1. RESULTS 

In this section, we show the outputs of several frequency 
and orientation selective analysis filters constructed using 
the techniques given in this paper. Though any "regiilur" 
wavelet can be used in the QMF composition and subse- 
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(a) Original 

(c) Output of channel H3.3.1 

(b) Output of channel H3,3. (a) Output of Hl,z,t. 

( d j  Output of channel Hj. . ,  6. (CJoUIpUIOf 11?.],,. (d) Output o f  H?  , 
Fig. 7. Original and filtered Lena images. 

results demonstrated dramatically the orientation selectivity 
of a non-separable wavelet filter bank obtained by frequency 
domain decomposition of a standard Daubechies length six 
separable 2-D orthogonal QMF. 

In closing. we note that this approach of decomposing a 
separable but non-orientation selective filter bank structure 
into a new structure that is orientation selective but non- 
separable is not restricted to the DWT. 

(a) Output of (b) Output of Hz.1. 

Fig. 9. Various filtered L ~ i a  image 
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