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ABSTRACT

JPEG 2000 is a lossy integer-to-integer transform-based
compression method that first quantizes the separable 2-D
wavelet transform coefficients, then entropy codes them.
The image is restored by performing an inverse wavelet
transform on the dequantized and decoded coefficients. In
this paper we consider closely related coding strategies us-
ing modulated lapped transforms rather than wavelet trans-
forms, where performance is studied as a function of time
(space) localization, frequency localization, and joint local-
ization. In terms of reconstruction error at a given coding
gain (quantization step size), we find that the modulated
lapped transform admitting the best frequency localization
offers superior performance relative to both other lapped
transforms and orthogonal wavelet transforms.

1. INTRODUCTION

In the maximally decimated system shown in Fig. 1, there
are L analysis and L synthesis filters. The decimation and
interpolation factors between the analysis and synthesis fil-
ters is also given by L. If the output of this system is equal
to the input up to a translation, then the system is considered
a maximally decimated perfect reconstruction system. It is
well-known that any such maximally decimated perfect re-
construction system can be realized by a modulated lapped
transform (MLT) as described as in [1].

A tutorial on design considerations for constructing
maximally decimated perfect reconstruction filter banks is
given in [2], while a more thorough treatment appears in [3].
The goal of this paper is similar to the one in [4], where the
filter bank is designed so that the coding gain is maximized.
We have yet to investigate the improvements to the coding
gain measure as prescribed in [4]. Rather, we will show that
when the discrete wavelet transform (DWT) is replaced by
an MLT filter bank, choosing the filter bank with optimal
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frequency localization delivers reconstruction performance
with a resiliency against JPEG 2000 integer-to-integer quan-
tization errors that is superior both to other MLT’s and to the
DWT.

The discrete-discrete measures we use to quantify the
time and/or frequency localization of an FIR filter are given
in [5]. These measures are invariant under time translation,
frequency translation, phase shifts, and (by duality) modu-
lations. They will be used to quantify the time (space), fre-
quency, and joint localization of the filters which constitute
an MLT.

In [6], Adams describes a method used in the lossy
JPEG 2000 compression standard that quantizes the coef-
ficients of a multi-level integer-to-integer DWT. The quan-
tized coefficients are entropy coded, then the decoded,
dequantized coefficients are transformed using an inverse
DWT (IDWT) to reconstruct the image. Though the DWT
and IDWT generally constitute a perfect reconstruction sys-
tem, reconstruction errors still occur due to the quantization
and subsequent dequantization steps.

The quantizer that is used in the JPEG 2000 compres-
sion standard is given by

Q[n, m] = sgn{w[m,n]}
⌊
|w[m,n]|

λ

⌋
, (1)

where w = DWT{I} for some image I and bxc refers to
the greatest integer less than or equal to x. The quantization
step size is λ and is equal to 2p for some positive integer
p. If the transform coefficients are coded as 2q bit integers
where q is a positive integer greater than p, then the quan-
tization in equation (1) equates to using the (q − p) most
significant bits to code the transform coefficients.

To pseudo-invert the quantization, the following de-
quantization step is performed:

D[n, m] = λ (Q[n, m] + T sgn{Q[n, m]}) , (2)

where T represents the bias with default value 0.5.
JPEG 2000 performs the reconstruction via IDWT on

the dequantized coefficients. In this paper, we replace
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Fig. 1. Maximally decimated filter bank.

the reversible DWT system with a reversible MLT system.
In Section 4, we provide experimental evidence that the
MLT which consists of the best frequency localized filters
provides superior reconstruction performance against other
MLT’s and even against the usual DWT system.

2. MODULATED LAPPED TRANSFORM

Malvar in [1] describes a method to construct multi-channel
maximally decimated perfect reconstruction filter banks us-
ing discrete cosine transforms. The approach eliminates dis-
continuities which may occur in processing blocks of data
by lapping adjacent blocks. In addition, the synthesis filters
constitute an orthogonal set. Thus, this transform is referred
to as the lapped orthogonal transform (LOT). The MLT is a
specific class of LOT where the length of each analysis and
synthesis filter is twice the number of channels. The syn-
thesis filters are obtained from the corresponding analysis
filters by time reversal. The analysis filters are constructed
by modulating a low pass prototype filter, i.e., a window.
The analysis filters of the 1-D L-channel MLT are defined
as

hk[n] =

√
2
L

w[n]mk[n] (3)

where

mk[n] = cos
[(

n +
2L + 1

2

) (
k +

1
2

)
π

2L

]
, (4)

k = 0, 1, 2, . . . , L − 1 and n = 0, 1, 2, . . . , 2L − 1. The
MLT can be extended to a complex MLT (CMLT) when

mk[n] = ej[(n+ 2L+1
2 )(k+ 1

2 ) π
2L ], (5)

in which case equation (3) then defines a CMLT.
The system in Fig. 1 constitutes a perfect reconstruction

system when the window w[n] ∈ R in equation (3) satisfies
the following two conditions:

1. w2[n] + w2[n + L] = 1, and

2. w[n] = w[2L− 1− n].

The filter bank output is then equal to the input up to an
integer translation. Cascading each synthesis filter with its
corresponding analysis filter results in a linear phase im-
pulse response [1], which ensures that the sum of the out-
puts of each channel is equal to an integer delayed version
of the input signal. Separable multidimensional MLT’s can
be constructed from the 1-D transform in a straightforward
way by taking separable products of the 1-D channel trans-
fer functions.

3. DEFINING LOCALIZATION

We briefly review the translation and modulation invari-
ant time and frequency localization measures given in [5].
Consideration is restricted to length-N FIR filters with unit
`2[0,N−1]-norm. If a finite length non-zero sequence is not

unit `2[0,N−1]-norm, then the localization of that sequence is
taken to be the measure applied to the unity-norm normal-
ized sequence. Let h : [0, N − 1] −→ C be a finite length
sequence such that

N−1∑
n=0

|h [n] |2 = 1 =
1
N

N−1∑
k=0

|H [k] |2, (6)

where H [k] is the N -point DFT of h[n]. We can con-
sider |h [n] |2 to be a probability density function in discrete
time and 1

N |H [k] |2 to be a probability density function in
discrete frequency. These densities describe, respectively,
how the energy of the signal is distributed in time and in
frequency. Consider n and k to be a random variables in
[0, N − 1]. The variance in time of h is defined by the sec-
ond central moment

σ2
n,h =

N−1∑
n=0

(n− µ)2 |h [n] |2, (7)

where µ is the expected value of n, also known as the mean
or first moment, defined by

µ =
N−1∑
n=0

n|h [n] |2. (8)

The variance in frequency of h [n] will be computed from
H[k] according to

σ2
ω,h =

1
N

N−1∑
k=0

(k − ν)2|H [k] |2, (9)

where the mean in discrete frequency is

ν =
1
N

N−1∑
k=0

k|H [k] |2. (10)



If we exclude filters that have a zero time or frequency vari-
ance such as the Kronecker Delta, the constant, and cer-
tain sinusoidal sequences, then a relation analogous to the
Heisenberg-Weyl Uncertainty Principle as defined by Ga-
bor in [7] holds, i.e.,

γ2
N,h ≡ σ2

n,hσ2
ω,h ≥ C > 0. (11)

The localization measures defined in equations (7), (9),
and (11) are not shift invariant in either the time or fre-
quency domains. This means that the statement f [n] =
g[(n − mt) mod N ] for some mt ∈ Z does not neces-
sarily imply that σ2

n,g = σ2
n,f . Likewise, the statement

F [k] = G[(k − mf ) mod N ] for some mf ∈ Z also does
not necessarily imply that σ2

ω,g = σ2
ω,f . The shifting for a

finite length sequence is defined to be circular shifting (also
known as rotation): the values to be shifted in are taken from
the periodic extension of the signal.

To make the measures (7), (9), and (11) invariant un-
der translations and modulations, the localization mea-
sure of a sequence is defined by considering the se-
quence as an element of an equivalence class. Let S =
{h | h is a length N sequence}.

Definition 1 Let f ,g ∈ S. Define a relation between these
two sequences as f ∼ g if ∃ p, q, r ∈ Z such that

g[n] = ej 2π
N (qn+r)f [(n− p)N ]. (12)

It is an easy exercise to show that the relation ∼ in defini-
tion 1 is reflexive, symmetric, and transitive. Thus, it de-
fines an equivalence relation on S. For a sequence f ∈ S,
the equivalence class [f ] is defined by

[f ] = {g ∈ S | g ∼ f}. (13)

Theorem 1 Let f and g be two length N sequences. Then
f ∼ g if and only if F ∼ G.

Theorem 1 establishes that, as an operator, the DFT pre-
serves equivalence classes under the equivalence relation
given in definition 1: every member of [f ] has a DFT that
is a member of [F] and every member of [F] has an IDFT
that is a member of [f ]. Therefore, the time localization of
f is quantified by the minimum time variance achieved by
any g ∈ [f ],

σ2
n,[f ] = min

g∈[f ]
{σ2

n,g}. (14)

Likewise, the frequency localization of F is quantified by
the minimum frequency variance achieved by any H ∈ [F].
According to Theorem 1, this is precisely equivalent to
quantifying the frequency localization of f by the minimum
frequency variance achieved by any h ∈ [f ],

σ2
ω,[f ] = min

h∈[f ]
{σ2

ω,h}. (15)

σ2
ω,[ĥ0] γ2

N,[ĥ0] σ2
n,[ĥ0]

M Best Freq. 0.2500 0.8176 3.2702

L Best Conjoint 0.2642 0.7725 2.9244

T Best Time 3.5037 7.8834 2.2500

Table 1. Time, frequency, and joint localizations of the 5-
channel MLTs having optimal localization of each type.

The conjoint localization of f simultaneously in time and
frequency is quantified by the measure γ2

N,f defined on [f ]
according to

γ2
N,f = σ2

n,[f ]σ
2
ω,[f ]. (16)

4. EXPERIMENTAL RESULTS

Since the filters in the analysis filter bank of a CMLT are
related by modulation, they all belong to the same equiva-
lence class and thus have identical time and frequency lo-
calizations. We define localization of the MLT as that of the
complex extension of the filter h0[n]. Explicitly, let hl[n] be
a filter in an MLT filter bank. Then

σ2
n,[hl]

= σ2
n,[ĥ0], (17)

σ2
ω,[hl]

= σ2
ω,[ĥ0], (18)

γ2
N,[hl]

= γ2
N,[ĥ0], (19)

where ĥ0 is the complex extension of h0.
By varying the FIR coefficients of the MLT win-

dow, an exhaustive search was performed to find the five-
channel MLTs admitting the best time localization, best fre-
quency localization, and best joint localization as defined
by (17), (18), and (19), resp. The results of this search are
listed in Table 1, where it is evident that the reciprocal re-
lationship between time and frequency localization as ex-
pressed by the Heisenberg-Weyl inequality is maintained.

Using the 256 × 256 pixel gray scale image lena with
eight bits per pixel, we performed the JPEG 2000 quanti-
zation scheme with various step sizes λ. After dequantiza-
tion (using the default bias) and upsampling, the image was
reconstructed by summing the outputs of the synthesis fil-
ters. We compared performance of the MLTs indicated in
Table 1 and the DWT based on mean reconstruction error
defined byME =

√∑
|I− J|2/256, where I and J are the

original and reconstructed images, respectively.
Fig. 2 show the original and reconstructed lena images

using various MLTs with λ = 32 and T = 0.5. Fig. 3 gives
the mean error associated with each MLT for a wide range
of λ’s with T = 0.5. The results of this experiment using
the JPEG 2000 default 5/3 DWT is also depicted in Fig. 3.



(a) Original image (b) Best frequency localized MLT.

(c) Best conjointly localized MLT. (d) Best time localized MLT.

Fig. 2. Original image and reconstructions using various
MLTs with λ = 32 and T = 0.5.

While the DWT performs reasonably well, it is unable to
outperform the best frequency localized MLT, especially at
large λ. Both Fig. 2 and 3 suggest that the better frequency
localized the MLT, the more resilient the system is to JPEG
2000 quantization and dequantization.

5. CONCLUSION

In this paper, we replaced the DWT used in the JPEG
2000 compression standard with several MLTs having op-
timal time, frequency, or conjoint localization. The local-
ization measures used were based on variances in time and
in frequency. These measures are defined on novel equiv-
alence classes of FIR filters to obtain translation and mod-
ulation invariance. We performed the JPEG 2000 quanti-
zation and dequantization algorithms using the default 5/3
DWT and all three optimally localizedMLTs. We found that
the MLT admitting optimal frequency localization consis-
tently outperformed the other transforms in terms of mean
reconstruction error over a wide range of quantization step
sizes. While this experiment is certainly limited in scope, it
strongly suggests that frequency localization is a powerful
predictor of fidelity and performance in JPEG 2000 appli-
cations. Important future work will include comprehensive
testing of this hypothesis on a large, diverse image database
and bit rate comparison after entropy encoding the trans-
form coefficients.

Fig. 3. ME for DWT and several MLTs as a function of λ.
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