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Abstract—The traditional Heisenberg–Weyl measure quantifies
the joint localization, uncertainty, or concentration of a signal in
the phase plane based on a product of energies expressed as signal
variances in time and in frequency. In the image processing lit-
erature, the term compactness also has been used to refer to this
same notion of joint localization, in the sense of a signal represen-
tation that is efficient simultaneously in time (or space) and fre-
quency. In this paper, we consider Hirschman uncertainty prin-
ciples based not on energies and variances directly but rather on
entropies computed with respect to normalized energy densities
in time and frequency. Unlike the Heisenberg–Weyl measure, this
entropic Hirschman notion of joint uncertainty extends naturally
from the case of infinitely supported continuous-time signals to the
cases of both finitely and infinitely supported discrete-time signals.
For the first time, we consider these three cases together and study
them relative to one another. In the case of infinitely supported
continuous-time signals, we find that, consistent with the energy-
based Heisenberg principle, the optimal time-frequency concentra-
tion with respect to the Hirschman uncertainty principle is realized
by translated and modulated Gaussian functions. In the two dis-
crete cases, however, the entropy-based measure yields optimizers
that may be generated by applying compositions of operators to
the Kronecker delta. Study of the discrete cases yields two inter-
esting results. First, in the finitely supported case, the Hirschman-
optimal functions coincide with the so-called “picket fence” func-
tions that are also optimal with respect to the joint time-frequency
counting measure of Donoho and Stark. Second, the Hirschman
optimal functions in the infinitely supported case can be recon-
ciled with continuous-time Gaussians through a certain limiting
process. While a different limiting process can be used to recon-
cile the finitely and infinitely supported discrete cases, there does
not appear to be a straightforward limiting process that unifies
all three cases: The optimizers from the finitely supported discrete
case are decidedly non-Gaussian. We perform a very simple exper-
iment that indicates that the Hirschman optimal transform (HOT)
is superior to the discrete Fourier transform (DFT) and discrete co-
sine transform (DCT) in terms of its ability to separate or resolve
two limiting cases of localization in frequency, viz. pure tones and
additive white noise. We believe that these differences arise from
the use of entropy rather than energy as an optimality criterion
and are intimately related to the apparent incongruence between
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the infinitely supported continuous-time case and the finitely sup-
ported discrete-time case.

Index Terms—Denoising, entropy, time-frequency resolution,
uncertainty.

I. INTRODUCTION

I N [1], we introduced an entropy-based measure that
quantifies the compactness of a discrete-time signal in

the sample-frequency phase plane. Use of an entropy-based
measure allowed us to overcome the limitations inherent to
discretizing the Heisenberg uncertainty. A naïve discretization
of the Heisenberg uncertainty leads to a discrete measure that
fails to preserve translation invariance and is, therefore, not
useful. Our entropy-based measure was used to show that
discretized Gaussian pulses may not be the most compact basis
with respect to joint time-frequency resolution. At that time,
we conjectured a lower limit on the compaction in the phase
plane. Later, we became aware that part of this conjectured
lower limit was proven in [2] under the moniker “a discrete
Hirschman’s uncertainty principle.” However, that result did
not describe the characteristics of the signals that meet the
limit, as our conjecture did [3]. We further argued in [4] that
this measure indicates two possible “best basis” options for
achieving optimal compaction in the time-frequency phase
plane:

1) multitransform (nonorthogonal) option;
2) orthogonal discrete-time, discrete-frequency Hirschman

uncertainty principle option.
We have discussed many results in the first option (see [1] for

pointers to references). The second option was detailed exten-
sively in [5]. In that paper, we found a basis (transform) that is
orthogonal and that uniquely minimizes the discrete-time, dis-
crete-frequency Hirschman uncertainty principle. Furthermore,
we discussed the relationship between the optimizing time sig-
nals in the continuous–continuous and discrete–discrete cases in
[6], where we suggested that the notion of sampling needs more
investigation. In this paper, we discuss a proof (given in [7]) that
covers the minimizers not only in the continuous–continuous
and discrete–discrete cases but also in the mixed discrete-time
and continuous-frequency case. The proof is valid for one and
multiple dimensions in all cases. For brevity, we denote the three
cases as follows.
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1) We use “continuous Hirschman” when referring to the
continuous-time, continuous-frequency case .

2) We use “discrete Hirschman” when referring to the dis-
crete-time, continuous-frequency case .

3) We use “digital Hirschman” when referring to the dis-
crete-time, discrete-frequency case .

We also illustrate the implications of these results for the dig-
ital Hirschman case through the use of several examples. In par-
ticular, we examine experimentally the performance of a trans-
form, called the Hirschman optimal transform (HOT), that is
constructed using an orthonormal basis of sequences with op-
timal digital Hirschman uncertainty. We compare the HOT to the
discrete Fourier transform (DFT) and discrete cosine transform
(DCT) in separating pure tones from additive white Gaussian
noise (AWGN). What we are after is an example that shows
the uncertainty of the representation. Analyzing these results,
we observe that, when thresholding is used, the HOT is supe-
rior to the DFT and DCT over a range of signal-to-noise ratio
(SNR) values of greater practical importance. While our exam-
ples use the same experimental setup as the most classical of all
frequency estimation tests, we want to make it clear that our in-
tent here is not to develop a new frequency estimation technique
but rather to explore the time-frequency properties of the HOT.

II. CONTINUOUS CASE HIRSCHMAN UNCERTAINTY PRINCIPLE

The Hirschman uncertainty principle was developed for the
continuous case [8]. We provide some definitions first and then
give the Hirschman measure. Let be the Schwartz space
of functions on the Euclidean space [9]. Recall the (multidi-
mensional) Fourier transform

where we have used for the Euclidean inner product
. The -norm on is given by

Consider a function with . Then,
may be interpreted as the distribution of signal energy in time in
the usual sense, i.e., as a probability distribution on . Hence,
the notion of entropy, introduced by Shannon [10], applies to

. We use to denote the entropy of

Since the Fourier transform is unitary, we have .
Define an entropy-based joint uncertainty measure according to

In the special case, , is called the Hirschman
uncertainty of . The following theorem, conjectured by
Hirschman [8], has been proven by Beckner [11], [12].

Theorem 1: Let with . Then

(1)

It is easy to check that equality occurs in (1) if is obtained
by arbitrary translations, dilations, and/or modulations of the
Gaussian . In [8], Hirschman conjectured that

is minimal [i.e., that after
the work of Beckner] only for these functions—a result that we
proved recently in [7]. We observe that these minimizers are
identically the functions shown to minimize the Heisenberg un-
certainty in one dimension (1–D) by Gabor [13] and in two di-
mensions (2–D) by Daugman [14].

III. DISCRETE-TIME HIRSCHMAN UNCERTAINTY PRINCIPLES

In this section, we consider the digital and discrete cases for
sampled-data systems. In many applications, the most important
case is the digital Hirschman case because of its relative ease of
use in computer-based system implementation. This case is con-
sidered in Section III-A. We develop in Section III-B an orthog-
onal transform that is analogous to the DFT but uses Hirschman
optimal basis functions. In Section III-C, we also determine the
optimizing functions for the discrete Hirschman case.

A. Digital Hirschman Uncertainty Principle

In this section, we consider discrete 1–D signals on
a finite domain. Fix a finite set of nonnegative integers

. Let denote the Hilbert space of
sequences with squared-norm

With the standard twiddle factor notation , the
DFT is

(2)

This defines an isometry on with inverse given by

(3)

By the digital phase plane, we mean the set of all points
. The operators that allow us to view the digital phase

plane (i.e., to move a signal from point to point in the digital
phase plane) are the translation and modulation operators. For

with , , , these operators are defined
by

• Translation:
• Modulation:

where the binary operator “ ” in the translation definition
means subtraction modulo . Both of these operators are
well defined and admit interpretations related to the corre-
sponding continuous case operators. However, in the digital
case, there is no geometric analog of the continuous case
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dilation operator in the sense of “zooming in and out.”
This is because of the inherently discrete (countable) na-
ture of the domain. In the continuous case dilation formula

, the role of the constant
is to maintain . In our digital case, makes
sense only when is relatively prime to , and multiplication
(modulo ) by simply permutes .1

So, , and con-
sequently, we cannot multiply by if we wish to
preserve the norm. So, discrete dilation should be defined by

. However, is a pseudo-random
permutation without a physical interpretation, so unlike trans-
lations, we choose not to highlight dilations.

We next recall some simple facts. If we view as a column
vector in with entries , the DFT is
accomplished by premultiplying with the matrix

...
...

...
...

(4)

Hence

...
...

...
...

...
(5)

and consequently, [the identity matrix].
We are not aware of any straightforward analog of the Heisen-

berg inequality for signals in . One problem is that the “po-
sition operator” is well defined on but
not on , where takes values in the group (equipped
with addition modulo ). For , with ,
consider the following seemingly obvious analog for the mean:

. The immediate problem is that need
not belong to the set . A more serious problem is that addition
modulo , with respect to which the DFT is defined (unlike the
continuous Fourier transform), is not the same as addition of real
numbers. In particular, for signals in , the mean of the trans-
lated signal will only rarely be the translate of the mean. The
implied periodicity inherent in both the signal and its DFT are
also problematic with respect to translation of the independent
variable: The element 0 in is associated with , but these two
representatives yield different values for the mean .

Because of these problems, simple discretization of the con-
tinuous case Heisenberg measure leads to an uncertainty mea-
sure for the digital case that fails to be translation invariant. This
is clearly undesirable: Time shifting or modulating (frequency
shifting) a signal should not change its uncertainty. These
flaws appear to be inherent to energy-based (variance-based) un-
certainty measures in the digital case.

1Let N = 7 and a = 3. Then, under multiplication modulo N , a = 5
since (3 � 5) mod 7 = 1.

These problems do not appear when the uncertainty measure
is based on entropy instead of energy. For with

, the entropy is defined as

Using entropy, we define a general class of digital uncertainty
measures for according to

(6)
In the special case where , the measure (6) is termed the
digital Hirschman uncertainty. In the general case, the param-
eter allows for a tradeoff between concentration in time and
in frequency. In the extreme case where , the measure (6)
ignores frequency localization, and the minimizing signals are
those concentrated at single points. Similarly, if , the min-
imizing signals are those for which all the sample magnitudes

are equal. Intermediate values of give a weighted mea-
sure of joint time-frequency localization of the signal . Before
describing the minimizers of (6), we define periodization.

Definition 1: For , the periodization of is
defined as for

and .
We refer to the sequence given by ,

, as the Kronecker delta or impulse (unit
sample) sequence, without specifying the signal length . We
proved the following theorem in [5].

Theorem 2: The only sequences , with ,
for which is minimal are obtained from the Kronecker
delta sequence by applying any composition of periodization,
translation, modulation, the DFT, and multiplication by a com-
plex number of unit magnitude.

Proof: A detailed and comprehensive proof of a more gen-
eral result that includes Theorem 2 as two parts is given in [5]
and [7].

We have shown that the signals minimizing the continuous
Hirschman uncertainty measure are Gaussians [7]. In contrast,
for any , the HOT basis vectors that minimize the
digital Hirschman uncertainty measure are strikingly dissim-
ilar to discretized Gaussians. Furthermore, no discretization of
a Gaussian will lead to a discrete signal minimizing the digital
Hirschman uncertainty measure [5]. This rather surprising fact
contradicts the intuitive expectation that the limiting case of dig-
ital minimizers as should be Gaussian.

The discrete case may be obtained from the continuous case
by a limiting process on the variance of Gaussian minimizers.
Alternatively, the discrete case can be viewed as deriving from
the digital case by the application of an appropriate limiting
process, where the time support becomes bidirectionally infi-
nite, and the minimizers are periodic trains of Kronecker deltas
(the Kronecker comb function) with a fundamental period that
tends toward infinity. Thus, we arrive at a deep and fundamental
incongruity.

The question of how to unify all three cases could not even be
asked in the context of energy-based uncertainty measures. In-
tuitively, one would hope to be able to show that the digital case
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Fig. 1. N = K = 25-point optimizer—the picket fence signal.

minimizers converge in some sense to the discrete case mini-
mizers as the support (cardinality of ) tends to infinity and
that in a closely related sense, the discrete minimizers converge
to Gaussians in the limit as the sampling frequency increases
without bound. With entropy-based uncertainty measures, the
question of unifying all three cases can be addressed, but the
answer remains unclear. The discrete case can be obtained from
both the continuous and digital cases but through significantly
dissimilar limiting processes, as we observed in the preceding
paragraph. The result is that we do not yet know of a meaningful
way to relate the continuous case minimizers (Gaussians) to the
digital case minimizers (picket fence functions). What is needed
is a more complete theory regarding the effects of sampling and
windowing. In Section IV, we perform a simple test that pro-
vides some insight but raises more questions as well.

B. HOT on

The basis functions that define the HOT are derived according
to Theorem 2. For the case where , the HOT
basis signal generated from the impulse by only applying peri-
odization with is shown in Fig. 1, where the picket fence
characteristic may be clearly seen. A complete HOT basis is
generated from this signal by applying modulations and transla-
tions. Note that a different initial basis signal could be obtained
by applying a different composition of the operations listed in
Theorem 2. This would generate a different HOT basis with
the same localization characteristics, e.g., optimal Hirschman
localization. The DFT magnitude of the basis signal given in
Fig. 1 is shown in Fig. 2. Note that the signal and its spectrum
have the same functional form, viz. impulse trains. We think that
it is very interesting that these are the same functions that are
suggested in [15], where uncertainty was quantified by applying
the counting measure to the (finite) support of a discrete signal
and its discrete spectrum. Similarly, the digital Hirschman
uncertainty depends on the number of nonzero samples in the
signal and its transform. The Hirschman uncertainty measure

is invariant under translations and modulations, because
entropy is clearly invariant under translations and modula-
tions, and the Fourier transform interchanges these operations.

Fig. 2. Spectrum of the N = K = 25-point optimizing signal given in
Fig. 1.

Fig. 3. Twenty-five point discretized Gaussian pulse.

While the entropy is in fact invariant under all permutations,
the Hirschman uncertainty is not because the entropy of the
transformed signal is not, in general, invariant under arbitrary
permutations. For example,
but . It is in this sense—which
is clearly distinct from the traditional variance-based notion
of uncertainty—that the HOT basis functions are optimally
concentrated.

In continuous time, the translated and/or modulated Gaus-
sians uniquely minimize the joint uncertainty with respect to
both the Heisenberg measure and the Hirschman measure.
For comparison, therefore, we consider a discretized Gaussian
pulse. By choosing the variance appropriately for the number
of samples, the spectrum shape can be matched sample to
sample to that of the signal, effectively equating the resolution
in time to that in frequency. In [1], we showed that a discretized
Gaussian pulse with variance chosen this way has a constant
Hirschman uncertainty irrespective of and is, therefore,
most comparable to the HOT basis. Of course, the uncertainty

realized by the discretized Gaussian pulse is greater than
that of the HOT basis functions. A Gaussian pulse of this type
is shown in Fig. 3 for ; its spectrum is given in
Fig. 4.
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Fig. 4. Spectrum of the 25-point discretized Gaussian pulse.

Fig. 5. Improvement of the Hirschman concentration measure for the
optimizing pulse over the Gaussian (bottom) pulses. dB versusK =

p
N .

Note that the HOT basis signal (impulse train) and the
Gaussian both have a functional form that is invariant under
corresponding Fourier transformation, which implies a deep
connection between these two signals. Fig. 5 shows the differ-
ential uncertainty

HOT Gaussian dB
(7)

between a HOT basis signal and comparable discretized
Gaussian pulse for various lengths . The un-
certainty of the HOT basis signal is the optimal value

HOT . The difference, while not large, can
be significant, as we will demonstrate in Section IV. It is highly
relevant that the difference vanishes for increasing lengths,
again implying a convergence of these two signals in a certain
sense—the sense of entropic equivalence—as . This is
a reflection of the fact that the Hirschman uncertainty principle
subsumes the Heisenberg principle in the continuous case. Note
that this convergence is indeed slow. The differential uncer-
tainty of (7) drops below 0.1 dB only for , a value

that exceeds the block length over which any (1-D) real-world
signal would exhibit stationarity in practical applications.

We use the -dimensional DFT kernel as the originator sig-
nals for our -length HOT basis. Each of these basis
functions must then be shifted and upsampled to produce the
sufficient number of orthogonal basis functions that define the
HOT. While other choices are possible, this one leads to an effi-
cient computational structure with a complexity less than that of
the -point DFT. Note that the DFT kernel could also be used
in a similar manner to produce transforms for other factoriza-
tions , , but these possess an uncertainty
that varies as a function of and are suboptimal in this sense
[5].

The HOT is unitary to a scale (just like the DFT),
and so, the inverse transform can be achieved by taking the con-
jugate transpose and scaling by . In general, we have the
(unitary) transform relationship [5], [6]

and its inverse

Given our previous discussions, it should come as no surprise
that the HOT shares much structure and appearance with the
DFT. In fact, we often think of the HOT as a “1-1/2” dimen-
sional DFT. This notion comes by viewing the -length
1-D sequence as a matrix that is transformed either along
the rows or along the columns, depending on the ordering of
the basis functions. This should be contrasted with the true 2-D
DFT, where the action is along both the rows and the columns
of the matrix. The 2-D matrix of HOT coefficients must then be
reordered onto a 1-D domain. In the case where the action of the

-point DFTs are along the rows (columns), this 1-D reordering
consists of appending the rows (columns) of the matrix
of HOT coefficients. In general, the -point HOT is computa-
tionally more efficient than the -point DFT and increasingly
more efficient as . We also note the resemblance to the
polyphase construct—this relationship is currently under con-
sideration.

C. Discrete Hirschman Uncertainty Principle

One interesting fact regarding the Hirschman uncertainty is
its result in the discrete case. Using the discrete-time Fourier
transform

and its inverse
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and assuming that , we have shown that the
Hirschman uncertainty in this case is [7]

The minimizers in this case are the unit sample sequence up
to a translation and/or multiplication by a unit-magnitude com-
plex number. As we discussed in Section III-A, in passing from
the continuous case through this case to the digital case, the min-
imizers transition first from Gaussians to the Kronecker delta
and second from the Kronecker delta to picket fence sequences.

IV. EXAMPLES

We perform a very simple experiment which indicates that
the HOT is superior to the DFT and DCT in terms of its ability
to separate or resolve two limiting cases of localization in
frequency, viz. pure tones and additive white noise. We believe
that these differences arise from the use of entropy rather than
energy as an optimality criterion and are intimately related to
the apparent incongruence between the continuous case and
the digital case. As a test signal, we consider the sum of a pure
tone and AWGN. This experimental setup is identical to that
for the classical problem of estimating the frequency of a pure
tone in AWGN, and we maintain that these are, in fact, closely
related problems. Here, however, we are not directly interested
in developing a frequency estimation algorithm. Rather, we are
interested in making fundamental observations about the ability
of various transforms to separate the coherent and incoherent
signal components on the phase plane. Specifically, we are
going to use Euclidean distance between a noise-free and a
noisy transform domain spectrum to quantify the ability of the
transform to separate the pure tone from the noise. Directly or
indirectly, this has implications for several important problems,
including denoising and frequency estimation. For instance,
frequency estimation can be cast as a pattern recognition
problem as follows: Suppose that one estimates the frequency
by decoding the measured, noisy spectrum as the closest
member of a set of noise-free prototype spectra that form a
codebook. In this sense, a transform representation that tends
to deliver a smaller distance between the noise-free and noisy
spectra corresponds to both greater accuracy in estimating the
frequency of the pure tone and higher resolution in the sense
that a smaller minimum distance implies a codebook that is
more dense.

Classical techniques for frequency estimation are referenced
in the work of Steinhardt and Bretherton [16]. Newer methods
using wavelet transforms may be found in [17]–[19]. In all of
these cases, frequency estimation performance is directly im-
pacted by the distance between the thresholded and noise-free
transform coefficient vectors. Transform domain thresholding
has also been used for the more general denoising problem [20],
[21]. The choice of threshold should be determined by the SNR.

The binary nature of the threshold is intended to separate the
smaller transform coefficients (presumably the noise) from the
larger coefficients (presumably the signal). In the context of the
counting measure of Donoho and Stark, of course, the binary
nature of the threshold is fundamental and required [15], for
otherwise, all the transform coefficients would be considered in-
formation bearing and relevant. This is unrealistic in the noisy
case. Therefore, the goal of thresholding is to separate the noise-
dominated coefficients from the transform-domain signal repre-
sentation. Thresholding can be used to advantage in a number
of transform-based signal processing strategies. For example,
transform-domain thresholding is a natural process in denoising
because the noise masks the support of the transformed signal.
In low to moderate SNR situations, thresholding of the HOT co-
efficients will prove to be very attractive in our problem.

A brief digression at this point is necessary. It has been
known for some time that the minimum variance, unbiased
estimator for the frequency estimation problem may be found
directly from the DFT coefficients [22]. However, this approach
requires a computationally intensive nonlinear optimization,
and so, alternative methods with reduced computational re-
quirements have been proposed [23]. However, our problem
is not that of frequency estimation but rather of signal separa-
bility. Nevertheless, for a fixed signal length, the HOT requires
fewer computations than the DFT and may, in this regard, be
interesting as a foundation for alternative frequency estimation
algorithms.

Again, it should be kept in mind that we are not proposing a
practical frequency estimation algorithm in this paper. Indeed,
spectral estimation using transforms is a well-studied problem,
and many excellent techniques applicable to specific applica-
tion domains have been developed recently [22]–[24]. Instead,
we are performing our experiment in the hopes of gaining fun-
damental insight into the relative joint localization properties of
these transforms.

To that end, we consider a pure tone ,
where , , and are constant parameters, and . The
observed signal is given by , where is
a zero-mean, AWGN process uncorrelated with the signal ,
and . The noise is added at a specific SNR, and the re-
sulting signal is scaled for unit norm. This scaling opera-
tion determines the value of used for both the noisy signal

and the noise-free signal . Our objective is to compute
the distance between the noise-free transform domain represen-
tation of and the noisy transform domain representation of

as well as to study the distance with respect to the selected
transform. The three transforms that we consider are the HOT,
the DFT, and the DCT. For each trial of the experiment, we use
100 independent realizations. We first compute transform co-
efficient vectors for the 100 observed noisy signal realizations

and the single noise-free signal . The threshold is set
at , where is the largest magnitude coefficient in
each transform, and . The experimental result is then
given by the mean Euclidean distance between the 100 thresh-
olded noisy transform coefficient vectors and the single thresh-
olded noise-free transform coefficient vector. This procedure re-
sults from the interpretation of the experimental task as a pat-
tern recognition (or feature extraction) problem. This approach
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Fig. 6. (Top) HOT and (bottom) DFT coefficients for a pure tone of frequency
0.4 normalized.

places the thresholding as the last step of a two step process: 1)
compute the transform, and 2) threshold the transform.

We detail the specific results below. Generally, we find in
the high SNR case that the DCT and DFT deliver superior per-
formance in our experiments, as expected. However, the HOT
proves superior for the experimental task in the more practically
significant low to moderate SNR cases.

We first examine the noise-free case without thresholding.
Here, the DFT representation is nearly optimal and exhibits
only a few significant (nonzero) coefficients. The HOT repre-
sentation is also concentrated but results in a larger distance.
This may be explained by the 1-1/2 dimensional nature of the
HOT. Whereas the DFT uses an -point inner product with the
Fourier kernel, the HOT uses different -point inner
products. This difference is readily apparent in Fig. 6, where the
noise-free signal is analyzed for

points. As may clearly be seen from the upper graph,
the HOT representation of this signal is not as localized as the
DFT representation. Note that the largest magnitude HOT coef-
ficients occur at a normalized sequency [24], [25] that is twice
the DFT normalized frequency. This doubling results directly
from the fact that .

We now consider the more realistic case, where only noisy
observations are available. The presence of noise intro-
duces uncertainty to the transform coefficients of the observed
signal. The presence of the noise means that, in general, none
of the transform coefficients will be zero. In the noisy case, we
find that, as the SNR increases, the performances of the DFT
and the DCT are superior to that of the HOT according to the

resolution of the basis functions, with the DCT being
slightly superior to the DFT, owing to the exact match between
the noise-free signal and the DCT basis. This match is clearly
evident in Fig. 7, where the DCT curve is uniformly below the
DFT curve by a few decibels at all SNR. Observe, however, that
the performance of the HOT for low to moderately high SNR
(those under 20–25 dB) is superior. This range of SNR is the
most relevant for practical applications.

Now, we fix the SNR at the moderate value of 10 dB and ob-
serve the experimental performance as it varies with our choices

Fig. 7. Squared error versus SNR (DFT is dashed, HOT is dotted, and DCT is
the dash-dot).

Fig. 8. Squared error versus threshold (DFT is dashed, HOT is dotted, and the
DCT is the dash-dot).

of threshold, transform length, and sinusoidal frequency. We
note the following.

• As shown in Fig. 8, we see that, in the limit as the
threshold vanishes, the performances of the DFT and
the DCT converge. Note that the performance yielded
by the HOT basis in this regime is worse because of the

relationship. However, when the threshold
is large and lots of noise is actually being removed, the
performance of the HOT-based algorithm is superior to
both the DFT- and DCT-based methods by an increas-
ingly significant amount. This is a striking demonstra-
tion of the superior ability of the HOT basis to sepa-
rate signal from noise at moderate SNR. This plot also
shows that the choice of threshold is significant and
that an appropriate threshold must be chosen with the
transform in mind.

• In Fig. 9, we study the performance as a function of
the signal length . As increases, we see the perfor-
mance advantage afforded by the HOT increases from
about 5 dB to more than 26 dB. Block lengths greater
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Fig. 9. Squared error versus the transform length, N = K (DFT is dashed,
HOT is dotted, and the DCT is the dash-dot).

than are rarely desirable in real-world
applications. Over the most important range of typ-
ical block lengths, the HOT performance, as measured
by the Euclidean distance, is between one and two or-
ders of magnitude superior to both the DFT and the
DCT. This performance improvement delivered by the
HOT is predicted by the improving frequency resolu-
tion (in the sense of the interleaved length- DFTs
sampling the unit circle more densely) of the HOT
basis as .

Note that the HOT curve is not monotonically de-
creasing in the data length. This results in part from
the choice of threshold and our distance computation
method—too many of the coefficients are above the
threshold as the number of coefficients increases sig-
nificantly. Accumulating numerical roundoff errors
may also contribute to the observed nonmonotonicity
as the length of the required DFTs grows exponentially
beyond . However, these two factors cannot
fully explain the graph. We suspect that additional
factors are involved, but we are unable to identify
them at present. We have verified that the point where
the upturn occurs is sensitive to the threshold value.

• Fig. 10 depicts the performance as a function of the
sinusoidal frequency of the pure tone signal. The rel-
ative performances between the three approaches are
not much affected by the absolute frequency of the si-
nusoid. For the case of SNR dB depicted in
Fig. 10, the HOT is superior to both the DFT and DCT
at all frequencies.

We also considered limited cases where the additive noise is
not Gaussian. The results achieved are consistent with those re-
ported above for the Gaussian case. However, we did see that
the performance may be somewhat sensitive to the choice of
threshold, as would be predicted by our analysis in the first bullet
above (see, e.g., Fig. 8). For instance, a larger threshold is re-
quired to yield a performance similar to the above Gaussian
case when the additive noise is a sample of a rectified
Gaussian process. However, no change of threshold relative to

Fig. 10. Squared error versus the frequency (DFT is dashed, HOT is dotted,
and the DCT is the dash-dot).

the Gaussian case seems to be required when is a uniformly
distributed zero-mean process.

V. CONCLUSION

In this paper, we have considered joint uncertainty measures
based on entropy as opposed to energy or variance. The clas-
sical notion of uncertainty for continuous-time signals imparted
by the Heisenberg–Weyl inequality cannot be directly extended
to discrete-time signals because of the difficulty in defining a
translation-invariant concept of variance in the discrete domain.
Using entropy instead of variance, we obtained Hirschman
uncertainty measures that generalize the Heisenberg–Weyl
notion and that may be extended to the discrete domains in
a straightforward manner. For the first time, this enabled us
to consider relationships between a single family of measures
that comprehensively treats all three cases: , , and

. We have shown that the minimal time-frequency
concentrations using the entropy-based Hirschman uncertainty
principles are the expected Gaussians in the continuous-time,
continuous-frequency case but are not in both the
discrete-time, continuous-frequency case and the dis-
crete-time, discrete-frequency case . In the two
discrete-time cases, the optimizers are based on modulations,
translations, and periodizations of the unit-sample sequence

. In particular, the optimizers for are the picket
fence signals developed in [15], where concentration was
quantified by the counting measure of the signal support in
the joint time-frequency product space after thresholding. The
optimizers for may be obtained from a limiting process
on the optimizers from . Likewise, the optimizers for

may be obtained from a different limiting process on
the optimizers from . At present, however, we know
of no direct way to unify the continuous and digital

cases. We have shown, however, that the entropic
view is consistent with both the Heisenberg–Weyl interpretation
and the newer interpretations due to Donoho and Stark [15] and
Dembo, Cover, and Thomas [2]. These results are summarized
in Table I. The arrows in the convergence column indicate the
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TABLE I
MINIMIZERS IN THE THREE CASES

direction of connection as well as the kind of limit that must be
performed.

We performed a very simple experiment that indicates that
the HOT is superior to the DFT and DCT in terms of its ability
to separate or resolve two limiting cases of localization in fre-
quency, viz. pure tones and additive white noise. We believe
that these differences arise from the use of entropy rather than
energy as an optimality criterion and are intimately related to
the apparent incongruence between the infinitely supported con-
tinuous-time case and the finitely supported discrete-time case.
It is of great future interest to investigate the dual problem of
time-transient estimation in noise and the intermediate case of
gated sinusoids in noise.
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