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Abstract—We develop theorems of a general nature that apply ~ AM and FM functions of the form (1) and (2) are gaining
to the analysis of AM-FM signals of the forma(m)exp [jo(m)]  popularity as effective and practical tools for modeling non-
or a(m) cos [¢(1m)] and to their behavior both in linear systems  giainnary. yet locally coherent structures in speech signals
and in simple nonlinear systems comprised of products of linear . ’ . - . . ’
elements. Such product-systems include interesting nonlinear images, and other variably dimensional Slgngls. For examP'e’
demodulation operators, such as the Teager—Kaiser operator. these models have been successfully used in the analysis of
Expressions for the approximate system responses to AM-FM textured images when combined with Gabor wavelet image
signals are derived by making an analogy to the eigenfunction decompositions [1]-[3] and/or certain nonlinear energy oper-
interpretation of sinusoids in linear systems; for the case of ators [4]. Models of the form (1) have also been extensively

sinusoidal signals, the approximations are exact. These expres- lied to th vsis of b f fi ith d
sions are collectively calledquasieigenfunction approximations applied to the analysis Of speech formation with good success

(QEA's). For nonsinusoidal AM-FM signals, the approximations [5]-[8].
have errors that are tightly bounded by functionals that express In these applications, it is often desirable to pass the

the smoothness of the AM and FM information signals and signal of interest through a linear system, such as a bandpass
the durations of the involved system impulse responses. Thefilter [3], in order to extract and separate local frequency

bounds are independent of the bandwidths of the AM and FM .
functions. Two general applications are considered. First, the (modulation) structures that the model (1), (2) captures. In

approximations are found to be useful for analyzing discrete- Section I, we find new approximations for the responses
time nonlinear energy operators, including the Teager—Kaiser of two classes of systems to the inputs (1), (2). The first
o?erator. tNexlt. tllwe appfrogimgtion thﬁ?rem? lead to the Sg!eCtiC;n class of system is arbitrary discrete linear systems having
of an optimal class of bandpass filters for use in a discrete g ; . ;
multiban% AM-FM demodulatiopn system. The filter class selected flnlte-engrgy I_mpulse response, th? second class of (nonlinear)
is optimal in the sense of achieving the lower bound of a novel system Is deflneq by products of linear systems. We state and
discrete uncertainty principle. prove theorems in each case that bound the error between
the approximation and the actual responses. These results are
applied in Section Ill to establish theorems characterizing
the validity of similar approximations to the responses of
E DEVELOP useful approximations to the responseasertain simple nonlinear AM-FM (Teager—Kaiser-type) energy
of general discrete linear systems, simple nonlineaperators [4]-[10]. Each result is presented for the complex
systems comprised of products of linear elements, and AM-FM input a(m) exp [j¢(m)] with an analogous result for
particular, certain discrete nonlinear AM-FM energy operatote real inputa(m) cos [¢(m)] given as a corollary.
to complex signals of the form In Section 1V, we apply the results further in the analysis
e(m) = a(m) exp [jp(m)] (1) of a discrete muItibgnd AM-FM de.modulati(.)n'scheme. Such
systems are effective for extracting sophisticated AM-FM
signal components in the presence of noise, multicomponents,
r(m) = a(m) cos [p(m)] (2) or other signal artifacts [11], [12]. As a byproduct of the

wherea: Z — R are samples of a continuously differentiabl@nalysis, an optimal class of bandpass filters is derived for
amplitude-modulation (AM) functiom(¢), and ¢: Z — R demodulation purposes.

are samples of a continuously twice-differentiable frequency-

modulation (FM) functionp(t). We also supply tight bounds II. APPROXIMATION TO LINEAR SYSTEM RESPONSE

on these approximations that are expressed in terms of the AND PRODUCTS OFLINEAR SYSTEM RESPONSES
smoothness ai(t) and¢(t), as measured by certain (Sobolev) |, s section, theorems are given that motivate new

_smoloth(;]?.ss norms, as ;/vell as in terms of the duration of Y&, imations to the responses of arbitrary square-summable
involved linear system function(s). discrete linear systems to inputs of the form (1), (2) as well
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” , iem ] s 5 Gl this is further made clear in Lemma 1. However, it is also
atmye 5 alm|Gleremertem s <cemml clear that the bound will be reduced when the duration of
g(p) is small; in subsequent developments, we will measure
the duration (normalized by the square root of energy in the
case thaty(m) is not unit-energy) of a filteg(m) using the
general-purpose energy moment functionals

Fig. 1. Depiction of basic QEA for complex AM-FM signals.

A. Approximate Linear System Response
In the first general result, we approximate the response

1/2
d(m) = g(m) * c(m) = Y g(p)c(m — p) (4) Arlg)=| > m™| g(m)|2]
pEZ rnEZ
of an arbitrary square-summable discrete linear systeh— 1 /™| dF o 2
C to an input of the form (1). The approximation is given by = %/_ WG(@J‘“) dw. ©)
d(m) =c(m) - G[eﬁz@(m)] Note that a bandpass filtém), as given in (3), and its low-
= a(m)|G[e"* ™ exp | {jg(m) + LG[ ™} (5) Zﬁi)equwa'enm(m) have the same durations (2 (w) =
where we denoteB(m) = (d/dt)$(t)|s=m and where The pound in (8) clarifies the interp_lay between the duration
i jeom of the filter g(m) and the local behavior dfi(+)| and |¢(r)].
G(e™) = Z g(me ®)  Thus, (8) is a useful numerical tool for examining the efficacy
meZ of (5) when analyzing signals for which the integrals|afr)|
is the frequency response of the linear systgfm). The and|¢(r)| may be easily evaluated or for which they may be
approximation is also depicted in Fig. 1. numerically calculated with some effort. However, Theorem

Hereafter, we shall use the notatigiim) < G(e¢/*) to 1 does not supply a design procedure for the fitter) (to
denote a Fourier transform pair. The approximation (5), whésolate a component of the form (1) from the remainder of a
valid, has a powerful natural application for the analysis &fignal, for example), nor does it make explicit the individual
discrete linear systems that have AM-FM inputs modeled bygles of the filter and the AM-FM functions for approximating
(1). The approximation has a general form that is analogoti® responses of unspecified signals.
to the form of the response of the system to a monochromaticNote that (8) implies that the error does not depend on
signal |g(0)]; indeed, if the filter is an impuls¢y(m)| = Ké(m),

) then the error is zero. For even symmetric filter magnitudes,
c(m) = ao exp (jwom) (") the bound (8) becomes

except that in (5), the argument of the system functifn) is mrr v

time varying. Indeed, for the case (7) of the mon(t)](z:(h)romatic ea(m) < Z l9(p)| . |a(0)] + amaxp|$(v)] dv. - (10)
signal, the approximation (5) is, of course, exadtm) = >0 ! )

c?(m). Hence, we refer to this approximation (and its relativesr,T)1 Lemma 1 y|eld_s a bounql expressed in terms of prqducts of
asquasieigenfunction approximatio(@EA’s). When the sig- easures of the filter duration, as expressed by (9), ghitbal

nal ¢(m) is not monochromatic, there will always be an errgfeasures of the smoothnessatf) and¢(1), as expressed by

in the approximation; however, this error may be small arg]erlvatlve functionals, or Sobolev norms, of the form

can, in fact, be bounded, as will be established by Theorem
1 and Lemma 1. Denote l|a||pw :/ |a(k)(u)|du

(max = sup |a(m)|. R

rnEZ k " k . .

In certain applications such as image analysis, whére) can wherea® (u) = d*a(u)/du*. In particular, we will make use
be used to model contrast, it may be assumeddhat = 1. of Fhe norms||a||p: and||¢||p=. Since only fu_ute bound_s are
Note again thata(m) and ¢(m) are regarded as Samlmesofmterest, these norms may be assumed finite, or equivalently,
of continuous functions, the derivatives of which appear #at the AM-FM functionsa(t) and ¢(¢) exist in Sobolev

the integrals. Finally, we shall denotg” = max{0,p} and SPaces of degrees 1 and 2, respectively. Under this assumption,
p~ = min{0,p}. the integrals in (8) and (10) are guaranteed to converge as well.

Thegrem Lilet eg(m) = |d(m) — c?(m)|, where We will also encounter theQConstant
d(m),d(m) are given by (4) and (5). Then N = Z i? = _39899...
o p 3
m—p ) . pEZ
ea(m) < Y lg(p)l |@(v)] + amax|pl|¢(v)| dv. (8) PO
peZ m=pt which is twice Riemann’s Zeta function with argument 2. Note
p#0 that \/7 ~ 7/v/3 = 1.8138.

Proof: All proofs are give_n in th_e Appendix. _ Lemma 1: Let eq(m) = |d(m) — d(m” as before. Then
Several observations may immediately be made regarding

the bound in (8). Clearly, the error bound is reduced if the ea(m) < /A[A1(9) - llallpt + amaxBa(g)l[0llp=].  (11)
derivative magnitude$i(r)| and |¢(r)| are uniformly small; Proof: See the Appendix.
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These results are quite novel in the analysis of discrete AM-
FM signals, although results analogous to Corollary 1 have
been developed for continuous AM-FM signals in [11]. The
bounds on the errorsy(m),e,(m) become small whenever
goth AM-FM functions a(t), p(t) are sufficiently smooth
(locally and/or globally). The bounds that require global

and by the global smoothness (or lack thereofja6f) and smoo'thess, which are expres_sed as S_obolev norms, have
#(t). Indeed, the bound does not include dependence on tiffé@gnitudes modulated by the filter durations. A rapidly de-
Although it is shown in the proof that (11) is bounded below b§2Y"N9 filter will also control the size of the local bounds,
(8), the bound (11) is still tight: Note that agm) becomes which are expressed as sums of local smoothness measures
monochromatic, bothjal|p: and [|¢||p= vanish. The bound distance-weighted by the filter.

(11) also has the advantage of simplicity of interpretation: The Numerical Results

filter and the AM-FM functions are represented independently. . - .
Later, this will yield design criteria in a multiband demodula- & now further establish the usability of the basic approx-

tion system. Of course, for signals of infinite length, the bour]@'ations and error bounds that have been developed thus

will often be infinite, thus limiting its usefulness compared t&"- This is accomplished through simulations involving a
(8) in such cases. generic parametrized input AM-FM signal. By varying the

Example 1—Chirp SignalThe constant-amplitude com-Parameters, we also find some intuition into the validity of
plex chirp signalc(m) = Aexp[j(Bm? + Cm + D)), e approximations. .
where A, B,C, and D are constant, is of interest in many In all of the simulations in this and later sections, we shall
applications. Assuming that the signgin) is applied to the aSSume a (complex) input AM-FM signal of the form (1),
square-summable discrete linear systgm) — G(¢’~), the where the AM function is a Gaussian
QEA is then a(m) = exp (-m?/207) (14)

a(m) cos [o(m] a(m)IH [e79m] cos {(;)(m) +/H [ejo(m)]}

Fig. 2. Depiction of basic QEA for real AM-FM signals.

In Lemma 1, the approximation error is explicitly bounde
by expressions of the overall duration of the filtgfm)

and the FM function is the product of a Gaussian and a

d(m) = Aexp[j(Bm® + Cm+ D) - Glexp[i(2Bm + C)]}.  quadratic

The error in this approximation cannot be usefully bounded $(m) = exp (-m?/203) - (Bm* + Cm). (15)

by (11) since||#||p> = co. However, (8) yields a convenientIn (15), the constants? and C' are chosen such that the
bound. Indeed, lettingf(m) = +/|g(m)|, we find e4(m) < derivative of the quadratic (chirp) component of the phase
2ABA:(f), which is both simple and suggestive. The errdakes initial valuew; = 2Bm; + C and final valuew; =
bound of the QEA for a chirp signal is linear with respec@Bm ¢+ C. Here,m; andm  are the initial and final instants

to both the signal amplitude and to the chirp sweep ratef the interval over which the response is plotted. Specifying
the bound is also independent of time and, hence, also w; and w; is a simple method of fixing the approximation
of the local frequency. From this, we may see that the errtange of instantaneous frequencies contained in the signal.
bound in the approximation is primarily governed by the rate We will suppose that the AM-FM signal described by (14)
of change of the local AM-FM signal frequencies and by th@nd (15) is passed through a filter with impulse response a

filter duration. Gabor function with center frequency, (radians)
Next, we approximate the response g(m) =K - exp(—m2/4o'§) - exp (jwgm) (16)
s(m) = h(m)xr(m) = Z h{p)r(m —p) (12) where K is selected such that(m) has unit energy (unit;-
pe norm). By varying the parameters of both input signal and

of an arbitrary real-valued, square-summable discrete lindafe’» We Will assess the behavior of the error bound (8).

. - . Fig. 3(a) plots the bound fap; = 0.47 rad,w; = 0.67 rad,
: | AM-FM f the f U :
?%/)s,tgrrgg gE_A> Ilz fo a rea inputr(m) of the form o, = 1024 (samples), and four values of the phase duration

g . parameterr;. The filter center frequency was selected to be
(m) = a(m) - |H[e'*™)]| cos {¢(m) + H[e?*"™]} (13) w, = /2 rad and the bandwidth to be one octdwg = 1.59).
whereh(m) < H(c/*), as depicted in Fig. 2. The bound forAS_ expected, the error (hence, the bound) generally falis,as
this analogous result for real filters and real AM-FM signals 1§ increased; moreover, the bound becomes nearly constant as

supplied by the following Corollary to Theorem 1 and Lemm§g¢ becomes Iarge (hence, the phase_ nearly quadratic), which is
1 not unexpected in view of the result in Example 1. For smaller

values ofs,, the Gaussian phase term begins to dominate. It
will be observed that in all cases, the bound is quite small.
Fig. 3(b) shows the behavior of the bound (8) as the

Corollary 1: Let e,(m) = |s(m) — 5(m)|, where
s(m), $(m) are given by (12) and (13). Then

mepT . frequency rangedw = w; — w; was varied. Here, the other
es(m) < Z e . |a(0)] + Gmax[pl|$(v)] dv signal and filter parameters remained the same, with the phase
veZ mr duration parameter fixed at, = 4096 (samples). ForAw
P70 small, the overall signal becomes more narrowband—more
<SVAAL(R) - [lallpr 4 amaxD2(h)||¢][p2]. eigenfunction-like. The bound agrees with this observation

Proof: See the Appendix. and falls accordingly.
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Fig. 3. QEA error bound (8) as a function of (a) the duration of the Gaussian phase term, (b) the duration of the quadratic phase term, (c) the duration
of the Gaussian amplitude term, and (d) the duration of the figerr, = 3.09, m 0, = 1.59, & 0, = 1.38, « 0, = 0.88. Finally, (e) depicts
true error and error bound simultaneously.

To illustrate the effect of amplitude modulation on the Finally, Fig. 3(e) plots the error bound (8) over the actual
bound, the phase and filter parameters were fixed and #gproximation error for all the same parameter values as
amplitude duration parameter, allowed to vary. In this Fig. 3(d) and the filter fixed at one octave. It is interesting
example, the instantaneous frequency range was changedotaote the tracking of the error bound where the error rises.
Aw = 0.17 rad (fromw; = 0457 rad tow; = 0.557 As a second example, Fig. 4(a) plots the (real part of the)
rad) simply to produce a more noticeable effect in the bounQEA c?(m) given by (5), for another Gaussian-modulated chirp
The filter bandwidth was also increased to 1.5 octdwgs= input. The input parameters were agakw = 0.2x and
1.378). The bound is seen in Fig. 3(c) to increase fairly quickly, = 1024 samples, only this timey, = 1024 samples. The
as the AM function is narroweds(, reduced), although in all filter was selected identical with that used in Figs. 3(a)—(c)
cases, it is quite small. However, some care may be needecinl (e). The error depicted in Fig. 4(b) is small everywhere,
applying QEA'’s to short-duration input signals. dropping close to zero at some points. Fig. 4(c) shows the

Next, the signal parameters were all held fixed and the filtefose tracking of the bound (8) near one such downward
duration varied, as shown in Fig. 3(d). The fixed parametesgcursion in the true error.
were Aw = 0.27,0, = 1024 sampleso, = 4096 samples, )
and the filter c.f= 7/2 rad. As expected, the error decreasefi- APProximate Product-System Response
with filter duration in a predictable way. The bandwidths Next, we develop approximations to the products of linear
corresponding tas, = 3.09, 1.59, 1.38, and 0.88 samplesystem responses. This has immediate application, as shown
are 0.5, 1.0, 1.5, and 2.0 octaves. in Section lll, for the analysis of nonlinear systems that in-
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Fig. 4. QEA for Gaussian-modulated chirp signal. (a) Real part of the QEA. (b) Error and bound. (c) Detail of (b).

corporate square-law devices and other product nonlinearities. Proof: See the Appendix.
Denote the product of response and conjugate response The analogous result for real-valued AM-FM inputs applied
to arbitrary real-valued square-summable discrete linear sys-
* temshy: Z — R, ho: Z — R follows easily; the proof, which
b = . 17 1 ) 112
(m) = [g:(m) = e(m)] - [g2(m) * e(m)] (A7) tracks that of Lemma 2 much in the same way that the proof of

Corollary 1 follows Theorem 1, is omitted for brevity. Defining
of arbitrary square-summable discrete linear systemmg& —

C, g2: Z — C to an input of the form (1). The approximation y(m) = [hy(m) *r(m)] - [ha(m) +r(m)] (21)
is given by we consider the approximation
b(m) = a2(m) - G1[e?*™]G3[ei*™)] (18) §(m) =a*(m) - |Hy [qub(m)]||ﬁ2[ej¢(m)]|
-cos {¢p(m) + LH1[p(m)]}
where gi(m) < Gi(c’*), k = 1,2. While the approximation rcos {¢(m) + LHz[g(m)]} (22)

(18) is not completely unexpected in view of the approximgyhere hi(m) — Hy(e?),k = 1,2.

tion (5) to (4) and the preceding bounds, it is not possible, corollary 2: Let ey(m) = |y(m)—g(m)|, wherey(m) and
unfortunately, to develop a useful bound on the error betweg(lm) are given by (21) and (22). Then

(17) and (18) from Theorem 1 directly. However, the following

Lemma, the proof of which makes use of elements of the e¢,(m) < amax Z [ha|hi(p)| + h1|h2(p)]]

proofs of previous results, does supply such a bound. Denote pcZ
the /;-norm of g(m):g = X _ 7 |a(p)!- p#0
Lemma 2: Let ¢;(m) = |b(m) — b(m)|, whereb(m), b(m) Y :
are given by (17) and (18). Then m—pt )] + e |pll (0] dv
S al]laxﬁ{[EQAl(hl) + ElAl(hQ)]HaHDl
ey(m) < amax Y [G2l91(0)] + F1l92(p) ] + amax[h2 A2 (1) + h1 Az (ho)]| |02 -
Z . :
];Eeo Proof: The proof has been omitted for brevity.
m—p~ ) Although the approximations in Lemma 2 and Corollary 2
/ |a(v)| + amax|p||¢(@)]|] dv (19) arejust products of previous approximations, it does not follow
m—p*t B 3 (without separate proof) that the product approximations are
< tmaxy/ 1 [9281(91) + 51 A1(g2)]l[al|p2 valid. In fact, we make the following general observation in

+ Gmax[ToD2(g2) + 51 A2(g2)]||4||p2}. (20) passing. Suppose that and B estimate some quantitied
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a(my cos [@(m)] a%(m)
Fig. 5. QEA of the squared magnitude of a linearly-filtered complex AM-FM A(m) W) |_ﬁ )"
signal. H ‘.l
| _— ([D->8m
and B, respectively. Then, the supposition that — A| and

|B — B| are small does not imply that
Fig. 6. Basic discrete-time energy separation algorithm. Hefg denotes

|AB — AB| = |(A— A)(B+ B) + (A + A)(B - B)|/2 the two-point centered difference operatiaair(m)] = r(m+1)—r(m—1).

is small since it depends on the magnitudes of all involved
quantities. Indeed, it does not even imply thaf — A?| is
small!

The real-valued Teager—Kaiser operatb{-}, which was
first proposed by Teager [9] and subsequently investigated by
Kaiser and others [4]-[10] has been shown to be effective
for AM and FM information demodulation in speech signals
[8], [9], and, more recently, digital image analysis [13]. The
discrete-time operato{-} has a continuous analog.{-}

We now explore some interesting applications that are @éfined on continuous signaigt) by

general utility in the analysis of nonstationary AM-FM signals. - .
Vela(O)} = [#@)]° - 2()E(t).

A. Square-Law Device Assuming a unit sampling period, we may exactly derive
An important nonlinear device that can be easily modeldbe discrete-time operator from the continuous operator by
using the results of the preceding section is the square-lg@placingz(t) with z(n), [#(¢)]? with [z(n+1)—z(n)][z(n)—
operator. Thus, suppose that the squared magnitude of #fe — 1)] (using a product of a forward and a backward
linearly filtered signal (4) is computed, as depicted in Fig. Blifference yields a centered estimate of the squared derivative),

I1l. A PPLICATION TO NONLINEAR
AM-FM ENERGY OPERATORS

By Lemma 2, we have that and finally, replacingi(t) with x(n + 1) — 2z(n) + z(n — 1)
) ) jd(m)2 (using a forward difference followed by a backward difference
|d(m)|” = a”(m) - |G[¢’ Il yields a centered estimate of the twice derivative).

Returning to discrete signals only, for unfiltered real AM-

for sufficiently smootha(m) and ¢(m) and localizedg(mn) FM signals of the form (2)

with the error falling below ‘
m—p~ U{r(m)} = U{r(m)} = a’(m)[sinp(m)]*  (28)
|

2amaxZ?|9<P> mpt |a(v)] + amax|pl|¢(v)] dv (23) with negligible error under bandlimiting conditions on the
reZ modulating functions [6]-[8], [11]. Similarly

L2amaxy/V[GAL(O)allpr + amaxGA2(9)l|llp2].  (24) U{r(m+1) — r(m — 1)} & 4a?(H)[sind(m)]*  (29)
Likewise, for a real signak(m) given by (12), we have the which suggests thenergy separation algorithESA) [6]-[8],
approximation [11]:
[s(m)]2 = a(m) - [H[e7*0™]2 - cos? {g(m) + LH[d(m)]}. a*(m) =40 {r(m)}/C{r(m + 1) = r(m - 1)}

(25) §%(m) =U{r(m+1) = r(m = 1)}/4¥{r(m)}
From Corollary 2, the error in (25) falls below the boundfor estimating the squared amplitude enveloggm) and
(23) and (24). of the squared sine of instantaneous freques@ym) =
[sin ¢(m)]?, respectively. The ESA is diagrammed in Fig. 6.

B. Teager—Kaiser Operator For the complex operator, we have, for the unfiltered case

We will now apply these results to obtain limits on the d{c(m)} ~ &{c(m)} = 2a*(m)[sind(m)]*  (30)

interesting discrete nonlinear operators

U{s(m)} = [s(m)* = s(m +1)s(m—1)  (26)

®{c(m+1) — c(m — 1)} = 8a%(t)[sinp(m)]*  (31)

which suggests the ESA:
for filtered real signals and for filtered complex signals (where a2(m) =202 {c(m)}/®lc(m + 1) — e(m — 1)}

supersaript ™ denotes conjugation) 52(m) = ®{e(m + 1) = c(m — 1)} /42 {c(m)}

The approximations (28) and (29), and by trivial extension
It should be noted that we are applying the operalofs; and (30) and (31), have been shown to hold quite well under
¢{-} to filtered versions of the signalg(m) andr(m); from assumptions on the bandwidths of the amplitude modulation
the more general result obtained, new bounds on the errorsictions and the instantaneous frequencies. Detailed analyses
the unfilteredapproximations will also be obtained. are presented in [6]—-[8] and [11], which show that the relative

e{d(m)} = |d(m)|* - Re{[d(m + 1)]"d(m - 1)}.  (27)
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H we will be able to derive some approximation bounds that
/_\iA are complementary to those given in [7] for the real-valued
a(m) cos [¢0m)] a(mysin’[gom) ||H | efém | ? operator.

BPE Example 2: Here, we give approximation bounds on the
operator outputs fowunfiltered input signals; take the filter
aﬁﬁpulse responses to be the Kronecker functigin) =
him) = 8(m) = 1 for m = 0, and 6(m) = 0,m # 0.
error is quite small for realistic signals in speech and othgfere |G(e7%)| = |H(ed)| = 1 for all w € [0, 27]. Thus, the

communications applications, provided that the AM and FMpproximations are in perfect agreement with (28) and (30):
functions obey a certain bandlimitedness constraint. As a

byproduct of the ensuing analysis, we provide additional useful {c(m)} = d{c(m)} = 2a2(m)[sind(m)]*  (34)
bounds that are bandwidth-independent. Uir(m)} = U{r(m)} = a(m)[sin p(m)]2. (35)

In practical applications, it is generally necessary that the
energy operatoré andV’ be preceded by a linear filter (usuallySince § = 1, Ax(6) = 0, and Ax(6y) = AR(6_) = 1
bandpass) in order to counteract the effects of noise [11] @ r = 1,2, then by Theorem 2 and Corollary 3, both

cross-component interference. For continuous signals, suchproximations (34) and (35) have errors that are bounded
combined operator was referred to as a single-band enegihsve according to
operator in [11]. For the approximations of the energies of

Fig. 7. Diagram of basic single-band discrete-time energy operator
approximate response to a real AM-FM signal.

g . m+1 .

filtered s[gnals, we have . ) co(m), e0(m) < e 1(0)] 4+ G| 5(0)]
&{d(m)} =20%(m)[sin p(m)?|G[*M]? (32) m-1
{s(m)} = o (m)fsin Jm)P| H[FH™)? (33) < 2y lallor + Gl o2 -

as depicted in Fig. 7 for real-valued signals. In the interesting case of a real-valued chirp signah) =

Theorem 2, which is the main result for energy operatorscos (Bm? + Cm + D), the approximate response &f -}
of the type considered here, gives satisfactory bounds isnthen
the errors incurred by the approximations (32) and (33). In .
Theorem 2, the following shorthand notation is usgd'm) = U{r(m)} = A%sin® [(2Bm + C))
glm+1)andg_(m) = g(m — 1) for m € Z.

Theorem 2: Let with an error that falls belowtA?|B|. A nearly identical result

holds for the complex chirp signal. It should be noted that this

ea(m) = |2{d(m)} — &{d(m)}| is the first available result that usefully bounds the error of
where®{d(m)}, &{d(m)} are given by (27) and (32). Then the frequently used approximations (34) and (35) for a chirp
_ signal.
ee(m) Saxna.xgz llg+®)l +2g(@)] + lg-(p)l] Finally, note that the approximations (34) and (35) are
f;}fg always nonnegative, in accordance with an interpretation of
—p= ¢{.} and¥{-} asenergy However, as shown in [15], where
/ (0| 4 Gumax|pl|d(v)| dv necessary and sufficient conditions were given for positivity
m—pt of W{-}, there is no guarantee of this in practice.
< Umaxy/7I{AL(94) + 2A1(9) + Ar(g-)]||al|pr Example 3: Next, we give approximation bounds for the

+ Gmax[A2(94) + 2280(g) + Ao(g ][] p2 ) difference operator outputs (29) and (31); for the complex

Proof: See the Appendix. operator, take the filter impulse responses to be

The analogous result for operatdr and real input now g(m) = h(m) = [§(m+1) — 6(m — 1)]/v2.
follows easily and so is stated without proof.
Corollary 3: Let Then

eg(m) = [T{s(m)} — \ff{s(m)}|

. _ |G(7°)| = |H(e7*)| = V2| sinw] for all w € [0, 27].
whereW{s(m)}, ¥{s(m)} are given by (26) and (33). Then

E\p(m) < amaxﬁ Z [|h+(p)| + 2|h(p)| + |h_(p)|] Thus, the approximations are
reZ fc(m +1) = c(m — 1)} mb{c(m +1) - e(m - 1)}
m—p~ . =4a*(m)[sin p(m)]* (36)
: /m_p+ |a(v)| + Gmax|p||¢(v)| dv U{r(m+1) —r(m—1)} %@{7,(7% + 1)‘_ rim —1)}
< max AR AL(hy) + 281 (R) + A1 (h_)]l|al|p: =2d*(m)[sing(m)]*.  (37)
+ max[A2(h4) + 282(h) + Aa(h-)][| ¢l p= - Again, using Theorem 2 and Corollary 3, both approximations
Proof: The proof has been omitted for brevity. (36) and (37) are bounded above by

We now reinvestigate the operators and their approxima-
tions (28)—(31). By applying Theorem 2 and Corollary 3, 126max/7{l|0]|pr + 36max||®|| D2
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IV. APPLICATION TO A DISCRETE MULTIBAND
AM-FM D EMODULATION SCHEME

As a more extensive application of the theory developed
in the preceding, we shall now explore a simple multiband
demodulation algorithm; as a byproduct, an optimal class of _ |
filters is derived using a discrete uncertainty principle criterion
recently developed by Doroslovacét al. [16].

A. Multiband Demodulation Algorithm

Suppose that a complex-valued AM-FM sigrgin) as in - Fig. 8. Flow diagram depicting multiband filtering and energy separation of
(1) is passed through a set of unit-energy bandpass filtersAM-FM signal. For this system the operatd-) is defined as in Fig. 6.

hn(m);n = 1,---, N, yielding outputsd,(m) = hn(m) *
c¢(m). Although the sampling of the frequency plane withyso pe used, as is depicted in the flow diagram in Fig. 8

the filter bank might be designed to accomplish a completgsing the ordinary centered differen¢& = 1). However,

orthonormal (wavelet) decomposition of the input signal, thic?alculatingd)(m) in (41) then requires finding an unambiguous
d not be assumed for the AM-FM demodulation process. . 1 . "

Bgeanalyzed Indeed, we will not even explore the frequengﬁgerpretatlon for Si” on [0, 7; in addition, (39) has the
tessellation here; instead, the filtérg(m) are simply assumed vantage of being resistant to high-frequency noise, which

to sample the spectruf@, ] sufficiently densely that a large can be a problem with operators of this type [11].

response is assured at eachsee, e.g., [1]-[3], [11], and [12]. . . : .
For each instantug, the normalized response (defined ovel?' Error Analysis and Optimal Filter Selection
all m) Approximations (41) are (42) are supported as follows. By

. (m) (5) and Lemma 1z(m) = 2(m), where
yo(m) = = (38) Sy — ‘ Jd(m)
Hn,ma.x Z(m) - c(m) cos [Kd)(m)]HO [6 ] (43)

corresponding to the response having the maximum normafith an error bounded above by
ized amplitude atn .
P 0 e-(m) =2(m) — &(m)| < A[AL(g) - llallps

d4
n = arg max 120l + a2 (9)] 18] 2.
1<i<N Hi,max

Here, we are only making use of the bounds that separate the

where (nonnormalized) filter durations from the global smoothness
Hppinax = SUP |Hn(ejw)|' measures since they will be used directly in a filter design
w procedure.

For simplicity, denote the channel that maximizes (38) at/ASSume that the maximizing filter in (38) may be writ-
time mo by ho(m); in addition, assumeH, m.x = 1 for ten h(m) = w(m)exp (jw.m). Then, by an application of

1< n < N. At momentmo, ho(m) captures a relatively large Minkowski's inequality, we have that
percentage of the local AM-FM signal energy. To estimate this Ar(g) < Ap{[w(m + K) +w(m — K)]/2}

information, first define + Ap{[w(m + K) — w(im — K)]/2}
z(m) = [yo(m + K) + yo(m — K)]/2 (39) =0k, k(W) + e k(W)
which is equivalent to filtering with where
= _ 1 (7| d NE
om) = Bo(m+ ) +ho(m = /2 (80) o ﬁ [ ot
A simple AM-FM demodulation algorithm is then "
. 1 +(m) and
bom) = 0o | 20 |y qa) —— :
"o e, x(w) = —/ —— sin (Kw)W (/%) | dw
and 2r f_ | dw
) yo(m) with w(m) <« W(e/*). Selectingw(m) so thatdy x (w) is
a(m) = m ~ a(m). (42)  smallis a localization criterion that partly controls the accuracy
ol¢ of (43). In fact,dy, x (w) = 0 for the solutions of the difference

By using quantities that incorporate the filter response (36juation
having the maximum amplitude, one ensures that in practice,

the AM-FM energy that is captured is maximized relative to

any ambient noise or other subcomponents. In (39)—(42)which are given byW (¢/“) o sec (Kw), which is not useful
two-point difference rather tharaverageof filter outputs can by itself since it is not of finite energy. Forcing, x (w)

w(im+ K)+w(m —K)=C-6m)
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Fig. 9. Multiband demodulation of a noisy AM-FM signal. (a) Real part of original AM-FM signal. (b) Exact AM funetiem). (c) Exact FM function
o(m). (d) Signal plus noise, SNR= 2. (e) a(m) is the AM ESA approximation. (fi)(m) is the FM ESA approximation.

small is a smoothness criterion that induces small variationdp i (w) small are conflicting goals as expressed by the
a(m) and¢(m). This is desirable, since estimating a signal’®oroslovacki-Fan-Djuric uncertainty relation [16], which
AM-FM components is generally a difficult, ill-posed problenstates that fork’ = 1/2

[11]. In a related 2-D continuous-domain image processing

problem [3], the estimated AM-FM functions were constrained o1,k (w) - €0, (w) > 1/4. (44)

by forcing ||a||p1 and||¢||p: small. The filters that uniquely achieve the lower bound in (44)
Since the AM-FM estimates are computed rather directpgyve the form(q > —1/2) [16]:

from the filter outputs, a simple approach to force smoothness

at the output is to minimize W (™) = B(g)[2 cos (w/2)]? (45)
where
1D I(m+ K) = h(m — K)? _ I{g+1)
e YO
< Ao{% [w(m + K) — w(m — K)|}
+A{% [w(m + K) + w(m — K)]} yields unit energy I(-) = gamma function]. The optimal

filters (45) maintain localized low-frequency energy while
simultaneously de-emphasizing high-frequency energy. These
. . i - _ filters approach a Gaussian characteristicgas> oo [16];

In view of the preceding, it is of sufficient Interesthence the optimal channel filters are of the form
to minimize d; x(w) (hence localizedg) and &g i (w) '

(smooth estimates). Simultaneously forciry x(w) and H(’) = B(g){2cos [(w — we)/2]}.

= e,k (w) + 9o i (w).
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At this time, the relative merits of these filters as a function AM-FM models such as (1) and (2) that capture physically
of ¢ remains an open question, other than the low uncertaintyeaningful signal nonstationarities are finding increased ap-
property shared by all the members of the class. However, faications, particularly in instances where local nonstationary
large ¢, these functions resemble Gabor functions [16], whickignal structures are to be modeled in a globally consistent
is in agreement with continuous optimization formulations davay. New analysis techniques, expanding on those given here,
veloped in [1]-[3], [11], and [12]. Indeed, @s— oo, H(c’*) will help to exploit the power of the approach. Currently, we

has the form of a discrete-time Gabor function. are studying extended models of the form [12]
C. Numerical Results c(m) = a(m)e’+m, (46)
k
The multiband demodulation system described in the r(m) = Zak(m) cos [¢r(m)]. (47)
preceding was implemented using five one-octave Ga- "

bor filters spaced at one-octave separations and sam-

pling the frequency domain at center frequencies = Generalizing the model to include the possibility of multi-
3m/64,3m /32,37 /16,37/8, and 3m/4 rads (filters 1-5, components is a natural one since signals may be composed
respectively). This tessellation results in filters that intersegt subsignals containing multiple evolving information sets
exactly at half-peak of frequency responses. _ best separately modeled as modulations. As the number of
An AM-FM input signal of the form (14)—(16) was appliedcomponents becomes very large, the models (46) and (47)
to the demodulation system. The signal parameters selec{gg,ct may be made DFT-like. This suggests the powerful
were Aw = 0.27 rads, o, = 1024,04 = 4096. The (real 4tion of AM-FM representationf signals, as opposed to
part of) the signal is plotted in Fig. 9(a). The exact AM-FMyqqels where a relatively small number of additive AM-FM
functions a(m) and ¢(m) are shown in Fig. 9(b) and (C), components are used to exactly represent subsignals composed
respectively. Pseudo-random, i.i.d. zero-mean noise Sam%ﬁocally coherent, yet nonstationary substructures. Efficient

v(m) from a uniform distribution were t_hen generated, passq:g resentations that capture the essential modulation signal
through filter 2 (the one-octave Gabor filter at centerfrequeng fuctures using as few components as possible are of high
37 /32) to create a bandpass noise signal lying in a differe erest

band than most of the signal AM-FM energy, and, finally,
added to the signal. The (real part of) the noisy signal is APPENDIX
depicted in Fig. 9(d). The SNR of the signal-plus-noise was Proofs of the main results are given here.

selected 10 Dec|max/Umax = 2, Where|c|uay is the maximum Proof of Theorem 1:The proof of Theorem 1 relies on

ig;al ar:ntp;]I!tu_de, ?n@ma"l '3 the mz;mmurln r:;nse amp“.tUde‘isolating the amplitude and phase differences between the
ough this input signal does not supply th€ Same Ngorougy, response and the approximation and then bounding these
test for the system as a severe in-band noise (sharing

itfferences in terms of the variation of the AM-FM functions.

local spectrum with the signal), the ability of the multiban L . -
X ' . : he channel filter impulse response weights the local variation.
demodulation system to track the AM-FM signal in moderatlc_e rerimpu P Welg variat

noise is amply demonstrated in Fig. 9(¢) and (f). While airst note that by Taylor's theorem with remainder [14]
noise analysis is beyond the scope of the present paper, we .

expect that superior performance can be attained for most noise ¢(m —p) = p(m) — pp(m) + Qg(m, p) (A1)
situations through a denser filter sampling, as demonstrated for

continuous-domain demodulation systems of this type in [1¥}here

1
Qulm.p) = 1 / (1= wdm—wp)du.  (A2)

V. CONCLUDING REMARKS

In this paper, we have developed generally applicable the-From (1), (4), and (A.1)
orems for analyzing discrete AM-FM functions and their d(m) = a(m) exp [jd(m)] * g

bl . ; : m)
behavior in discrete linear systems, as well as simple dis-

crete nonlinear systems comprised of products of discrete = Zg(p)“(m_p) exp [jé(m)] exp [—jp¢(m)]
linear subsystems. Approximations for the responses of these el
systems to input functions of the form (1) and (2) termed -exp [1Qs(m, p)] (A.3)

quasieigenfunction approximatiofQEA’s) were derived that 54 from (5), we have

complement the eigenfunction interpretation of sinusoids in . ) .

linear systems. For nonsinusoidal signals, the approximation&(") = Z g(p)a(m) exp [j¢(m)] exp [=jpp(m)]. (A.4)
have errors that are bounded by Sobolev norm functionals peZ

expressing the smoothness of the AM and FM information By first applying the triangle inequality to the difference
signals and in terms of discrete energy variance functionetween (A.3) and (A.4), introducing the zero terfm —
als expressing the durations of the involved system impulgg— a(m — p) inside the result, and applying the inequality
responses. | — 8| < |ae— 2|+ |z — 3], the following bound orey(m)
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is obtained: and therefore
. o — up)| d
cim) € Y o latm - ) exp[iQulm, ) —amy] ) S 2 bllor P i~
ped I;)Eeo
< > lg@)lla(m = p) — a(m)| Yz
Z
re <Y PPl
+ > lg()lla(m - p)| oZ
ped p#0
[ exp [iQe(m, p)] = 1| 2
< 3" lg)lla(m - p) - a(m)| [/| _up|du}
ped pc
#0
+ Gmax Z l9(p)||Qe(m. p) d 1/2
pEZ
=ega(m) +eqeo(m). (A.5) Z P {/ |a(m — u |du}
pcd
However, since p#0
1/2
atm=p)=atm)| = | [ awyas]  (a8) <aulp) [ latwlau | 3
then d
— Ao [ fatu)|du
eaa(m) < > l9(p)| (o)l dv (A7) A R A1l
vel m—p+ =v7A1(g) - ||al[p (A.11)
p#0 where the filter and AM functions were separated by applica-
where the sum is not taken at= 0 in order to show the tion of the Cauchy—Schwarz inequality. This bouncegR (m)
interesting independence of the bound ¢0). always exceeds that in (A.7).
In addition, from (A.2) Similarly, in (A.8)
m—p~ 1
o ) dr = ol [ 160m = )|
|Qs(m, p)| = p2/ (1 = u)p(m — up) du /m—p+ 0
. and therefore, from (A.9)
~|p [ @ = o/p)im = vyav
‘ 0 e,6(m) < tamax Y, Pg(p I/ |b(m — up)| du
p+ . pEZ
<lpl [ |d(m - v)| dv r0
. 1/2
m—p- .
=l low)lde (A8) < tmax | Y p*lo(0)
pe%
so that e 12
-, 2
€ < Gmax V)| dv. A.9 1 .
d¢ %|p||g | mpt |¢( )| (A.9) . Z |:/ |¢(m _ up)| du:|
pe 0
p7#0 Zo
Finally, combining (A.5), (A.7), and (A.9) i 12
m—p- .
< Z l9(p)] . |a(v)| + amax|pl|¢(v)| dv. = Gmax A2 (g Z p2 |:/ |¢ —u |du:|
pE;tZ m—p pEZ
p#0 0
Proof of Lemma 1:The proof extends results from the ” 1/2
proof of Theorem 1 by separating the channel impulse
response from the AM-FM variation. Note that in (A.7) < GmaxA2(g / |b(w)| du Z P~
m—p~ 1 pEZ
[ a@lde=1pl [ latm-wpldu (a0 0
m—pt 0 = amaXﬁAQ(g) | |¢| |D2 . (A12)
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The proof is completed by combining (A.5), (A.11), andHence

(A.12)
ea(m) = eq < VML) - [lallpr + Gmaxy/TA2(9)] 1]z = > la®lg()lla(m — p)a(m - q)
where the dependence am has been removed. ¢ pequZ ,
Proof of Corollary 1: We proceed by breaking the error -exp {j[Qe(m, p) — Q¢(va)]} —a”(m)|
into two terms corresponding to positive and negative expo- < Z Z lg1(p)]]g2(@)||a(m — p)a(m — q)
nents of frequency and then applying. the rgsults of ea}rlier pEZqEZ
proofs to each of these terms. Introducing a bivalued variable
g € {—1,1} to index positive and negative exponents, we have M|+ e Z Z l91(p)[l92(q)
from (4) (A 1) (A.2), and Euler’s identity veqeZ
Z Zh’ m p eXp[Jq¢( )] {|Q¢(m p)|+|Q¢(m Q)|}
q€{-1.1} peZ < Gmax * G2 Z |gl ||CL m— p) - a(m)|
- exp [ jpgd(m)] exp [igQs(m, p)] (A.13) reZ
and from (13), we have + G 91 Y l92(a)lla(m = ¢) = a(m)]
qcZ
% Z Z h eXp Jqd)( )] Aax .92 Z |gl ||CJ<?5 m p)|
ge{-L1l} peZ ved
+ €Xp [_JPQ¢(m)] (Al4) : maxgl Z |.92 ||CJ<?5 m, (J)| (A18)
qcZ
Following the reasoning in the proof of Theorem 1, we have
that The first two summations following the final inequality in
(A.18) can be identically bounded as in (A.7), whereas the
m) < % Z Z h(p)]|a(m — p) Icezltterbt_w_o surrr]lmatlorjsl(;:an hbe L;jen_nc:IIy borndf; aill? (A.9).
i) e Z ombining these vyields the desire .resut (19). Likewise,
P applying (A.11) and (A.12) to (A.18) yields (20). ¢
" OxXp [qu:Qqs(;:p)] — a(m)| Proof of Theorem 2:By Lemma 2
<G (h)latm —p)| o
sl e ldm)? = a(m)|Ge ]2
j -1 _ mr
|exp [jaQe(m. p)] | < 201m0xF Z lg(p)]| |a(v)|
) > Y Ih@llatm —p) - a(m) ez mer
ge{-L1}peZ p;é('J'
() Y ID)]aQo(m. )+ - P |9(0)] v
ac{-1,1} < 20maxy/79[A1(9)allpr + amaxBa(9)]|0]|p2]-
() > D Ik®lla(m = p) - a(m)| (A-19)
] Note thatd(m = 1) = ¢(m) * g(m £ 1) and recall (27) and
=\g) 4" Es0lM 5) 4 €salM 32). Then, also by Lemma 2
(3) 2 es0(m) +(3) 2+ €5,0(m) hen, also b
=€s,6(m) +€5,a(m). (A-15) IRe{[d(m + 1)]*d(m — 1)} — 2a(m)[sin (m)]?
) je(m)1)2
The proof then follows easily from (A.7), (A.9), (A.11) and |Gl I _ (A.20)
(A.12). ¢ < e
Proof of Lemma 2:Results from previous proofs can also Omaxg % l9+@)] + 1o~ @)l m—pt la(v)
be applied here. We have from (1), (4), (A.1), and (17) 2’;0
+ amax||(};(v)| dv
=> > alp —p)a(m — q) -
peZ qeZ < amaxv/79{[A1(9+) + A1(g-)]llallpr
) . + Gmax[A + Ao(g_ 2} A.21
-exp[—j(p—q)d)(m)] h f s [ Qd(g-l-)t (2(5; )]H((/)HD:&];) . (b - )
' . _ where form , we denotegyL(m) = g(m . Combining
exp {j[Q(m. p) = Qo(m- 9]} (A.16) (A.19) and (A.21) completes the proof. ¢
and from (6) and (18) ACKNOWLEDGMENT
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