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Abstract—We develop theorems of a general nature that apply
to the analysis of AM-FM signals of the form a(m) exp [j�(m)]
or a(m) cos [�(m)] and to their behavior both in linear systems
and in simple nonlinear systems comprised of products of linear
elements. Such product-systems include interesting nonlinear
demodulation operators, such as the Teager–Kaiser operator.
Expressions for the approximate system responses to AM-FM
signals are derived by making an analogy to the eigenfunction
interpretation of sinusoids in linear systems; for the case of
sinusoidal signals, the approximations are exact. These expres-
sions are collectively calledquasieigenfunction approximations
(QEA’s). For nonsinusoidal AM-FM signals, the approximations
have errors that are tightly bounded by functionals that express
the smoothness of the AM and FM information signals and
the durations of the involved system impulse responses. The
bounds are independent of the bandwidths of the AM and FM
functions. Two general applications are considered. First, the
approximations are found to be useful for analyzing discrete-
time nonlinear energy operators, including the Teager–Kaiser
operator. Next, the approximation theorems lead to the selection
of an optimal class of bandpass filters for use in a discrete
multiband AM-FM demodulation system. The filter class selected
is optimal in the sense of achieving the lower bound of a novel
discrete uncertainty principle.

I. INTRODUCTION

W E DEVELOP useful approximations to the responses
of general discrete linear systems, simple nonlinear

systems comprised of products of linear elements, and in
particular, certain discrete nonlinear AM-FM energy operators
to complex signals of the form

(1)

and their real-valued counterparts

(2)

where are samples of a continuously differentiable
amplitude-modulation (AM) function , and
are samples of a continuously twice-differentiable frequency-
modulation (FM) function We also supply tight bounds
on these approximations that are expressed in terms of the
smoothness of and , as measured by certain (Sobolev)
smoothness norms, as well as in terms of the duration of the
involved linear system function(s).
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AM and FM functions of the form (1) and (2) are gaining
popularity as effective and practical tools for modeling non-
stationary, yet locally coherent structures in speech signals,
images, and other variably dimensional signals. For example,
these models have been successfully used in the analysis of
textured images when combined with Gabor wavelet image
decompositions [1]–[3] and/or certain nonlinear energy oper-
ators [4]. Models of the form (1) have also been extensively
applied to the analysis of speech formation with good success
[5]–[8].

In these applications, it is often desirable to pass the
signal of interest through a linear system, such as a bandpass
filter [3], in order to extract and separate local frequency
(modulation) structures that the model (1), (2) captures. In
Section II, we find new approximations for the responses
of two classes of systems to the inputs (1), (2). The first
class of system is arbitrary discrete linear systems having
finite-energy impulse response; the second class of (nonlinear)
system is defined by products of linear systems. We state and
prove theorems in each case that bound the error between
the approximation and the actual responses. These results are
applied in Section III to establish theorems characterizing
the validity of similar approximations to the responses of
certain simple nonlinear AM-FM (Teager–Kaiser-type) energy
operators [4]–[10]. Each result is presented for the complex
AM-FM input with an analogous result for
the real input given as a corollary.

In Section IV, we apply the results further in the analysis
of a discrete multiband AM-FM demodulation scheme. Such
systems are effective for extracting sophisticated AM-FM
signal components in the presence of noise, multicomponents,
or other signal artifacts [11], [12]. As a byproduct of the
analysis, an optimal class of bandpass filters is derived for
demodulation purposes.

II. A PPROXIMATION TO LINEAR SYSTEM RESPONSE

AND PRODUCTS OFLINEAR SYSTEM RESPONSES

In this section, theorems are given that motivate new
approximations to the responses of arbitrary square-summable
discrete linear systems to inputs of the form (1), (2) as well
as to (nonlinear) products of such responses. The results are
general; however, in later sections, we will be most interested
in application systems that involve either simple differencers
or bandpass systems with impulse responses of the form

(3)

where is a real-valued lowpass function. Both differ-
encers and bandpass filters are used in the study of discrete
multiband demodulation systems in Section IV.
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Fig. 1. Depiction of basic QEA for complex AM-FM signals.

A. Approximate Linear System Response

In the first general result, we approximate the response

(4)

of an arbitrary square-summable discrete linear system
to an input of the form (1). The approximation is given by

(5)

where we denote and where

(6)

is the frequency response of the linear system The
approximation is also depicted in Fig. 1.

Hereafter, we shall use the notation to
denote a Fourier transform pair. The approximation (5), when
valid, has a powerful natural application for the analysis of
discrete linear systems that have AM-FM inputs modeled by
(1). The approximation has a general form that is analogous
to the form of the response of the system to a monochromatic
signal

(7)

except that in (5), the argument of the system function is
time varying. Indeed, for the case (7) of the monochromatic
signal, the approximation (5) is, of course, exact:

Hence, we refer to this approximation (and its relatives)
asquasieigenfunction approximations(QEA’s). When the sig-
nal is not monochromatic, there will always be an error
in the approximation; however, this error may be small and
can, in fact, be bounded, as will be established by Theorem
1 and Lemma 1. Denote

In certain applications such as image analysis, where can
be used to model contrast, it may be assumed that
Note again that and are regarded as samples
of continuous functions, the derivatives of which appear in
the integrals. Finally, we shall denote and

Theorem 1: Let , where
are given by (4) and (5). Then

(8)

Proof: All proofs are given in the Appendix.
Several observations may immediately be made regarding

the bound in (8). Clearly, the error bound is reduced if the
derivative magnitudes and are uniformly small;

this is further made clear in Lemma 1. However, it is also
clear that the bound will be reduced when the duration of

is small; in subsequent developments, we will measure
the duration (normalized by the square root of energy in the
case that is not unit-energy) of a filter using the
general-purpose energy moment functionals

(9)

Note that a bandpass filter , as given in (3), and its low-
pass equivalent have the same durations (9):

The bound in (8) clarifies the interplay between the duration
of the filter and the local behavior of and
Thus, (8) is a useful numerical tool for examining the efficacy
of (5) when analyzing signals for which the integrals of
and may be easily evaluated or for which they may be
numerically calculated with some effort. However, Theorem
1 does not supply a design procedure for the filter (to
isolate a component of the form (1) from the remainder of a
signal, for example), nor does it make explicit the individual
roles of the filter and the AM-FM functions for approximating
the responses of unspecified signals.

Note that (8) implies that the error does not depend on
; indeed, if the filter is an impulse ,

then the error is zero. For even symmetric filter magnitudes,
the bound (8) becomes

(10)

Lemma 1 yields a bound expressed in terms of products of
measures of the filter duration, as expressed by (9), withglobal
measures of the smoothness of and , as expressed by
derivative functionals, or Sobolev norms, of the form

where In particular, we will make use
of the norms and Since only finite bounds are
of interest, these norms may be assumed finite, or equivalently,
that the AM-FM functions and exist in Sobolev
spaces of degrees 1 and 2, respectively. Under this assumption,
the integrals in (8) and (10) are guaranteed to converge as well.

We will also encounter the constant

which is twice Riemann’s Zeta function with argument 2. Note
that

Lemma 1: Let as before. Then

(11)

Proof: See the Appendix.
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Fig. 2. Depiction of basic QEA for real AM-FM signals.

In Lemma 1, the approximation error is explicitly bounded
by expressions of the overall duration of the filter
and by the global smoothness (or lack thereof) of and

Indeed, the bound does not include dependence on time.
Although it is shown in the proof that (11) is bounded below by
(8), the bound (11) is still tight: Note that as becomes
monochromatic, both and vanish. The bound
(11) also has the advantage of simplicity of interpretation: The
filter and the AM-FM functions are represented independently.
Later, this will yield design criteria in a multiband demodula-
tion system. Of course, for signals of infinite length, the bound
will often be infinite, thus limiting its usefulness compared to
(8) in such cases.

Example 1—Chirp Signal:The constant-amplitude com-
plex chirp signal
where and are constant, is of interest in many
applications. Assuming that the signal is applied to the
square-summable discrete linear system , the
QEA is then

The error in this approximation cannot be usefully bounded
by (11) since However, (8) yields a convenient
bound. Indeed, letting , we find

, which is both simple and suggestive. The error
bound of the QEA for a chirp signal is linear with respect
to both the signal amplitude and to the chirp sweep rate;
the bound is also independent of time and, hence, also
of the local frequency. From this, we may see that the error
bound in the approximation is primarily governed by the rate
of change of the local AM-FM signal frequencies and by the
filter duration.

Next, we approximate the response

(12)

of an arbitrary real-valued, square-summable discrete linear
system to a real AM-FM input of the form
(2). The QEA is

(13)

where as depicted in Fig. 2. The bound for
this analogous result for real filters and real AM-FM signals is
supplied by the following Corollary to Theorem 1 and Lemma
1.

Corollary 1: Let , where
are given by (12) and (13). Then

Proof: See the Appendix.

These results are quite novel in the analysis of discrete AM-
FM signals, although results analogous to Corollary 1 have
been developed for continuous AM-FM signals in [11]. The
bounds on the errors become small whenever
both AM-FM functions are sufficiently smooth
(locally and/or globally). The bounds that require global
smoothness, which are expressed as Sobolev norms, have
magnitudes modulated by the filter durations. A rapidly de-
caying filter will also control the size of the local bounds,
which are expressed as sums of local smoothness measures
distance-weighted by the filter.

B. Numerical Results

We now further establish the usability of the basic approx-
imations and error bounds that have been developed thus
far. This is accomplished through simulations involving a
generic parametrized input AM-FM signal. By varying the
parameters, we also find some intuition into the validity of
the approximations.

In all of the simulations in this and later sections, we shall
assume a (complex) input AM-FM signal of the form (1),
where the AM function is a Gaussian

(14)

and the FM function is the product of a Gaussian and a
quadratic

(15)

In (15), the constants and are chosen such that the
derivative of the quadratic (chirp) component of the phase
takes initial value and final value

Here, and are the initial and final instants
of the interval over which the response is plotted. Specifying

and is a simple method of fixing the approximation
range of instantaneous frequencies contained in the signal.

We will suppose that the AM-FM signal described by (14)
and (15) is passed through a filter with impulse response a
Gabor function with center frequency (radians)

(16)

where is selected such that has unit energy (unit -
norm). By varying the parameters of both input signal and
filter, we will assess the behavior of the error bound (8).
Fig. 3(a) plots the bound for rad, rad,

(samples), and four values of the phase duration
parameter The filter center frequency was selected to be

rad and the bandwidth to be one octave
As expected, the error (hence, the bound) generally falls as
is increased; moreover, the bound becomes nearly constant as

becomes large (hence, the phase nearly quadratic), which is
not unexpected in view of the result in Example 1. For smaller
values of , the Gaussian phase term begins to dominate. It
will be observed that in all cases, the bound is quite small.

Fig. 3(b) shows the behavior of the bound (8) as the
frequency range was varied. Here, the other
signal and filter parameters remained the same, with the phase
duration parameter fixed at (samples). For
small, the overall signal becomes more narrowband—more
eigenfunction-like. The bound agrees with this observation
and falls accordingly.
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(a) (b)

(c) (d)

(e)

Fig. 3. QEA error bound (8) as a function of (a) the duration of the Gaussian phase term, (b) the duration of the quadratic phase term, (c) the duration
of the Gaussian amplitude term, and (d) the duration of the filter:�g = 3:09, �g = 1:59, �g = 1:38, � �g = 0:88. Finally, (e) depicts
true error and error bound simultaneously.

To illustrate the effect of amplitude modulation on the
bound, the phase and filter parameters were fixed and the
amplitude duration parameter allowed to vary. In this
example, the instantaneous frequency range was changed to

rad (from rad to
rad) simply to produce a more noticeable effect in the bound.
The filter bandwidth was also increased to 1.5 octaves

The bound is seen in Fig. 3(c) to increase fairly quickly
as the AM function is narrowed ( reduced), although in all
cases, it is quite small. However, some care may be needed in
applying QEA’s to short-duration input signals.

Next, the signal parameters were all held fixed and the filter
duration varied, as shown in Fig. 3(d). The fixed parameters
were samples, samples,
and the filter c.f. rad. As expected, the error decreased
with filter duration in a predictable way. The bandwidths
corresponding to 3.09, 1.59, 1.38, and 0.88 samples
are 0.5, 1.0, 1.5, and 2.0 octaves.

Finally, Fig. 3(e) plots the error bound (8) over the actual
approximation error for all the same parameter values as
Fig. 3(d) and the filter fixed at one octave. It is interesting
to note the tracking of the error bound where the error rises.

As a second example, Fig. 4(a) plots the (real part of the)
QEA given by (5), for another Gaussian-modulated chirp
input. The input parameters were again and

samples, only this time, samples. The
filter was selected identical with that used in Figs. 3(a)–(c)
and (e). The error depicted in Fig. 4(b) is small everywhere,
dropping close to zero at some points. Fig. 4(c) shows the
close tracking of the bound (8) near one such downward
excursion in the true error.

C. Approximate Product-System Response

Next, we develop approximations to the products of linear
system responses. This has immediate application, as shown
in Section III, for the analysis of nonlinear systems that in-
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(a) (b)

(c)

Fig. 4. QEA for Gaussian-modulated chirp signal. (a) Real part of the QEA. (b) Error and bound. (c) Detail of (b).

corporate square-law devices and other product nonlinearities.
Denote the product of response and conjugate response

(17)

of arbitrary square-summable discrete linear systems
to an input of the form (1). The approximation

is given by

(18)

where While the approximation
(18) is not completely unexpected in view of the approxima-
tion (5) to (4) and the preceding bounds, it is not possible,
unfortunately, to develop a useful bound on the error between
(17) and (18) from Theorem 1 directly. However, the following
Lemma, the proof of which makes use of elements of the
proofs of previous results, does supply such a bound. Denote
the -norm of

Lemma 2: Let , where
are given by (17) and (18). Then

(19)

(20)

Proof: See the Appendix.
The analogous result for real-valued AM-FM inputs applied

to arbitrary real-valued square-summable discrete linear sys-
tems follows easily; the proof, which
tracks that of Lemma 2 much in the same way that the proof of
Corollary 1 follows Theorem 1, is omitted for brevity. Defining

(21)

we consider the approximation

(22)

where
Corollary 2: Let , where and

are given by (21) and (22). Then

Proof: The proof has been omitted for brevity.
Although the approximations in Lemma 2 and Corollary 2

are just products of previous approximations, it does not follow
(without separate proof) that the product approximations are
valid. In fact, we make the following general observation in
passing. Suppose that and estimate some quantities
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Fig. 5. QEA of the squared magnitude of a linearly-filtered complex AM-FM
signal.

and , respectively. Then, the supposition that and
are small does not imply that

is small since it depends on the magnitudes of all involved
quantities. Indeed, it does not even imply that is
small!

III. A PPLICATION TO NONLINEAR

AM-FM ENERGY OPERATORS

We now explore some interesting applications that are of
general utility in the analysis of nonstationary AM-FM signals.

A. Square-Law Device

An important nonlinear device that can be easily modeled
using the results of the preceding section is the square-law
operator. Thus, suppose that the squared magnitude of the
linearly filtered signal (4) is computed, as depicted in Fig. 5.
By Lemma 2, we have that

for sufficiently smooth and and localized
with the error falling below

(23)

(24)

Likewise, for a real signal given by (12), we have the
approximation

(25)

From Corollary 2, the error in (25) falls below the bounds
(23) and (24).

B. Teager–Kaiser Operator

We will now apply these results to obtain limits on the
interesting discrete nonlinear operators

(26)

for filtered real signals and for filtered complex signals (where
superscript ‘*’ denotes conjugation)

(27)

It should be noted that we are applying the operators and
to filtered versions of the signals and ; from

the more general result obtained, new bounds on the errors of
the unfilteredapproximations will also be obtained.

Fig. 6. Basic discrete-time energy separation algorithm. Here�(�) denotes
the two-point centered difference operation:�[r(m)] = r(m+1)�r(m�1):

The real-valued Teager–Kaiser operator , which was
first proposed by Teager [9] and subsequently investigated by
Kaiser and others [4]–[10] has been shown to be effective
for AM and FM information demodulation in speech signals
[8], [9], and, more recently, digital image analysis [13]. The
discrete-time operator has a continuous analog
defined on continuous signals by

Assuming a unit sampling period, we may exactly derive
the discrete-time operator from the continuous operator by
replacing with with

(using a product of a forward and a backward
difference yields a centered estimate of the squared derivative),
and finally, replacing with
(using a forward difference followed by a backward difference
yields a centered estimate of the twice derivative).

Returning to discrete signals only, for unfiltered real AM-
FM signals of the form (2)

(28)

with negligible error under bandlimiting conditions on the
modulating functions [6]–[8], [11]. Similarly

(29)

which suggests theenergy separation algorithm(ESA) [6]–[8],
[11]:

for estimating the squared amplitude envelope and
of the squared sine of instantaneous frequency

, respectively. The ESA is diagrammed in Fig. 6.
For the complex operator, we have, for the unfiltered case

(30)

(31)

which suggests the ESA:

The approximations (28) and (29), and by trivial extension
(30) and (31), have been shown to hold quite well under
assumptions on the bandwidths of the amplitude modulation
functions and the instantaneous frequencies. Detailed analyses
are presented in [6]–[8] and [11], which show that the relative
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Fig. 7. Diagram of basic single-band discrete-time energy operator and
approximate response to a real AM-FM signal.

error is quite small for realistic signals in speech and other
communications applications, provided that the AM and FM
functions obey a certain bandlimitedness constraint. As a
byproduct of the ensuing analysis, we provide additional useful
bounds that are bandwidth-independent.

In practical applications, it is generally necessary that the
energy operators and be preceded by a linear filter (usually
bandpass) in order to counteract the effects of noise [11] or
cross-component interference. For continuous signals, such a
combined operator was referred to as a single-band energy
operator in [11]. For the approximations of the energies of
filtered signals, we have

(32)

(33)

as depicted in Fig. 7 for real-valued signals.
Theorem 2, which is the main result for energy operators

of the type considered here, gives satisfactory bounds on
the errors incurred by the approximations (32) and (33). In
Theorem 2, the following shorthand notation is used:

and for
Theorem 2: Let

where are given by (27) and (32). Then

Proof: See the Appendix.
The analogous result for operator and real input now

follows easily and so is stated without proof.
Corollary 3: Let

where are given by (26) and (33). Then

Proof: The proof has been omitted for brevity.
We now reinvestigate the operators and their approxima-

tions (28)–(31). By applying Theorem 2 and Corollary 3,

we will be able to derive some approximation bounds that
are complementary to those given in [7] for the real-valued
operator.

Example 2: Here, we give approximation bounds on the
operator outputs forunfiltered input signals; take the filter
impulse responses to be the Kronecker function:

for , and
Here, for all Thus, the
approximations are in perfect agreement with (28) and (30):

(34)

(35)

Since , and
for , then by Theorem 2 and Corollary 3, both
approximations (34) and (35) have errors that are bounded
above according to

In the interesting case of a real-valued chirp signal
, the approximate response of

is then

with an error that falls below A nearly identical result
holds for the complex chirp signal. It should be noted that this
is the first available result that usefully bounds the error of
the frequently used approximations (34) and (35) for a chirp
signal.

Finally, note that the approximations (34) and (35) are
always nonnegative, in accordance with an interpretation of

and asenergy. However, as shown in [15], where
necessary and sufficient conditions were given for positivity
of , there is no guarantee of this in practice.

Example 3: Next, we give approximation bounds for the
difference operator outputs (29) and (31); for the complex
operator, take the filter impulse responses to be

Then

Thus, the approximations are

(36)

(37)

Again, using Theorem 2 and Corollary 3, both approximations
(36) and (37) are bounded above by
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IV. A PPLICATION TO A DISCRETE MULTIBAND

AM-FM DEMODULATION SCHEME

As a more extensive application of the theory developed
in the preceding, we shall now explore a simple multiband
demodulation algorithm; as a byproduct, an optimal class of
filters is derived using a discrete uncertainty principle criterion
recently developed by Doroslovackiet al. [16].

A. Multiband Demodulation Algorithm

Suppose that a complex-valued AM-FM signal as in
(1) is passed through a set of unit-energy bandpass filters

, yielding outputs
Although the sampling of the frequency plane with

the filter bank might be designed to accomplish a complete,
orthonormal (wavelet) decomposition of the input signal, this
need not be assumed for the AM-FM demodulation process to
be analyzed. Indeed, we will not even explore the frequency
tessellation here; instead, the filters are simply assumed
to sample the spectrum sufficiently densely that a large
response is assured at each; see, e.g., [1]–[3], [11], and [12].

For each instant , the normalized response (defined over
all )

(38)

corresponding to the response having the maximum normal-
ized amplitude at

where

For simplicity, denote the channel that maximizes (38) at
time by ; in addition, assume for

At moment captures a relatively large
percentage of the local AM-FM signal energy. To estimate this
information, first define

(39)

which is equivalent to filtering with

(40)

A simple AM-FM demodulation algorithm is then

Cos (41)

and

(42)

By using quantities that incorporate the filter response (38)
having the maximum amplitude, one ensures that in practice,
the AM-FM energy that is captured is maximized relative to
any ambient noise or other subcomponents. In (39)–(42), a
two-point difference, rather thanaverageof filter outputs can

Fig. 8. Flow diagram depicting multiband filtering and energy separation of
an AM-FM signal. For this system the operator�(�) is defined as in Fig. 6.

also be used, as is depicted in the flow diagram in Fig. 8
using the ordinary centered difference However,

calculating in (41) then requires finding an unambiguous
interpretation for Sin on ; in addition, (39) has the
advantage of being resistant to high-frequency noise, which
can be a problem with operators of this type [11].

B. Error Analysis and Optimal Filter Selection

Approximations (41) are (42) are supported as follows. By
(5) and Lemma 1, , where

(43)

with an error bounded above by

Here, we are only making use of the bounds that separate the
(nonnormalized) filter durations from the global smoothness
measures since they will be used directly in a filter design
procedure.

Assume that the maximizing filter in (38) may be writ-
ten Then, by an application of
Minkowski’s inequality, we have that

where

and

with Selecting so that is
small is a localization criterion that partly controls the accuracy
of (43). In fact, for the solutions of the difference
equation

which are given by , which is not useful
by itself since it is not of finite energy. Forcing
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Multiband demodulation of a noisy AM-FM signal. (a) Real part of original AM-FM signal. (b) Exact AM functiona(m). (c) Exact FM function
_�(m). (d) Signal plus noise, SNR= 2. (e) â(m) is the AM ESA approximation. (f)_�(m) is the FM ESA approximation.

small is a smoothness criterion that induces small variation in
and This is desirable, since estimating a signal’s

AM-FM components is generally a difficult, ill-posed problem
[11]. In a related 2-D continuous-domain image processing
problem [3], the estimated AM-FM functions were constrained
by forcing and small.

Since the AM-FM estimates are computed rather directly
from the filter outputs, a simple approach to force smoothness
at the output is to minimize

In view of the preceding, it is of sufficient interest
to minimize (hence localized ) and
(smooth estimates). Simultaneously forcing and

small are conflicting goals as expressed by the
Doroslovacki–Fan–Djuric uncertainty relation [16], which
states that for

(44)

The filters that uniquely achieve the lower bound in (44)
have the form [16]:

(45)

where

yields unit energy [ gamma function]. The optimal
filters (45) maintain localized low-frequency energy while
simultaneously de-emphasizing high-frequency energy. These
filters approach a Gaussian characteristic as [16];
hence, the optimal channel filters are of the form
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At this time, the relative merits of these filters as a function
of remains an open question, other than the low uncertainty
property shared by all the members of the class. However, for
large , these functions resemble Gabor functions [16], which
is in agreement with continuous optimization formulations de-
veloped in [1]–[3], [11], and [12]. Indeed, as
has the form of a discrete-time Gabor function.

C. Numerical Results

The multiband demodulation system described in the
preceding was implemented using five one-octave Ga-
bor filters spaced at one-octave separations and sam-
pling the frequency domain at center frequencies

and rads (filters 1–5,
respectively). This tessellation results in filters that intersect
exactly at half-peak of frequency responses.

An AM-FM input signal of the form (14)–(16) was applied
to the demodulation system. The signal parameters selected
were rads, The (real
part of) the signal is plotted in Fig. 9(a). The exact AM-FM
functions and are shown in Fig. 9(b) and (c),
respectively. Pseudo-random, i.i.d. zero-mean noise samples

from a uniform distribution were then generated, passed
through filter 2 (the one-octave Gabor filter at center frequency

) to create a bandpass noise signal lying in a different
band than most of the signal AM-FM energy, and, finally,
added to the signal. The (real part of) the noisy signal is
depicted in Fig. 9(d). The SNR of the signal-plus-noise was
selected to be , where is the maximum
signal amplitude, and is the maximum noise amplitude.
Although this input signal does not supply the same rigorous
test for the system as a severe in-band noise (sharing the
local spectrum with the signal), the ability of the multiband
demodulation system to track the AM-FM signal in moderate
noise is amply demonstrated in Fig. 9(e) and (f). While a
noise analysis is beyond the scope of the present paper, we
expect that superior performance can be attained for most noise
situations through a denser filter sampling, as demonstrated for
continuous-domain demodulation systems of this type in [11].

V. CONCLUDING REMARKS

In this paper, we have developed generally applicable the-
orems for analyzing discrete AM-FM functions and their
behavior in discrete linear systems, as well as simple dis-
crete nonlinear systems comprised of products of discrete
linear subsystems. Approximations for the responses of these
systems to input functions of the form (1) and (2) termed
quasieigenfunction approximations(QEA’s) were derived that
complement the eigenfunction interpretation of sinusoids in
linear systems. For nonsinusoidal signals, the approximations
have errors that are bounded by Sobolev norm functionals
expressing the smoothness of the AM and FM information
signals and in terms of discrete energy variance function-
als expressing the durations of the involved system impulse
responses.

AM-FM models such as (1) and (2) that capture physically
meaningful signal nonstationarities are finding increased ap-
plications, particularly in instances where local nonstationary
signal structures are to be modeled in a globally consistent
way. New analysis techniques, expanding on those given here,
will help to exploit the power of the approach. Currently, we
are studying extended models of the form [12]

(46)

(47)

Generalizing the model to include the possibility of multi-
components is a natural one since signals may be composed
of subsignals containing multiple evolving information sets
best separately modeled as modulations. As the number of
components becomes very large, the models (46) and (47)
in fact may be made DFT-like. This suggests the powerful
notion of AM-FM representationsof signals, as opposed to
models, where a relatively small number of additive AM-FM
components are used to exactly represent subsignals composed
of locally coherent, yet nonstationary substructures. Efficient
representations that capture the essential modulation signal
structures using as few components as possible are of high
interest.

APPENDIX

Proofs of the main results are given here.
Proof of Theorem 1:The proof of Theorem 1 relies on

isolating the amplitude and phase differences between the
actual response and the approximation and then bounding these
differences in terms of the variation of the AM-FM functions.
The channel filter impulse response weights the local variation.
First note that by Taylor’s theorem with remainder [14]

(A.1)

where

(A.2)

From (1), (4), and (A.1)

(A.3)

and from (5), we have

(A.4)

By first applying the triangle inequality to the difference
between (A.3) and (A.4), introducing the zero term

inside the result, and applying the inequality
, the following bound on
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is obtained:

(A.5)

However, since

(A.6)

then

(A.7)

where the sum is not taken at in order to show the
interesting independence of the bound on

In addition, from (A.2)

(A.8)

so that

(A.9)

Finally, combining (A.5), (A.7), and (A.9)

Proof of Lemma 1:The proof extends results from the
proof of Theorem 1 by separating the channel impulse
response from the AM-FM variation. Note that in (A.7)

(A.10)

and therefore

(A.11)

where the filter and AM functions were separated by applica-
tion of the Cauchy–Schwarz inequality. This bound on
always exceeds that in (A.7).

Similarly, in (A.8)

and therefore, from (A.9)

(A.12)
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The proof is completed by combining (A.5), (A.11), and
(A.12)

where the dependence on has been removed.
Proof of Corollary 1: We proceed by breaking the error

into two terms corresponding to positive and negative expo-
nents of frequency and then applying the results of earlier
proofs to each of these terms. Introducing a bivalued variable

to index positive and negative exponents, we have
from (4), (A.1), (A.2), and Euler’s identity

(A.13)

and from (13), we have

(A.14)

Following the reasoning in the proof of Theorem 1, we have
that

(A.15)

The proof then follows easily from (A.7), (A.9), (A.11) and
(A.12).

Proof of Lemma 2:Results from previous proofs can also
be applied here. We have from (1), (4), (A.1), and (17)

(A.16)

and from (6) and (18)

(A.17)

Hence

(A.18)

The first two summations following the final inequality in
(A.18) can be identically bounded as in (A.7), whereas the
latter two summations can be identically bounded as in (A.9).
Combining these yields the desired result (19). Likewise,
applying (A.11) and (A.12) to (A.18) yields (20).

Proof of Theorem 2:By Lemma 2

(A.19)

Note that and recall (27) and
(32). Then, also by Lemma 2

Re

(A.20)

(A.21)

where for , we denote Combining
(A.19) and (A.21) completes the proof.
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