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Abstract — In this report we present very general, powerful multi-component AM-FM image
models capable of efficiently representing complicated nonstationary multi-partite images.
The nonstationarities in such images, which often contribute significantly to visual perception
and interpretation, are difficult to capture using stationary frequency techniques.

Highly localized nonlinear operators are developed for simultaneously estimating the am-
plitude and frequency modulating functions associated with each of the multiple components
on a pointwise basis. Since the demodulation algorithms are nonlinear, the components must
be isolated from one another prior to demodulation. This is accomplished with a multi-
band bank of optimally spatio-spectrally localized Gabor filters in a wavelet-like tesselation.
We introduce a statistical state-space image component model, and use it to develop opti-
mal filters for tracking the estimated modulating functions of each image component across
the filterbank channel responses. We develop practical techniques both for computing the
multi-component AM-FM representation of an image and for recovering the image from the
representation.
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1 Introduction

In this report, we develop a new multi-component AM-FM representation for images, present
an algorithm for computing the representation, and demonstrate reconstruction of images
from their computed multi-component AM-FM representations. To compute the represen-
tation, an image is considered as a sum of components each modeled by locally coherent,

complex-valued AM-FM functions of the form

t(x) = a(x) exp [j(x)], (1)

where in the general n-dimensional case x = (z1,%2,...,2,), t : R* = C, a : R* — [0, 00),

and ¢ : R* — R, or as a sum of locally coherent real-valued components

s(x) = a(x) cos [p(x)] . (2)

By locally coherent, we mean that the amplitude and frequency modulating signals a(x)
and Vp(x) vary smoothly in the sense of having tightly bounded first-order Sobolev norms.
Although the Sobolev norm is a global measure of smoothness, it is true in general that the
smaller the Sobolev norms, the more locally coherent the component (local coherency will
be quantified on a pointwise basis in Section 2). Some advantages of the multi-component
AM-FM representation may not be realized with fractal, self-similar, or extraordinarily dis-
continuous images, which are termed incoherent in this sense.

In terms of image representation, an important question that arises naturally is for
what class of images is the multi-component AM-FM representation more efficient, more
natural, or more convenient than the standard Fourier frequency representation? A related
question that arises under the auspices of image analysis is for what class of images is the
multi-component AM-FM representation more intuitive, more illuminating, or better suited
for revealing the structure of an image than the standard Fourier frequency representation?

For an image comprising N? pixels, the 2D DFT represents the image in terms of its
projection onto N? complex sinusoidal gratings, each supported over the entire image. If

the image is, in fact, composed of a small number of such gratings, then most of the energy



will be concentrated in a small number of the DF'T frequency coefficients. In this case, the
DFT representation will be efficient in the sense that only a small number of sinusoidal
components are necessary to represent the image, and will also reveal the inherent structure
of the image.

However, the complex sinusoidal grating, which is the kernel of the DFT, is also the sim-
plest AM-FM function: both amplitude and frequency modulations are constant over the
entire domain. Therefore, multi-component AM-FM representations always exist that are
at least as efficient as the DFT representation, and that are at least as suitable for reveal-
ing structure. Indeed, we expect that there may be nonstationary features in an image —
features that are better represented in terms of quasi-sinusoidal gratings whose amplitudes
and frequencies are allowed to vary across the domain. This idea forms the core impetus
motivating multi-component AM-FM modeling. If such components are present in an im-
age, then the DFT will, in general, admit many nonzero frequency coefficients, giving a
representation in terms of a linear combination of a large number of kernel functions. If
a component is present in one region of the image with a spatial frequency of €2, and this
frequency changes slightly to Q + € in an adjacent region, then DFT kernel functions (i.e.
complex sinusoidal gratings) of both frequencies must be present over the entire domain
in the DFT representation. In regions where either frequency is not directly present in
the image, additional gratings of related frequencies must appear in the DFT representa-
tion to cancel the unwanted frequencies (destructive interference). This feature of the 2D
DFT decreases the efficiency of the representation, and also tends to obscure the inherent
structure of the image from an analysis standpoint. Clearly, relaxing the kernel functions
to allow nonstationary, spatially varying amplitude and frequency modulations ameliorates
these shortcomings in the context of analyzing, interpreting, and representing nonstationary
images. For an image with nonstationary features and structure, multi-component AM-FM
representations will always exist that are more efficient than the DFT representation and
that better reveal the image structure. In the event that nonstationarities are not present,
multi-component AM-FM representations will always exist that are at least as efficient as
the DFT representation, and at least as well suited for revealing the structure (we reiterate

that the DFT representation is, in fact, a multi-component AM-FM representation where



each component is restricted to be monochromatic; e.g. to have constant modulating func-
tions). Indeed, the multi-component AM-FM representation is an exciting, new framework
in which to treat images of all classes, although its maximum utility is realized when applied
to images which exhibit the mildly restraining characteristic of local coherency.

Many images may be characterized in terms of multiple nonstationary components, some
of which are supported only on certain (potentially irregularly shaped) regions of the image.
Within the theoretical framework of the multi-component AM-FM representation, there is no
inherent difficulty in accommodating such regionally supported components. They may be
modeled with AM-FM functions with amplitude modulations which become zero in regions
where the component is not supported. However, the development of practical techniques for
computing the multi-component AM-FM representations of such images is a difficult prob-
lem. The development of a fully viable and satisfactory practical technique for assimilating
the estimated amplitude and frequency modulating functions arising from large numbers
of components closely spaced in frequency and supported on irregularly shaped subregions
of an image is ongoing. Nevertheless, in Section 5 we compute the multi-component AM-
FM representation of a complicated natural Brodatz texture image. It is both exciting and
compelling that, when we reconstruct the image from the computed representation, it imme-
diately becomes apparent that the essential structure, features, and information content of
the 256 x 256 image have been successfully captured using only 41 regionally-supported AM-
FM components. In fact, most pixels of the image are covered by three or fewer computed
AM-FM components. This stunning preliminary result validates the power and importance
of the multi-component AM-FM model as a new, emerging technique for modeling, analysis,
representation, and interpretation in a completely general image processing framework.

In an earlier related report, we introduced the concept of the analytic image, developed
nonlinear techniques for estimating the AM and FM modulating functions of a single image
component, and presented an analysis paradigm called dominant component analysis [1].
While the emphasis of the present report is the development of the more powerful multi-
component AM-FM representation, there will necessarily be a degree of overlap with the
previous report, which is required in order for this report to stand alone.

We are interested in analyzing and representing images containing regions of surface



texture or patterned markings that, while nonstationary and globally wideband, can be ef-
fectively modeled as being locally narrowband, in the sense that on a spatially local basis
the image spectrum is dominated by narrow distributions of frequencies centered about a
single, or small number of emergent frequencies. If the locally emergent frequencies do not
vary too wildly or discontinuously on a spatially local scale, then such regions are described
as being locally coherent. The development of techniques for characterizing and representing
such images in a way that facilitates and simplifies analysis in terms of the locally occurring
nonstationarities, which manifest important structural and perception cues, remains an im-
portant open problem. Indeed, the characterization and analysis of images in terms of their
instantaneous frequency content on a spatially local basis is fundamental to an increasing
variety of processing techniques in machine vision, image processing, and computational vi-
sion, including analysis, segmentation and modeling of texture [2—6], shape from texture [7],
and stereopsis [8].

Instantaneous frequency estimation based on AM-FM modeling techniques has been the
focus of significant recent research, and the efficacy of such techniques for analyzing and
characterizing locally coherent nonstationary signal and image components has been well
established [9-23]. In 1D, AM-FM models in terms of non-negative instantaneous frequency
can be efficiently computed using the Teager-Kaiser Energy Operator [13-15,17,19,22]. In
terms of analyzing and interpreting the structure, information content, and origin of certain
important signals (e.g. speech signals), the inherent ability of AM-FM models to capture
local nonstationarities offers significant advantages over traditional time-frequency distribu-
tions [24-31], and high-quality reconstruction of a 1D signal from the AM-FM model has
been demonstrated recently [9]. A multi-dimensional version of the Teager-Kaiser opera-
tor has been used to compute AM-FM models of images whose instantaneous frequencies
are constrained to the first quadrant of the spatial frequency plane [10,20,21], and related

demodulation algorithms have been applied to more general classes of images [1,11,12,18].

1.1 AM-FM Modeling

AM-FM modeling is most useful when the images of interest may be accurately mod-

eled as locally coherent AM-FM functions, or as sums of a few locally coherent func-
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tions. In (1),(2), note that ¢(x) and s(x) are uniquely related through s(x) = Re[t(x)]
and t(x) = s(x) + jH [s(x)], where H [-] indicates the multidimensional Hilbert transform

acting in the direction of the unit vector e;, defined by [1,31-33]

Hls) =+ [ stx—ve) )
= s(x)* 57(;27) 4)

where the integral is interpreted as a Cauchy principle value, e; is a unit vector orthogonal
to e;, and 0 is the Dirac delta. If w(x) = H [s(x)], then the Fourier transforms of w(x) and
s(x) are related by

W () = Flw(x)] = —jsgn [ e;|S(9). (5)

We always take the transform in the e, = [1,0]” direction, which means that the spectrum

of the complex image

t(x) = s(x) + jH [s(x)] (6)

is supported only in quadrants I and IV of the Q = [u,v|” frequency plane. We refer to
t(x) as the analytic image associated with the real-valued image s(x) [1]. Note that in
V(x) we have an unambiguous definition for the instantaneous frequencies of t(x). By the
instantaneous frequencies of s(x), we shall mean the (unambiguously defined) instantaneous
frequencies of its associated analytic image.

A single image component of the form (1) can be demodulated using the local nonlinear

algorithm

ax) = )] ™
Volx) = Re [V“")], ®)

Jt(x)

which is ezact for any general n-dimensional complex valued AM-FM component [12,18].

For a multi-component image modeled as the real part of the sum

K

t(x) = ) ai(x) exp[jei(x)], (9)

i=1



the nonlinear demodulation algorithm (7),(8) suffers from cross-component interference be-
tween the multiple image components. Therefore, prior to demodulation, it is necessary to
separate the individual components from one another. We accomplish this using a bank of
multiband filters. The filters must be spectrally localized to prevent interference between
components, but also spatially localized to capture nonstationarities in the locally narrow-
band components, which in general may be globally broadband.

The design of such a filterbank using a wavelet-like tesselation of Gabor functions, which
optimally realize the uncertainty principle lower bound on conjoint spatio-spectral local-
ization, can be found elsewhere [1,6,12,34]. The isotropic unity L?-norm baseband filter
is h(x) = ﬁ exp [—ixTx]. Upon adding scaling and frequency modulation (translation)
while maintaining unity L?-norm and aspect ratio, we obtain the scaled, translated channel
filter with center frequency €2,,:
gm(x) = exp [—LXTX] exp [jQWQ%x] : (10)

OmV 2T 402,

In the frequency domain, the filter is the Gaussian

Gm(ﬂ) = ?[gm(x)] = 20,V 2T exp [_4720}2:1(9 - Qm)T(ﬂ - Qm)] ) (11)
with radial center frequency r, = |Q,,| and orientation 6,, = arg[2,,]. Figure 1 shows

the quantities used to define the bandwidth of the filter. The circle in Figure 1(b) is the
n-peak contour of the filter. A line running from the frequency origin through the filter
center intercepts the n-peak contour at radial frequencies r; < ry, given by r; = o, —
v—Inn and ry = o, +/—In7n. A section of the filter evaluated along this line is shown
in Figure 1(a). The n-peak radial octave bandwidth is defined by B = log,[rs/71], which is
a design parameter of the filter bank. The orientation bandwidth is the angle between two
lines tangent to the n-peak contour and passing through the frequency origin. It is given by
© = 2arctan /7, where v = (2% — 1)?/(2 + 1)

Since the spectra of analytic images are supported only in the right frequency half-plane,
we arrange the filter center frequencies in the right half-plane along rays such that any group

of four adjacent filters intersect precisely where each is at a fraction 7 of peak response. With
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Figure 1: Quantities used in defining the bandwidth B of a Gabor filter. (a) Radial octave
bandwidth. The curve shows the filter evaluated on a line from the frequency origin through
it’s center frequency r,,. The filter magnitude response is at a fraction n of peak response
at the radial frequencies r; and 7,. (b) Orientation bandwidth. The circle with center r,, is
the n-peak contour of the filter in the Q = [u,v]” plane.

this dense spacing, every point in the right half-plane is covered by a filter responding at
n-peak or higher. Along each ray, the filter radial center frequencies progress geometrically
with a common ratio R, which is a design parameter of the filterbank. The radial center
frequency of the first filter on each ray, rg, is also a design parameter. The angular spacing
between rays is given by A = 2arcsin |(4R)™z {(R2 + 1)(y — 1) + 2R(y + 1)}% :

The four free design parameters ry, R, n, and B completely specify the filterbank. For the
examples in this report, we specified the filter bank by rq = 9.6 cycles per image, R = 1.8,
B =1 octave, and n = % In this case, v = % and © = 38.9424°. Figure 2 shows the entire
filter bank in the frequency domain for these parameter choices. The frequency domain
coordinates of the figure are such that the first quadrant is located in the lower right portion
of the figure. Under this convention, a vector from the frequency origin to the spectral
support of a sinusoidal grating points in the direction of propagation of the grating. There
are 40 filters arranged on eight rays spaced equally at angles of A = 20.6418°, with five
filters per ray, plus one filter at DC. Each filter in the figure has been independently scaled
for maximum dynamic range of grey scales.

Assuming that the filterbank has been properly designed, so that at most one component
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Figure 2: Frequency domain representation of the filter bank for choices of the design pa-
rameters 7o = 9.6 cycles per image, R = 1.8, B = 1 octave, and n = % There are 40 filters
arranged in a polar wavelet-like tesselation on eight rays with five filters per ray, plus one
filter centered at DC. Each of the 41 filters in the figure has been independently scaled for
maximum dynamic range in the available grey levels.

dominates the response of each channel filter at each pixel, demodulation of the filtered

component

tn(x) = /Rn t(x — p)gm(p)dp (12)

can be accomplished using the approximate algorithm

Vo(x) ~ V(x)=Re B;T(S)} , (13)
" Aw) tm(x)
a(x) ~ a(x) = ‘m‘ (14)

In deriving (13),(14), we make use of a quasi-eigenfunction approximation [1,12,18,34-37]
which tightly bounds the errors in the numerator and denominator of (13) by certain func-
tional norms of ¢,,(x), a(x), and Vip(x). The approximation errors are generally negligible
provided that g,,(x) is spatially localized and that the components of #(x) are locally co-
herent. The algorithm may not work well for components which are everywhere highly

incoherent, however.
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2 Demodulation of Multiple Components

The problem of analyzing a complicated, nonstationary real-valued image in terms of the
model (9) is ill-posed, since there are infinitely many unique sets of modulating functions
for which the real part of the model is exactly equal to the image. Given a decompo-
sition of the image into components, the Hilbert transform complex extension technique
uniquely determines the imaginary part and instantaneous frequency of each component.
However, the question of how the components themselves should be chosen still remains
ambiguous. Indeed, we must reiterate that any image may be interpreted as comprising a
single-component, although such interpretation may not in general admit a smooth AM-FM
representation. Hence we begin this section by clarifying, as far as possible, what is meant
by the term multi-partite image.

For applications in image processing and computational vision, the most useful interpre-
tations are generally those involving modulating functions that are as smooth as possible.
This corresponds to a decomposition of the image into components exhibiting as great a
degree of local coherency as possible, and which are hence amenable to spatially efficient
representation. Therefore, we favor decompositions with a small number of nonstationary
components that are as locally quasi-monochromatic as possible. Local coherency may be

quantified on a pointwise basis by the instantaneous bandwidth,

B(x) = {Im [L(X)] }2 = M, (15)
Jt(x) |a(x)]
the 1D analog of which has been treated by Cohen [24,26,27]. The form of (15) should be
compared to (8) and (13). For non-monochromatic images, a distribution of instantaneous
frequencies is present about the dominant (or emergent) frequencies at every point in the
domain of the image. B(x) characterizes the tightness of the spread of this distribution [1,12,
18,24,26,27]. If, in a certain image region, we can find a multi-component decomposition for
which the instantaneous bandwidths of the individual components are appreciably smaller
than the instantaneous bandwidth of the composite image in the region, then we say that
the image is multi-component in that region. As an example, consider the nonstationary

image shown in Figure 3 (a). One possible decomposition of the image into locally coherent
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Figure 3: Nonstationary multi-component synthetic image showing one possible decomposi-
tion into highly locally coherent components. (a) Composite image. (b) Component zero.
(c) Component one. (d) Histogram of B(x)z for the composite image. (e) Histogram of
B(x)? for component zero. (f) Histogram of B(x)? for component one. Note the difference
in the abscissa scale between the (d) part of the figure and the (e) and (f) parts, which
clearly indicates the multi-partite nature of this image.

components is shown in the (b) and (c¢) parts of the figure. Figure 3 (d) shows the histogram
of \/l% for the composite image, while histograms of \/m for the individual components
(shown in the (b) and (c) parts of the figure) are given in parts (d) and (e), respectively. Note
that the abscissa scale for the bandwidth histogram of the composite image is two orders
of magnitude larger than those for the bandwidth histograms of the individual components.
Therefore, this is clearly a multi-component image. However, these observations suggest
neither an approach for determining the number of components present in a general image,
nor for performing the decomposition into components, both of which are important problems
inviting future work.

We turn our attention now to simultaneous estimation of the modulating functions of all
components of a multi-component image. The image is processed with a bank of filters of

the form (11). By design, the filters are spaced densely in frequency so that virtually every

13



point in the frequency plane is covered by a filter responding at n-peak or higher. For a given
image component, this ensures that the instantaneous frequency of the component almost
always lies within the n-peak bandwidth of at least one channel filter. The filters must also be
spatio-spectrally localized, so that the instantaneous frequencies of all other components lie
far enough outside the n-peak bandwidth that the channel response is dominated by the given
component. The spatially localized filtered demodulation algorithm (13), (14) is applied to
the responses of all channels in the filterbank. The channel with response dominated by the
given component then yields estimates of that component’s modulating functions. Provided
that each channel is dominated by at most one component at each pixel, estimates of the
modulating functions of all components are produced at all pixels with this scheme. In
image regions where all components are widely spaced in frequency, good estimates of the
modulating functions of each component may even be produced by multiple channels.

At each pixel, there may, in general, also be channels which contain no image compo-
nent within their n-peak bandwidth, but which contain multiple components outside their
n-peak bandwidth such that no single component dominates the channel response. As a
consequence of the nonlinearity of the filtered demodulation algorithm, cross-component in-
terference will generally render the amplitude and frequency modulation estimates produced

by such channels unusable for computation of multi-component AM-FM representations.

3 Computation of the Representation

To compute the multi-component AM-FM representation of an image, the image is processed
with a multiband filter bank such as the one shown in Figure 2, and the filtered demodulation
algorithm (13), (14) is applied to the response of each channel filter at every pixel. Hence,
every channel in the filter bank produces observations @(x) and V@(x) at every pixel in the
image. The problem of computing the representation then becomes one of determining the
number of components present at each pixel and determining which channel should be used to
estimate the modulating functions of each component at each pixel. Figure 4 depicts, in the
frequency domain, a case where two components exist along a path in the image comprising

N + 1 pixels. We impose a 1D ordering on the pixels, such that traversing them in order
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Figure 4: Frequency tracks of two image components in a region. The index k advances as
we traverse the image pixels in the spatial domain.

results in our following a contiguous path in the spatial domain. Suppose we index the steps
of the traversal with the variable k. Then, for each value of k£, the instantaneous frequency
V(x) of each component defines a point in the frequency plane. We can visualize this point
tracing out a path as k grows, and this path may run across the frequency responses of the
various filterbank channels. Indeed, as we traverse the pixels in order, k varies from 0 to N
and, for each component, Vo(x) maps out a path in the frequency domain as depicted in
Figure 4. In this section, we shall model the modulating functions of a component as affine
functions of the state vector of a finite-dimensional linear system driven by uncorrelated
noise. The estimates of the modulating functions produced by the algorithm (13), (14) will
be modeled as noisy observations of an affine functions of the state vector, and a Kalman
filter will be designed to yield optimal estimates of the modulating functions given the noisy

observations as inputs.

3.1 Statistical State-Space Component Model

In this section we develop a statistical state-space model for an image component; this
model will be used to assimilate the estimates @(x) and V@(x) produced from the filterbank
channel responses into estimates of the modulating functions for each component. Using (1),
the model for an image component is completely specified by the estimates of the amplitude

modulation a(x) and the estimates of the horizontal and vertical components of the frequency
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modulation ¢®(x) = Z¢(x) and ¢¥(x) = a%c,o(x), up to an arbitrary constant of integration
which may be specified by an initial value of the instantaneous phase at a single pixel. In
developing the state-space model, we introduce an artificial temporal causality relationship
between points x in the sampled domain of the image by ordering them along a contiguous
path of pixels, as discussed in conjunction with Figure 4. Specifically, the temporal causality
relationship is induced by mapping points in the sampled spatial domain to a 1D lattice
according to a path function O : x — k, where k € N (we include the singleton {0} in the

naturals denoted by N). This reparamaterization of the domain maps the three modulating

functions of a component onto the 1D lattice according to:

a(x) v a(k), (16)
P (x) 2 oo (k), (17)
e(x) > @¥(k) (18)

Let p denote continuous-domain arc length along the 1D path induced by O, and use the

notation

¢ = salo) (19
IOl (20
k) = o) @1

to indicate the restriction to the discrete 1D lattice of the derivatives of the modulating
functions taken with respect to arc length along the path. Then it is possible to expand each

modulating function in a first-order Taylor series about a lattice point & [38]:

, k+1 0?
ak+1) = a(k)+d (k) + /k (k+1 = p) 5 50(o)dp, (22)
P+ = @0+ O+ [ (b1 955 e, (23)
P = P+ 0+ [ 10 (24

16



Likewise, the first-order derivatives of the modulating functions may be expanded in zeroth-

order Taylor series

ey = dw+ [T a, (29
41 = 0+ [ D (26
P = W+ [ e (27

Under the usual assumptions that the derivatives of the modulating functions are small,
slowly varying, or band limited [5,6,10,13-17,19-22, 33|, an argument could be made for
truncating the Taylor series (22) - (27). This amounts to considering that the modulating

functions are approximately described by a constant velocity model:

ak+1) ~ a(k)+d(k), (28)
d(k+1) ~ dk), (29)
" (k+1) = ¢"(k) + " (k), (30)
e"(k+1) = ¢"(k), (31)
e'(k+1) =~ ¢"(k)+¢"(k), (32)
e'(k+1) = ¢¥(k) (33)

However, the series (22) - (27) are explicit, and we obtain a more realistic image model here
by allowing the constant velocity terms in (28) - (33) to drift by stochastic processes which
approximate the integral terms in the explicit Taylor series. Specifically, we consider that
a(x) and ¢(x) are homogeneous, m.s. differentiable random fields, and model the integrals
in (22) - (24) by three noise processes uq(k), ug,(k), and u,, (k), respectively. Likewise, we
model the integrals in (25) - (27) with noise processes v4(k), vy, (k), and v, (k), respec-
tively. Collectively, we refer to these six noise processes as the modulation accelerations, or
MA’s, since they involve local averages of the second derivatives of the modulating functions.

Then, (22) - (27) may be written together in a canonical state-variable form to obtain the
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statistical state-space component model

Ca(k+1)] [1 1 0 0 0 01 a(k)] [ ua(k) ]
a(k+1) 01 0 0 0 0| d(k) vo(k)
" (k+1) _ 0 01 1 0 0f] ¢*(k) N Uy, (k) | (34)
0 (k +1) 00010 0|ek) Vi, (k)
W(k+1) 0 0 0 0 1 1|]| o¥k) Uy, (K)
Lev(k+1)] Lo 00 0 0 1]lewk)] Ly, k)]
with output vector
a(k)
Y (k) = | (k) | (35)
¥ (k)

Next, we must relate the quantities in the state-space model output vector Y (k) to the ob-
servations a(k), V@ (k) obtained from the filtered demodulation algorithm (13), (14). Three
factors contribute to errors in @(k) and V@(k): 1) discrete effects arising from the discretiza-
tion of the algorithm (13), (14), 2) cross-component interference occurring in image regions
where filterbank channel responses are dominated by more than one component, and 3) er-
rors in the quasi-eigenfunction approximation inherent in the numerator and denominator
of (13). We refer to these errors collectively as measurement errors, and model them with
three noise processes nq(k), ny, (k), and ny, (k), called the measurement noises. This results

in the observation equation

a(k) a(k) na (k)
k)| = | " (k) | + | ng, (k) |- (36)
k)] Le'(k) ] Lng, (k)

Note that we have not yet addressed the question of how to determine which channel of
the multiband filterbank should be used to obtain the estimates @(k), V@(k) corresponding
to a particular image component at any point k along the path induced by O. If the
nine noise processes un(k), va(k), and no(k) are appropriately specified, then the state-
space model (34) - (36) is statistically valid for any homogeneous, m.s differentiable image

component, under the assumption that the filterbank effectively isolates components on a

18



spatio-spectrally localized basis.

3.2 Specializing the Model

We now specialize the state space model (34) - (36) by making assumptions on the involved
stochastic processes to arrive at a practical technique for computing the multi-component
AM-FM representations of images belonging to specific classes. The validity of each assump-

tion will be discussed in Section 3.2.5.

3.2.1 First-order Moments of Modulation Accelerations

We assume that a(x) is twice m.s. differentiable and that (x) is three times m.s. differen-
tiable. Then, homogeneity implies that E[a"(x)] = E[p™ (x)] = E[p¥"(x)] = 0. It follows

immediately that
Elua(k)] = Elug, (k)] = Eluy, (k)] = Elva(k)] = Elvy, (k)] = Elv,, (k)] = 0. (37)

3.2.2 Second-order Moments of Modulation Accelerations

We use Cr(-) to denote covariance functions between various stochastic processes, e.g.
Cuga(k, ) = Elua(k)va(j)] — Elua(k)]Eva(5)]- (38)

We assume that ¢(x) possesses a mildly restraining statistical property known as quadrant
symmetry [39]. This property means that the covariance function of ¢(x) is even-symmetric
in each component of the lag vector. While it does not suggest that the covariance structure
of the phase of a real image should be isotropic, it does require that the covariation between
the phase at pixel (7,7) and the phase at pixel (i +m,j + n) be the same as that between
the phase at pixel (7,j) and the phase at each of pixel (i — m,j + n), pixel (i + m,j — n),
and pixel (i —m, j —n), in a statistical sense. Thus, the assumption of quadrant symmetric
phase is reasonable for a model that is to describe large classes of locally coherent image
components. Quadrant symmetry implies that even-order cross-partials of C,(x) are zero at

the origin, and hence guarantees that all same-order cross-partials of ¢(x) are uncorrelated
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at the lag space origin.

We further assume that the covariance structures of a”(x), ¢™(x), and ¢¥”'(x) are highly
spatially localized, so that they effectively have impulse-like behavior in both the vertical
and horizontal directions when viewed at the scale of the spatial sampling lattice (and,
consequently, also at the scale of the discrete 1D lattice induced by ). This assumption
asserts that, across broad classes of spatially sampled locally coherent image components, we
do not expect to find statistical correlation between the second derivative of the amplitude
from pixel to pixel, nor between the third derivatives of the phase from pixel to pixel. Thus,
these covariance structures may be modeled as being effectively impulsive at the scale of
the spatial sampling lattice. However, when viewed at a much finer scale in the continuous-
domain image component (i.e. prior to spatial sampling), the covariance structures of the
partials of a(x) and ¢(x) must be differentiable to guarantee existence of o, 02, and o7,
the variances of a”(x), ¢*"(x), and ¢¥”(x). Hence, we are modeling the covariance structures
of the partials of a(x) and ¢(x) as smooth, localized bumps. This is consistent with the
fact that, for locally coherent image components, we expect the modulating functions to
be smoothly varying and/or band limited, so that their partials (particularly their higher-
order partials) may be characterized having relatively small magnitudes (as compared to the
magnitudes of the modulating functions themselves) and effectively random second-order
statistical structure.

Then, the cross-covariance between u,(k) and u,(j) may be computed as follows:

Cua(k;J) = Elua(k)ua())]
- a,,(s /:H k+1— )/: (k41— a)8(8 — a)dads

a~5 (k—7). (39)

Analogous computations establish that

Cugy (h,3) = Blug, (W, ()] = 5020l = ), (10)
Cugy (h:3) = Elug, (R, ()] = 50%0(k — 5). (a1)
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The cross-covariance between v, (k) and v,(j) is

Cra(k,3) = Elva(k)ra()]

= 026k —7) /:H /:H d(B — a)dadf

= ook = j), (42)
and it follows from similar computations that

Cupy (k,§) = Elvy, (k)vy, (7)] = ogend(k—j), (43)
Cup, (k) = Elvy, (k)ve, ()] = 0ogund(k — j). (44)

Three more similar integrations yield

Cunalk.3) = Elua(B)ali)] = 202 (k ), (15)
Cugyy (5:9) = Blug, Mgy ()] = 0%k = j) (46)
Cutysy (br3) = Bl (Mg, ()] = 50%nd(k — ). (47)

The quadrant symmetric structure of ¢(x) implies that

Elug, (k)up, (4)] = Elug, (k)vy, (5)] = Elvy, (k)uy, (4)]
= Elv,, (k) ()] = 0. (48)

Finally, we recall that the amplitude modulation a(x) corresponds to slowly varying con-
trast changes across a locally coherent image component, whereas information describing the
local texture structure is manifest in the frequency modulation V(x). Since in general there
is no reason to expect statistical correlation between contrast and local texture structure in
a locally coherent image component, we assume that the amplitude a(x) and instantaneous

frequencies V(x) are independent. This implies
Blua(k)ug, (7)) = Elua(k)ug, ()] = Elua(k)ve, (7)]
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= E[ua(k)ycﬂy ()] = E[Va(k)u‘ﬂ%(j)]
= Elva(k)uy, (7)] = Elva(k)vy, (7))
= Elva(k)vy, ()] = 0. (49)

3.2.3 Measurement Noise

Characterizing the three measurement noises n,(k), ny,(k), and ny, (k) of eq. (36) is diffi-
cult. We continue to assume that the response of each channel in the multiband filterbank
is dominated by at most one image component at each pixel and to ignore issues concerning
the discretization of the filtered demodulation algorithm (13), (14). Then, the measurement
noises represent estimation errors arising only from errors in the quasi-eigenfunction approx-
imation inherent in the numerator and denominator of (13). The errors in the frequency

estimates are

10030 = (0 = e ol (50)
and
_oi(x) - Awx)
nwy(x) =y ( ) B(X) +C(X)’ (51)
while the amplitude measurement error is
2 2 ; T;X -x) " B
() = al) ~ VB + ) G (gl Al Awnl”)| L 62)
where
Az;x) = /]R2 a(x — y)®" (x — y)G (m; y)dy
= /]R 87 (x — ) [ (x - )G (m;y) — alx — y)¢" (x — ¥)Gy(m3 y)] dy
= [ # =) [ = 3)Galmiy) + alx — y)e (x — y)G iy dy | (53)
= / La(x —¥)G;(m;y)dy, (54)
- /R2 a(x — y)®7 (x — y)G (m; y)dy, (55)
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cos [p(x)]
= : 56
) Lin[so(x)J 0
Re (g (x)]
"(m; x) =
G (m; x) _Im[gm(x)]}, (57)
Im (g (x)]
Gy(m;x) = Re[gm(x)]], (58)

the observations at domain point x were taken from filterbank channel m, g,,(x) is the
impulse response of the m'™ channel filter, and G,,(€2) is the 2D Fourier transform of g, (x).
The expressions for the measurement noises in (50) - (52) are extremely cumbersome, and
their joint and marginal moments are difficult to evaluate. Evaluation of their joint moments
with the modulation accelerations are is equally difficult.

For locally coherent image components, the magnitudes of the second derivatives of the
modulating functions should be very small or negligible in relation to the magnitudes of the
actual modulating functions themselves. Indeed, with relation to (22) - (27), the second
derivatives of the modulating functions might be interpreted as “higher-order terms.” Fur-
thermore, in dealing with locally coherent signals and images, we have found that the QEA
errors are normally quite small in practice [35,40], except possibly at a few isolated points
corresponding to phase discontinuities in the image. The effects of QEA errors at these
points can be ameliorated by smoothing the estimated instantaneous frequencies with a low-
pass filter [4,5]. Therefore, despite the fact that closed form solutions for the covariances
between the measurement noises in (36) and the MA’s in (34) are not available, we expect
that the magnitudes of any covariance that might exist should be very slight, especially if
postfiltering of the estimated modulating functions is employed, and we assume for the re-
mainder of this report that the MA’s and measurement noises are uncorrelated. In the event
that later research establishes significant correlations between the MA’s and measurement
noises, and these correlations can be quantified, then the model (34) - (36) will be improved
by incorporating the measurement noises into the state equation (34). This would lead to
an extended Kalman filter for the optimal estimator of the modulating functions.

It is extremely difficult to infer anything about correlations among the measurement

noises from (50) - (52). However, given the block-diagonal structure of the state transition
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matrix in (34) and the lack of correlation between the MA’s, we do not expect significant
covariance between n,_and Ny, - In view of (14), it is apparent that errors in the frequency
estimates will lead to errors in the amplitude estimates. However, given the lack of closed
form expressions for these correlations, we will neglect them and realize that the model (34)

- (36) is suboptimal in this sense.

3.2.4 State Vector Covariance Matrix

We use the notation (k) to denote the state vector covariance matrix associated with (34):

)] [ alk)]”
|| @)
o) || )
O E i ||| i
k) || et
Lo (k) 1 Le” (k) ]

The (initial) value of the state vector covariance matrix at the first pixel along the path

induced by O where a component is supported is denoted by 7 (0).

3.2.5 Summary of Assumptions

In this section, we summarize the assumptions that have been made in Sections 3.2.1 - 3.2.3.
We assumed that a(x) is a homogeneous, twice m.s. differentiable random field and that
©(x) is a three-times m.s. differentiable random field. The differentiability assumptions are
reasonable, since any image may be considered as samples of a continuous-domain image
with continuously differentiable modulating functions. The homogeneity assumptions are
also reasonable in view of the law of large numbers. While the spatially computed sample
statistics of the modulating functions of a specific image may vary with space, we wish the
model (34) - (36) to be generally applicable to broad classes of images; it must be recalled
that any single image is but a single realization of the stochastic model.

We also assumed in Section 3.2.2 that the correlation structure of ¢(x) is quadrant

symmetric [39]. This means that the covariance function C,(x) is even in each component
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of the lag vector, and that the associated cross-spectral density functions are real-valued.
The assumption says that, across a broad class of locally coherent image components, we
expect that the covariation between the phase at one pixel and the phase at a second pixel
is statistically the same as that between the phase at the first pixel and the phase at a third
pixel separated from the first by an equal and opposite displacement. The assumption of
quadrant symmetry is a mild one in view of the fact that we want the model (34) - (36)
to be generally applicable across broad classes of images. Furthermore, quadrant symmetry
arises naturally in many applications. For example, images of scenes arising from physical
processes governed by isotropic, separable, or ellipsoidal random fields are all expected to
admit quadrant symmetric correlation structures.

We assumed that a(x) and Vp(x) are independent, which is justified since there is, in
general, no reason to expect the contrast and local frequency content of an image to depend
on one another. Consistent with the usual assumptions that the modulating functions have
small derivatives [5,6,14,17,33], or are band limited [10,13,15,16,19-22], we additionally
argued that we expected the partials of the modulating functions to have small magnitudes
with relation to the magnitudes of the modulating functions themselves, and that we also
expected the partials to be random in nature. It should be recalled that this does not imply
that we expect the sample covariances computed from any single image component to be
everywhere identically zero; rather, it implies that we expect a lack of spatial correlation
between the modulating function partials computed over broad classes of locally coherent
image components. Hence, we assumed that the correlation structures of a”(x), ¢*"(x), and
©¥"(x) are spatially localized and posses impulse-like behavior at the scale of the spatial
sampling lattice.

Finally, in Section 3.2.3 we assumed that the measurement noises of (36) are mutually
uncorrelated and uncorrelated with the MA’s. While closed form solutions for these covari-
ances are not yet available, we argued informally that they should be small in relation to
the magnitudes of the modulating functions.

Under the assumptions summarized in this section, the state-space model (34), (35) is no
longer completely general. Indeed, once specific values are assigned to the MA noise powers,

the measurement noise powers, and 7(0), the model is statistically valid only for classes

25



of image components whose variation conforms to the constraints of the model. However,
irrespective of the image under consideration, the discrete sequences a(k) and Vp(k) may
be considered samples of twice continuously differentiable bounded functions a(p), V(p).
Therefore, existence and boundedness of all quantities in (22) - (27) can be guaranteed for
any bounded discrete-domain image. Furthermore, for locally coherent image components,
the variations in a(k) and V(k) are necessarily smooth and not too erratic. Furthermore,
the magnitudes of the MA’s should be small compared to those of the modulating functions
themselves. Therefore, we expect the model (34), (35) to work well for describing broad
classes of locally coherent image components.

By example, Figure 5 shows the real parts of sixteen 256 x 256 8-bit grey scale image
components generated from (34), (35), all using the arbitrarily selected values o = 5x 1078,

Opon = g = 1077, and
w(0) =diag {1077 5x 107 5x1072 1077 5x 1072 1077}. (60)

The instantaneous phase of the first pixel (upper left corner) of each component was taken

to be uniform in [, 7|, and the path O was specified by

nM + m, n even;
k= (61)
(n+1)M —m—1, nodd,

where M is the column dimension of the image and x = [m n]”. This path corresponds to
traversing back and forth along alternating image rows, as depicted in figure 6.

From Figure 5, it is clear that the statistical state-space AM-FM image component model
is inherently capable of generating significant nonstationary features and structure. Also
evident from the figure is the fact that wide ranges of spatial frequencies, and therefore
broad classes of textured regions, can be characterized by the model, even for a single choice

of the parameters.

2 2

We now address the problem of determining the measurement noise powers o, , Oy ,and
T

afwy defined through (36). In [1], we described an analysis paradigm called dominant com-

ponent analysis, which, for an image which may be multi-partite, estimates on a pointwise
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Figure 6: Path function O : x — k used to generate the sixteen image components shown
in Figure 5, as given by Equation (61).

basis the modulating functions corresponding to the component which dominates the local
instantaneous frequency spectrum of the image. When this paradigm is applied to a single-
component image, estimates a(k), V@(k) corresponding to those in (36) are obtained for
the component at every pixel. Provided that the true values a(k), V(k) are known and
assuming that the image is ergodic, high quality estimates of the measurement noise powers
can be obtained by subtracting the true values from the dominant component estimates and
by computing the sample variance of the differences. Applying this approach to all 16 images

shown in Figure 5, we obtained the values

o, ~ 1.7379x 102 (62)
Onp, = 9.6432x 1077, (63)
2 ~ -3

Opp, = 34027 x107°. (64)

If the modulation acceleration noise powers, measurement noise powers, and initial state
vector covariance matrix 7r(0) are known, then the problem of determining from which
channel of the filterbank to take observations G (k) and V@(k) for any given image component
can be solved by following that component’s frequency domain track, as depicted in Figure 4,

with a track processor. At each pixel k£ along the path induced by O, the track processor
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Figure 7: Block diagram of the tracked multi-component paradigm.

predicts V@(k) and a(k), and observations of these quantities are taken from the channel
with center frequency closest to the predicted instantaneous frequencies. Optimal estimates
of the modulating functions can then be computed based on the observations and the track
history. A block diagram of the approach is shown in Figure 7. In the figure, the discrete-
domain image t(x) is analyzed with an M-channel filterbank, and estimates a(k), V@(k)
are produced by each of the M channels at every pixel. From these observations, the track
processor formulates optimal estimates a(k), V@(k) at every pixel for each of the K image
components.

With the state-space model (34),(35), subject to the assumptions summarized above in
this section, and observation equation (36), we have modeled the estimates of the mod-
ulating functions of an AM-FM image component produced by the filtered demodulation
algorithm (13), (14) as noisy observations of an affine function of the state vector of a finite-
dimensional linear system driven by uncorrelated noise. The Kalman filter is the unique
linear system which, given such noisy observations, produces minimum mean squared error
unbiased estimates of any affine function of the state vector of such a system. Therefore,
we use a Kalman filter for the track processor in Figure 7. The filter design is described in

Section 3.3.
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3.3 Track Processor

In this section we develop the track processor shown in Figure 7. We begin by observing
that the system modes of the model (34), (35) corresponding to the amplitude modulation,
the horizontal component of the frequency modulation, and the vertical component of the
frequency modulation can be decoupled to yield three independent second-order systems.
Hence, an independent Kalman filter will be used to track each one. The system for the

amplitude modulation is

with observation equation

and initial state vector covariance matrix

7a(0) = E a(o)] [a(o)] . (68)

' (0) | | (0)

Likewise, the decoupled instantaneous frequency system models are

{(px(k—i-l) _ [1 1] {(px(k)] . [u¢$(/€)j|’ (69)
o™ (k+1) 0 1] [¢™(k) Ve, (k)
[1 0] | (k)
Ty — , 70
7 soz’(k)] )
@* (k) = " (k) + ny, (k) (71)
e (0) ][ ¢*(0)]"
Ty, 0O)=F 72
© ?(0) Lo“”’(O)] 72
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and

[(py(k+1) _ [1 1] [(py(k;) . u@y(k)]’ 73
e¥(k+1) 0 1] [¢¥(k) Ve, (k)
[1 0] | ¢¥(k)
Y — ’ 74
¥ ( o (h) (74)
p¥(k) = ¥ (k) + ny, (k) (75)
0 (0) ][ ¢¥(0) 1"
m, (0)=F ) 76
(0 L@‘”(O) [wy’(O)] 70

We now outline the design of the Kalman filter for the amplitude estimator. The MA

covariance matrix is

1 1
P oke(k - j), (77)
!
while the measurement noise covariance is
E[ng(k) na(j)] = 03,6(k = j). (78)

The predicted state vector at pixel k£ along the path induced by O given k — 1 observations

a(y) is
—~ a(klk — 1)
X(klk—-1)=]_ , (79)
a'(klk —1)
and the recursive formulation for the predicted state vector error covariance matrix is
Pii(k+1lk) Pio(k+1]k)
Pk +1|k) = (80)
Poi(k+1lk) Pyo(k+1|k)

where

P (k+1k) = Pii(klk—1)+2P 5(klk — 1)+ Pyo(klk — 1)
[Pra(klk = 1) + Pro(klk — DJ? N 102
Pyi(klk— 1) + 02, 3 "

Plyg(k + 1|k) == Pz,l(k + 1|k) == P1,2(l€|k - 1) + PQ,Q(ICVC - 1)
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~ Pip(klk = 1)[Pr(k|k — 1) + Prao(klk — 1)] L
Pry(klk—1) + 02, 9 e

and
Pf,Q(kUc - 1)

Poalk11k) = Poalklh = 1) = =1y 07, T %

1.

The estimated state vector at pixel k£ given k observations is

—~ a(k|k
D= lél'(<k||k))]’

and its error covariance matrix is

P2 (klk—1)
Pl,l(kV‘C - 1) - Pl,l(lkl\k—l)Jra%a

P11(k|lk—1)P1 2(k|k—1
Pro(klk—1) — ’Ijl,i(k‘klljjgl% L Pyy(klk—1)

P o(klk—1) — Py (klk—1)Py o (k[k—1)

P(E) = Pl ] )

PPy (k[k—1)
P1,1(k‘k—l)+0'%a

Finally, the Kalman gain vector for the amplitude estimator is

g (k) %
K(k) = l & ] - [ Poalkli—1)  |° (83)
ﬂa( ) Pl,l(k‘kfl)—{-o'%a

Completely analogous developments lead to the gain sequences for the instantaneous fre-
quency estimators, from which it follows that the optimal equations for the track processor

in Figure 7 are

a(klk) = a(klk —1) + aq(k)@k) — a(k|k — 1)), (84)
d(k+1k) = d(klk—1)+ Bu(k)@k) — a(klk — 1)), (85)
a(k +1k) = a(klk) +d'(k+1]k), (86)

e (klk) = @2(klk = 1) + ap, (k)(9? (k) — o*(k|k — 1)), (87)
e (k+1k) = @"(klk—1) + By, (k) (% (k) — @7 (k|k — 1)), (88)
PPk +11k) = @ (klk) + ¢ (k + 1]k), (89)
Q(klk) = @V(klk —1) + ap, (k) (¢¥ (k) — ¥ (k[k — 1)), (90)
PV (k+1]k) = @¥(klk = 1)+ B,, (k) (& (k) — ¢¥(klk — 1)), (91)
Gk +1k) = o¥(k|k) + o¥ (k + 1]k). (92)
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Subject to the assumptions outlined in Section 3.2.5, the track processor (84) - (92) is

unbiased:
a(k) a(k)
E| (k) | = | ¢"(F) | (93)
@ (k) @Y (k)

It is also optimal, in the sense that the mean squared errors in a(k) and V@(k) are minimized.

3.4 New Track Starts

At each point ¢ in the path O, we start new tracks using the observations a(i) and V@(i)

obtained from channels which maximize the quantity

(1) |Gn (VG (7))
maxq |G, ()]

Q(n) = (94)

where @, (i) and V@, (i) are the amplitude and frequency estimates obtained from filterbank
channel n, provided that these observations do not associate with an already existing track.
Note that the quantity |G, ()| / maxq |G, (€2)] lies between zero and one, and increases as Q
moves closer to the center frequency of the channel. Hence, for a given component, tracking
will be initialized using the channel whose center frequency is closest to the instantaneous
frequency of the component, affording improved immunity against out-of-band information
through an enhanced SNR.

The track is initialized at pixel ¢ using channel n by taking

a(0]0) = @n(i) (95)
d(0/0) = (i) — Gn(i — 1) (96)
P(0j0) = @2(i) (97)
e7(0[0) = @*(i) — (i — 1) (98)
e(0[0) = () (99)
eV (0[0) = @¥(i) —@¥(i—1) (100)

Typically, for some small number L, new tracks are started at each pixel using the amplitude
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and frequency observations from the L channels having the largest values of Q(n) from among
those channels producing observations that do not associate with an already existing track.
Under the assumption that the filter bank has been constructed such that at most one
component dominates the local frequency spectrum of each channel at each pixel, in an
image region where K components are present this scheme guarantees that all components

will be tracked by the [K/L]™ pixel of the region.

4 Reconstruction

In the preceding section, we described a practical technique for computing the multi-component

AM-FM representation

{ax(m,n), Vgr(m, n) }ke[l,K], (m,n)€[0,M—1]x[0,N—1] (101)

of an M column by N row K-component discrete-domain image. Reconstruction of the
image from the representation is a difficult, ill-posed inverse problem. If error free continuous-
domain frequency estimates V@ (x) were available, then the instantaneous phase ¢ (x) of the
k™ component could be recovered by integrating along arbitrary paths in the image domain.
However, due to estimation errors in (13) and in (84) - (92), the estimated phase gradient
field is not, in practice, conservative. Therefore, summing the discrete-domain frequency
estimates around arbitrary closed paths will generally not yield zero. Since estimates of
both components of the phase gradient are available at every pixel, the phase reconstruction
problem is, in fact, overdetermined.

While various interpolation schemes could be employed, we have found that, for compo-
nents supported in a rectangular region, it is often satisfactory to reconstruct the phase of

the k™ component according to

or(m,n) = % [cﬁk(m —1,n) 4+ @i(m —1,n) + @p(m,n — 1) + (;;yc(m,n — 1)] ) (102)
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The phase is reconstructed along the top row of the component by iterating

Gr(m,ng) = Gr(m — 1,n0) + @i (m — 1,ng) (103)

and down the leftmost column by iterating

@r(mo, n) = @r(mo,n — 1) + @i (my,n — 1). (104)
The phase reconstruction is initialized by saving an initial estimated phase sample

w} (105)

Or (Mg, ng) = arctan
Pr (Mo, no) {Re[ti(mo,no)]

during computation of the multi-component representation (101), where tracking of the &
component was begun at pixel (mg,ng) using the amplitude and frequency observations
obtained from filterbank channel i, and ¢;(m, n) is the response of the 7" channel filter (the
filters given by (10), (11) are conjugate symmetric in the space domain, and hence introduce
no phase shift in the response image). Note that in (105) it is again necessary to assume
that t;(mg, ng), the response of the channel used to start the track, is dominated by only one
image component. Interference from other components would cause the phase reconstruction
to be initialized on an erroneous value.

With the phase reconstruction algorithm (102) - (105), the deleterious effects of estima-
tion errors in V{@(x) are cumulative. To ameliorate this effect, we improve the robustness
of the technique by saving estimated phase samples @ (m, n) on a rectangular grid. We then
reconstruct the phase on each rectangle of the grid independently, beginning with the phase

sample at the upper left corner. The component is then reconstructed using (1):
tk(m,n) = ax(m, n) exp [j@x(m,n)] . (106)

Once t;(m, n) is recovered for all components, the image is reconstructed from (9) according

to

if (m,n) (107)
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5 Examples

The 256 x 256 two-component image of Figure 3 is shown again in Figure 8(a). Components
one and two are shown individually in the (b) and (c) parts of Figure 8, respectively. The
multi-component paradigm depicted in Figure 7 was applied to compute the multi-component
AM-FM representation (101) using the multiband filterbank depicted in Figure 2, the filtered
demodulation algorithm (13), (14), and the track processor described in Section 3.3. To avoid
edge effects from the filterbank, estimation and component tracking where not performed on
the outside 16 rows and columns of the image.

The track processor correctly identified the presence of two components. Amplitude esti-
mates @, (m, n) for component one are shown in the (d) part of the figure, while the horizontal
and vertical components of the instantaneous frequency estimates, ¢%(m,n), g?l’ (m,n) are
shown in the (e) and (f) parts, respectively. These estimated quantities are in near perfect
agreement with the true values. The small region of oscillatory behavior visible in the vertical
frequency estimates corresponds to the top rightmost portion of component one as depicted
in Figure 8(b); the vertical frequency is very nearly zero in this region. The oscillations oc-
cur because, at very low frequencies, the distinction between which image features should be
interpreted as amplitude modulation and which should be interpreted as frequency modula-
tion becomes unclear. Note that this oscillatory behavior also propagates into the amplitude
estimates, shown in Figure 8(d), as a consequence of the dependence of the amplitude es-
timates on the frequency estimates through Equation (14). The amplitude and frequency
estimates @y(m,n), ¢%(m,n), and (pN‘g(m, n) for component two are shown in the (g), (h),
and (i) parts of Figure 8. Once again, these estimates are in near perfect agreement with
the true values. Collectively, the (d) — (i) parts of Figure 8 constitute the multi-component
AM-FM representation (101) of the image. Note how smooth the AM-FM representation is,
despite the fact that there are rapid variations in the image. Significant compression of the
estimated quantities could be achieved, e.g. through linear predictive coding.

The individual components were reconstructed from the multi-component AM-FM repre-
sentation on a 32 x 32 pixel grid of estimated phase samples (105) using the algorithm (102)

— (104), (106). The reconstructions of components one and two are shown in the (j) and (k)
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parts of Figure 8, respectively. Visually, the reconstructed components are virtually indistin-
guishable from the true values. The reconstruction of the multi-component image using (107)
is shown in the (1) part of the figure, and is also virtually indistinguishable from the true
values in Figure 8(a).

Finally, we applied the multi-component paradigm to compute a multi-component AM-
FM representation for the tree image of Figure 12 (a). This complicated, nonstationary
multi-partite image presents significant challenges since the number of components, as well
as the sizes and shapes of their regions of support are unknown. The filterbank of Figure 2
was again used, but in this case the assumption that each channel is dominated by at most
one component at each pixel was almost certainly violated. In many parts of the image,
there appear to be many components and harmonics closely spaced in frequency, giving
rise to errors in the demodulation algorithm (13), (14) due to cross-component interference.
Furthermore, there is no way to determine the optimal Kalman gain sequences for the track
processor, and hence the computed representation is suboptimal.

As we noted in the preceding example, very low frequency information is not particularly
well suited to computed AM-FM modeling due to the ambiguity inherent in determining
which features of the low-frequency structure should be interpreted as amplitude modulation,
and which should be interpreted as frequency modulation. Hence, we began by extracting
the low-frequency component shown in Figure 12(b) by linear filtering prior to computation
of the representation. Next, we heuristically divided the image into rectangular regions,
and applied the approach of Figure 7 to each one. Once again, component tracking and
estimation where not performed on the outside 16 rows and columns of the image to avoid
filterbank edge effects. Many tracks were generated in each region, and we hand-selected 41
of them.

Reconstructions of these 41 components computed on 4 x 4 pixel grids of estimated
phase samples are shown in Figures 9 — 11, where each individual component image has
been independently scaled for maximum dynamic range of grey scales. Summing these
reconstructed components with the low-frequency component shown in Figure 12(b), we
obtained the excellent reconstruction shown in Figure 12 (c). Clearly, the 41-component

AM-FM representation has succeeded in capturing the essential structure, features, and
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Figure 8: Multi-component AM-FM representation and reconstruction of a synthetic image.
(a) Nonstationary two-component image. (b) True values for component one. (c) True
values for component two. (d) Amplitude estimates for component one. (e) Horizontal
frequency estimates for component one. (f) Vertical frequency estimates for component
one. (g) Amplitude estimates for component two. (h) Horizontal frequency estimates for
component two. (i) Vertical frequency estimates for component two. (j) Reconstruction of
component one. (k) Reconstruction of component two. (1) Reconstructed image.
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information content of the image. Most pixels in the reconstructed image are covered by

three or fewer reconstructed AM-FM components.
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6 Conclusion & Future Work

In this report we introduced the multi-component AM-FM representation as a powerful new
technique for modeling, analysis, representation, and analysis of images. The representa-
tion efficiently characterizes nonstationary, multi-partite images as sums of locally-coherent,
nonlinear AM-FM functions that naturally and elegantly facilitate analysis in terms of the
nonstationarities, where important visual and perceptual cues are often manifest. The 2D
discrete Fourier transform is, in fact, the simplest multi-component AM-FM representation.
For any image, more general multi-component AM-FM representations always exist, and
these may be both more efficient than the DF'T and better suited for analysis than the DFT.
Using a statistical state-space image component model, we developed practical techniques
for computing the multi-component AM-FM representation and for recovering the image
from the computed representation. Under the assumptions that the multiband filterbank and
track processor gain sequences are correctly designed, the computed representation is both
unbiased and optimal in the mean squared error sense. Tracking of all components is also
guaranteed. We computed multi-component AM-FM representations of two multi-partite
images, and obtained reconstructions in remarkable agreement with the original images.
Important future work remaining in this area includes overcoming the extremely difficult
problems in treating complicated natural images, which may contain many components

closely spaced in frequency and supported on irregularly shaped regions of the image.
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(a)

Figure 9: Reconstructions of 20 AM-FM components of the tree image from their amplitude
and frequency estimates.
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(n)

Figure 10: Reconstructions of 16 AM-FM components of the tree image from their amplitude
and frequency estimates.
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(e)

Figure 11: Reconstructions of 5 AM-FM components of the tree image from their amplitude
and frequency estimates.

Figure 12: Reconstruction of the complicated natural multi-partite Brodatz texture image
tree from 41 computed AM-FM components and a low-frequency component. (a) Tree image.

(b) Low-pass component extracted by linear filtering. (c¢) Reconstruction from 41 AM-FM
components and the low-pass component.
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