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The Multicomponent AM-FM Image Representation

Joseph P. Havlicek, David S. Harding, and Alan C. Bovik

Abstract—We compute AM-FM representations for multicomponent,
nonstationary images using a statistical component model. Components
are isolated with a filterbank comprising frequency and orientation selec-
tive channels. The modulating functions for each component are estimated
from the channel responses using localized nonlinear operators followed
by optimal MMSE estimators. We also demonstrate reconstruction from
the representation.

1. INTRODUCTION

The efficacy of AM-FM models for instantancous frequency
estimation and nonstationary signal and image characterization has
recently been intensely studied [1]-[5]. A multidimensional version
of the Teager—Kaiser operator has been used to compute AM-FM
models of single-component images [1], [5], and related algorithms
have been applied to more general images [2], {4], [6]. Multicom-
ponent AM-FM modeling techniques represent images as sums of
locally coherent complex-valued components, each of the form

t(x) = a(x) expljp(x)] (M

where (x) = [21,2]7, : R? — C, a: R? — [0, 0c), and ¢: R —
R, or as sums of locally coherent real-valued components s(x) =
a(x) cos[p(x)]. We refer to a(x) and Ve (x) as a component’s
amplitude and frequency modulating functions. By locally coherent,
we mean that the modulating functions vary smoothly in the sense
of having bounded first-order Sobolev norms (some advantages
of AM-FM modeling may not be realized with components that
are fractal, self-similar, or extraordinarily discontinuous in nature;
such are termed incoherent in this sense). Local coherency may be
quantified on a pointwise basis by the instantaneous bandwidth [7]

as follows:
VT Vel
b <">‘{‘m{jt<x>” = eGP @

If a multicomponent decomposition exists in a region such that B(x)
is appreciably smaller for the individual components than for the im-
age, then we call the image multicomponent in that region. Consider
the image of Fig. 1(a). One decomposition into two components is
shown in the (b) and (c) parts of the figure. Fig. 1(d) histograms
v/ B(x) for the composite image, whereas 1/ B(x) is histogrammed
for the individual components in Fig. I(e) and (f). The image
is clearly multicomponent since the two-component interpretation
reduces \/m by approximately two orders of magnitude.

The purpose of this correspondence is to present late-breaking
research on the multicomponent demodulation problem by proposing
a practical technique for computing the multicomponent AM-FM
representation

{Z’k(m»")vV’ﬁk(mvn)}ke[l,K].(m_n)e[omfux[o“r\“fl] ©)

of an M-column by N-row K -component discrete-domain image and
demonstrate image reconstruction from the representation. Although

Manuscript received November 21, 1994; revised November 16, 1995. This
work was supported in part by a grant from the Texas Advanced Research
Projects Agency and by the Air Force Office of Scientific Research, Air Force
Systems Command, USAF, under Grant F49620-93-1-0307.

The authors are with the Department of Electrical and Computer Engineer-
ing, The University of Texas at Austin, Austin, TX 78712-1084 USA.

Publisher Item Identifier S 1057-7149(96)04182-6.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. 6, JUNE 1996

computation of the AM~FM representation for complicated, natural
multipartite images is a difficult problem, we present dramatic prelim-
inary results, where the essential structure, features, and information
content of such an image are clearly captured using only a small
number of AM-FM components.

Note that #(x) in 1 and the corresponding real component s(x)
are uniquely related through s(x) = Re[t(x)] and ¢(x) = s(x) +
JH[s(x)], where H[-] indicates the 2-D Hilbert transform acting in
the e, = [1,0]7 direction, defined by

5(xTey)

mxTe,

Hs(x)] = 1 /s(x - yez)@ = s(x) * 4)
T JR Yy
The integral is interpreted as a Cauchy principle value, e, = [0, 1]T,
and 6(-) is the Dirac delta. The Fourier transforms of s(x) and
H[s(x)] are related by F{H[s(x)]} = —ssgn[Q7 e,]S(2), implying
that the spectrum of the complex image #(x) is supported only in
quadrants I and IV of the §2 = [u,v]T frequency plane. We refer to
t(x) as the analytic image associated with s(x) [6]. In V(x), we
have an unambiguous definition for the instantaneous frequencies of
t(x), and we define these to be the instantaneous frequencies of s(x).
A single component of the form (1) can be demodulated by the
local nonlinear algorithm

a(x) = [t(x)], (©)

ix) = Re | VEH)
which is exact for any general complex-valued component [2], [4].
Equations (6) and (2) should be compared. While any image can be
represented exactly with a single component, there is no guarantee
that such representations admit smooth modulating functions. Indeed,
images exhibiting a multipartite character, which are of great practical
interest, are better modeled as the real part of

K
t(x) = Y ai(x) expljpi(x)] 0
=1
in which case, the nonlinear algorithm (5) and (6) suffers from
cross-component interference. Hence, it is necessary to separate the
individual components from one another. We accomplish this with
a multiband filterbank, which must be sufficiently spectrally local-
ized to prevent interference between components but also spatially
localized to effectively capture nonstationarities.

The design of such a filterbank using a wavelet-like tesselation
of Gabor functions, which optimally realize the uncertainty principle
lower bound on conjoint spatio-spectral localization, appears else-
where [2], [6], [8]. The isotropic, scaled, translated, unity L?-norm
channel filter is

gm(x) = ﬁm exp {— %;ZnXTX:l exp [j?ﬂ’ﬂqu} ®)

with radial center frequency rm, = || and orientation 6, =
arg[Q9m]. The n-peak radial octave bandwidth is B = log,[{rm +
V=Tnn/(27x0m)}/{rm — V/=1Inn/(270,,)}], and the »-peak ori-
entation bandwidth is © = 2arctan,/, where v = (2% —1)% /(28 +
1)2. We arrange the filters on a polar grid such that the n-peak
contours of any four adjacent filters intersect at a single frequency.
Radial center frequencies along rays progress geometrically with ratio
R, beginning at ro, and the angular spacing between rays is A =
2arcsin[(4R) % {(R?41)(v—1)+2R(v+1)}7]. For the examples
in this correspondence, ro = 9.6 cycles per image, R = 1.8, B=1
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Nonstationary multicomponent synthetic image showing one possible decomposition into highly locally coherent components. (a) Composite image.

(b) Component one. (c) Component two. (d) Histogram of B(x)% for the composite image; (¢) histogram of B(x)%for component one; (f) histogram
of B(x)Zzfor component two. Note the difference in the abscissa scale between the (d) part of the figure and the (e) and (f) parts, which clearly

indicates the multipartite nature of this image.

octave, and ny = £, implying v = £ and © &38.9424°. Fig. 2 depicts
this filterbank in the frequency domain.

Provided the filterbank design is such that at most one component
dominates the response of each channel at each pixel, demodulation
of the filtered component t,(x) = [o, t(Xx — P)gm(p)dp can be
accomplished with the approximate algorithm

Vo(x) & V() = R[%} ©)
a(x) = @(x) = %l (10)

The approximation errors in the numerator and denominator of (9)
are tightly bounded by a quasi-eigenfunction theorem [2], [4], [6], [8],
[9] involving certain functional norms of g, (x), a(x), and V(x).
The errors are small, provided that g, (x) is spatially localized, and
tm(x) is locally coherent. By applying (9) and (10) to the responses
of all filterbank channels, estimates of the modulating functions of
all components are produced at all pixels.

II. COMPUTATION OF THE REPRESENTATION

Given an initial phase sample, the component model (1) is de-
termined by the amplitude a(x) and the horizontal and vertical
frequencies ¢”(x) = Z¢(x) and ¢¥(x) = a%a,a(x). The problem
of computing the representation is that of determining, at each pixel,
the number of components present and which channel to use in
estimating the modulating functions of each component. We introduce

an artificial temporal causality relationship between points in the
sampled image domain by mapping them to a 1-D lattice according
to a path function O: x +— k, k € N. This reparamaterization
maps the three modulating functions of a component according to
a(x) =% a(k), " (x) v @ (k), (x) > @ (k). Suppose
two components exist in a region comprising IV + 1 pixels. As the
pixels are traversed in order, k varies from 0 to N. Concomitantly,
the frequency Ve (k) of each component maps out a path in the
frequency domain, as depicted in Fig. 3. Let p denote continuous arc
length along O and use the notation

I RN
@) = gpalb) = goa(0)| an

to indicate the restriction to the discrete 1-D lattice of the derivatives
of the modulating functions taken with respect to p. Then, a(k)
and a’(k) may be expanded in first- and zeroth-order Taylor series,
respectively, as follows:

k1 92
a(k+1)=a<k)+a’<k>+/k (k+1= )5 salo)is,
(12)

2

k+1 )
dEn=d 0+ [ el (13)
Jk P

The components of Vi (k) may each expanded in analogous series.
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Fig. 2. Frequency domain representation of the filterbank for choices of the
design parameters 7o = 9.6 cycles per image, R = 1.8, B = 1 octave, and
n = % There are 40 filters arranged in a polar wavelet-like tesselation on
eight rays with five filters per ray, plus one filter centered at DC. Each of
the filters in the figure has been independently scaled for maximum dynamic
range in the available grey levels.

Fig. 3. Frequency tracks of two image components in a region. The index
k advances as image pixels are traversed in the spatial domain.

A. Statistical State-Space Component Model

We model a(x) and ¢(x) as independent, homogeneous, m.s.
differentiable random fields and require that ¢(x) has quadrant
symmetry [10]. We write wa(k), ue, (k), u,, (k) for the integral
in (12), va(k), vy, (k), vy, (k) for that in (13), and refer to these
six processes collectively as the modulation accelerations (MA’s).
Restating (12) and (13) for all three modulating functions, we obtain
the statistical state-space model

alk+1) 11000 071 alk) walk)
a'(k+1) 01 00 0O a' (k) va (k)
P k1| 000 1 10 0 |or )| | fue () | gy
S+ T 0 0 0 1 0 0l v (k)
o (k+1) 0000 1 1]]|evk) e, (k)
(k4 1) 000 0 0 1]l v (k)

with output vector [a(k) ©*(k) ¢¥(k)]T. We relate the state-
space model output vector to the observations @(k), V@(k) obtained
from (9) and (10) by modeling the estimation errors with noise
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Fig. 4.- Block diagram of the approach for computing the multicomponent
AM-FM representation of the image #(x).

processes . (k). n, (k), and n,, (k) called the measurement noises

G7k) | = | (k) | + |14, (k) (15)
m]  lew ] e ®)

With appropriately specified noise processes, the component model
(14) and (15) is statistically valid for any image with homogeneous,
differentiable amplitude and quadrant symmetric, differentiable phase
under the assumption that filterbank isolates components on a lo-
calized basis. It follows from homogeneity that the MA’s are zero
mean. Once specific values are assigned to the noise powers and
7(0), which is the initial state vector covariance matrix of (14),
the model is statistically valid only for specific classes of image
components. However, even under a single choice of the parameters,
wide ranges of spatial frequencies, and therefore broad classes
of textured regions, can be characterized. Furthermore, for locally
coherent components, variations in a(k) and V(k) are necessarily
smooth and not too erratic. This implies that the MA noise powers are
relatively small, which is consistent with the usual assumptions that
the modulating functions have small derivatives or are bandlimited
[1], [5]. Therefore, we expect the model (14) to be effective for
describing broad classes of locally coherent components.

If #(0) and the noise powers are known, determination of the
filterbank channel from which to take observations @(k) and V@(k)
for any given component is made by following the component
frequency domain track, as depicted in Fig. 3, with a track processor.
At each pixel along O, this processor predicts V@(k) and a(k),
and observations of these quantities are taken from the channel
with center frequency closest to the predicted frequencies. Optimal
estimates of the modulating functions are then computed from the
observations and track history. A block diagram of this approach is
shown in Fig. 4, where the modulating functions are estimated for
all components of a K -component image ¢(x). The discrete-domain
image is processed with an M -channel filterbank, and estimates @ (%),
V& (k) are produced by each of the M channels at every pixel. From
these observations, the track processor formulates optimal estimates
a(k), Vo(k) for each of the K image components.

Finally, we assume that the correlation structures of a(x),
©*"(x), and ¥’ (x) are localized so that they appear impulse-
like at the scale of the spatial lattice induced by . Under this
mild assumption, the system modes of (14) corresponding to the
amplitude modulation and the horizontal and vertical components of
the frequency modulation can be decoupled to yield three separate
second-order systems.
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Fig. 5. Multicomponent AM~FM representation and reconstruction of synthetic image. (a) Amplitude estimates for component one. (b) Horizontal frequency
estimates for component one. (c) Vertical frequency estimates for component one. (d) Amplitude estimates for component two.

B. Track Processor Likewise, the optimal frequency estimators are

We have modeled the estimated modulating functions of a compo- (k| k)=¢" (k| k—1)+ oy, (k)

nent as noisy observations of an affine function of the state vector

L O : : 4 x (@%(k) — ¢*(k | k= 1)), (19)
of a finite-dimensional linear system driven by uncorrelated noise. ot oz
Therefore, the MMSE optimal linear track processor involves Kalman Gk +11k) =" (k| k—1)+ fo. (K)
filters. The explicit recursive formulation for the optimal amplitude X (B (k) — ¢"(k | k= 1)), 20
estimates a(k | k) is k41| k) =3 (k| k) + " (E+11k) @D
and
alk | k)= alk | k- 1)+ aa(k)@k) — a(k | k- 1)), Gk k) = @' (k| k= 1)+ ap, (k)
(16) x (¢%(k) = ¢"(k | k= 1)), (22)
(k411 k)= (k| k= 1)+ Ba(R)(@k) —a(k | k— 1)), GV (k41| k) =" (k| k—1)+ B, (k)
a7 X (§Y(k) — ¢"(k | k — 1)), (23)

ak+1|k)=a(k| k) +a (k+1]Fk). (18) GU(k+1 k)= ¢ (k| k)+ ¢V (k+1]k). 24)
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Fig. 5. (Continued.) Multicomponent AM-FM representation and reconstruction of the synthetic image: (e) Horizontal frequency estimates for component
two; (f) vertical frequency estimates for component two; (g) reconstruction of component one; (h) reconstruction of component two; (i) reconstructed image.

Formulations for the gain sequences ap(k), 3n(k) follow from
recursive expressions for the state vector error covariance matrices
associated with the decoupled systems. The track processor
(16)-(24) is unbiased in that FEla(k) $7(k) ¢¥(k)]Y =
[a(k) ©"(k) @¥(k)]* and optimal in the MMSE sense.

C. New Track Starts

At each point i in O, we start tracks using observations from
channels maximizing Q(n) = @, (1)|Gn (V3. (7))]|/maxa |G, (Q)],
where @, (i) and V&, (i) are the estimates obtained from filterbank
channel n, provided that these do not associate with an already
existing track. Note that the quantity |G, (Q)]/maxq|Gn ()| lies
between zero and one and increases as {2 moves closer to the center
frequency of the channel. Hence, for a given component, tracking
will be initialized using the filter with center frequency closest to the
frequency of the component, affording improved immunity against
out-of-band information through an enhanced SNR.

The amplitude component of the track is initialized by taking
@(0]0) =@n(i) and @'(0 | 0) = @ (i) — @n(i — 1). The frequency
components are initialized similarly, and the initial predictions are
computed from the transformation equation X(k + 1 | k) =

AKX (k|E). Typically, for some small number L, new tracks
are started at each pixel using observations from the L channels
maximizing (J(n) whose observations do not associate with an
existing track. Under the assumption that at most one component
dominates the local frequency spectrum of each channel at each pixel,
in an image region where &' components are present this scheme
guarantees that a/l components will be tracked by the [ K/ L]th pixel
of the region.

III. RECONSTRUCTION

Reconstruction of the image from the representation (3) is a
difficult, ill-posed inverse problem. The phase ¢ (x) of the kth com-
ponent could be recovered from perfect continuous-domain frequency
estimates Vo, (x) by integrating along arbitrary paths. However,
due to estimation errors arising from cross-component interference
and the approximation error inherent in (9), the estimated phase
gradient field is not, in practice, conservative. Therefore, summing
frequency estimates around arbitrary closed paths will generally
not yield zero. Since estimates of both components of the phase
gradient are available at every pixel, the phase reconstruction problem
is, in fact, overdetermined. While various interpolation schemes
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Fig. 6. Multicomponent AM-FM representation and reconstruction of the complicated, natural multipartite Brodatz texture image tree. (a) Tree image. (b)
Lowpass component extracted by linear filtering. (c) reconstructions of five tracked AM—FM components. (d) Reconstruction of the image from 41 AM-FM
components and the lowpass component. Most pixels in the image are covered by three or fewer reconstructed AM-FM components.

could be employed, we have found that for components supported
in a rectangular region, it is often satisfactory to reconstruct the
phase using an asymmetric difference interpretation of the derivative
according to

[Pr(m = 1,n) + $L(m — 1,n)
+@re(m,n — 1)+ $¥(m,n — 1))

Pr(m, ”) =

N =

(25)
The phase is reconstructed along the top row of the component by
iterating

@r(m,n0) = ¢r(m — 1,n0) + gx(m ~ 1,10) (26)

and an analogous scheme is used along the first column. Phase
reconstruction is initialized by saving an estimated initial phase
sample
. Imlt;(rno, no))
. s = arctanq —————>—"= 27
Pr(mo,ng) = arc an{Re[ti(mo,ng)} (27)
during computation of the representation (3), where tracking of the
kth component was begun at pixel (mo,n0) using the amplitude
and frequency observations obtained from filterbank channel i, and
t;(m,n) is the response of the ith channel filter.
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With this approach, the deleterious effects of estimation errors are
cumulative. We improve the robustness of the technique by saving
phase estimates ¢ (m,n) on a rectangular grid and reconstructing
the phase on each rectangle independently. Each component is then
reconstructed using (1), and the image is subsequently recovered from

.

IV. EXAMPLES

The multicomponent paradigm depicted in Fig. 4 was applied to
compute the representation (3) of the 256 X 256 two-component
image of Fig. 1. The track processor correctly identified the presence
of two components. Amplitude estimates ai(m,n) for component
one are shown in Fig. 5(a), whereas frequency estimates ©7(m.n)
and ¢Y(m,n) are given in Fig. 5(b) and (c), respectively. These
quantities are in near-perfect agreement with the true values. The
small region of oscillatory behavior visible in the vertical frequency
estimates corresponds to the top right-most portion of the component
as depicted in Fig. 1(b), where the vertical frequency is nearly
zero, and occurs because, at very low frequencies, the distinction
between which image features should be interpreted as amplitude
modulation as opposed to frequency modulation becomes unclear.
Note that this oscillatory behavior also propagates into the ampli-
tude estimates as a consequence of (10). Amplitude and frequency
estimates dz (m,n), @3 (m,n), and @3 (m,n) for component two are
shown in Fig. 5(d)—(f). Once again, these estimates are in near-perfect
agreement with the true values. Collectively, Fig. 5(a)—(f) constitute
the multicomponent AM-FM representation (3) of the image. Note
how smooth the AM—FM representation is, despite the fact that there
are rapid variations in the image. Significant compression of the
estimated quantities could be achieved, e.g., through linear predictive
coding.

The individual components were reconstructed on a 32 x 32
pixel grid of estimated phase samples (27) using the algorithm
(25), (26). The reconstructions of components one and two are
shown in Fig. 5(g) and (h), respectively. Visually, the reconstructed
components are virtually indistinguishable from the true values.
Reconstruction of the image using (7) is shown in Fig. 5() and is
virtually indistinguishable from the true values in Fig. 1(a).

As a final preliminary validation of the power of this new represen-
tation for analyzing and representing natural images, we computed
a multicomponent AM-FM representation for the tree image of
Fig. 6(a). This complicated, nonstationary multipartite image presents
significant challenges since the number of components, the sizes and
shapes of their regions of support, and their statistical characteristics
are unknown. The filterbank of Fig. 2 was again used, but in this
case, the assumption that each channel is dominated by at most one
component at each pixel was almost certainly violated. In many parts
of the image, there appear to be many components and harmonics
closely spaced in frequency, giving rise to errors in algorithm
(9), (10). Furthermore, there is no way to determine the optimal
Kalman gain sequences, and hence, the computed representation is
suboptimal.

As we have noted, very low-frequency information is not particu-
larly well suited to computed AM-FM modeling due to the ambiguity
inherent in determining which features of the low-frequency structure
should be interpreted as AM as opposed to FM. Hence, we began
by extracting the low-frequency component shown in Fig. 6(b) by
linear filtering prior to computation of the representation. Next, we
heuristically divided the image into rectangular regions and applied
the approach of Fig. 4 to each one. Many tracks were generated
in each region, and we hand selected 41 of them. Reconstruction
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was performed on 4 x 4 pixel grids, and five of the reconstructed
components are shown in Fig. 6(c). Summing all of the reconstructed
components with the low-frequency component of Fig. 6(b), we
obtained the excellent reconstruction shown in Fig. 6(d). Most pixels
in the image are covered by three or fewer reconstructed AM-FM
components. It is indeed compelling that, despite being suboptimal,
the computed AM-FM representation has clearly succeeded in cap-
turing the essential structure, features, and information content of the
image.

V. CONCLUSION

The multicomponent AM—FM representation is a powerful, im-
portant new emerging technique for modeling, analysis, and rep-
resentation in a general image processing framework. Multipartite
images are characterized as sums of locally coherent, nonlinear
AM-FM functions capable of effectively capturing nonstationarities,
where important visual and perceptual cues are often manifest. Using
a statistical state-space component model, we developed practical
algorithms for computing the representation, as well as for recovering
an image from its computed representation. The approach bears
similarities to certain processing known to occur in biological vision
systems in that the information content of an image is represented
by smoothly varying modulations occurring in a few frequency
and orientation selective channels. Under the assumptions that the
filterbank and track processor gain sequences are correctly designed,
the computed representation is both unbiased and optimal in the mean
squared error sense. Tracking of all components is also guaranteed.
‘We computed multicomponent AM—FM representations for two mul-
tipartite images and obtained reconstructions in remarkable agreement
with the original images. Important future work remaining in this area
will address the extremely difficult problems in treating complicated
natural images, which may contain many components closely spaced
in frequency and supported on irregularly shaped regions.
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