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Abstract—We provide an automated method to repair broken,
occluded oriented image textures. Our approach is based on par-
tial differential equations (PDEs) and AM–FM image modeling.
Reconstruction of the texture occurs via simultaneous PDE-gen-
erated diffusion and reaction. In the diffusion process, the image
is adaptively smoothed, preserving important boundaries and fea-
tures. The reaction process produces the reconstructed textural
information in the occluded image regions. Gabor filters are de-
signed and used in the reaction process using an AM–FM domi-
nant component analysis. An AM–FM model of the texture image
is constructed, making it possible to localize the reaction filters
spatio–spectrally. In contrast to previous disocclusion techniques
that depend on interpolation, on continuity of the connected com-
ponents within the image level sets, or on texture estimation, the
reaction–diffusion process proposed here yields a seamless transi-
tion between the recreated region and the unoccluded image re-
gions. Using AM–FM dominant component analysis, we avoid the
ad hocparameter selection typified with other reaction–diffusion
approaches. As a useful example, we focus on the repair of broken,
occluded fingerprints. We also treat several exemplary natural tex-
tures to demonstrate the technique’s generality.

Index Terms—AM–FM image models, anisotropic diffusion, dis-
occlusion, texture.

I. INTRODUCTION

REPAIR of occluded or missing parts of digital images is an
important problem that has been studied by psychophysi-

cists [18], mathematicians [29], computer scientists and signal
processing engineers [31]. Thetexture completionor disocclu-
sionproblem can be solved adequately for small occlusions by
forcing continuity of image intensity and edges [29], [31]. When
large occlusions or substantial missing portions of the image
exist, it is likely that continuation-based methods will fail, since
internal variations due to patterns and detail exist within the
missing region.

This paper focuses on the reconstruction of large missing re-
gions of homogeneous oriented textures. To reconstruct these
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textures, two processes must be considered. First, a suitable tex-
ture must be generated that matches that in the image. Second,
the texture must be adapted to the missing region so that the
human observer may perceive a seamless texture image.

In our approach, we provide a robust method of pattern esti-
mation and generation. The input image is modeled within an
AM–FM framework, and the dominant components of the ori-
ented texture are estimated at each position. Dominant image
components in a region surrounding the occlusion are used to
generate texture for the region of interest. In contrast to methods
that generate a texture and attempt to insert this texture within
the image in one step, our approach adapts or grows the tex-
ture via partial differential equations (PDEs). A reaction–diffu-
sion mechanism, in the spirit of Turing’s morphogenesis [38],
is applied. Here, texture generation and smoothing are com-
bined using coupled PDEs. The reaction mechanism utilizes
the AM–FM dominant component analysis to enforce a suit-
able pattern on the missing region. At the same time, anisotropic
diffusion is used to adaptively smooth the image, producing a
seamless restoration.

As a significant and useful example, we apply the methods
we develop to the problem of fingerprint repair. Often, regions
within fingerprint images are lost due to the inhomogeneity of
the surface, movement of the finger (smudging), partial contact,
or problems associated with imaging the fingerprint. The gen-
eration of fingerprint-like textures is well established [19], [37].
Typically, a bank of Gabor filters is used to replicate the undu-
lating patterns observed in fingerprints. The selection of the par-
ticular Gabor filters is accomplished using a generalized model
[19] or by trial and error. To demonstrate generality of this ap-
proach, we also apply the method to several other naturally oc-
curring textural regions.

In the following section, we discuss relevant advances in pat-
tern generation and enhancement, and we also review work in
image disocclusion. The reconstruction of image textures begins
with the reaction–diffusion model outlined in Section III. The
success of reaction–diffusion for disocclusion is based on the
AM–FM dominant component analysis described in Section IV.
Results for the proposed method and other existing methods are
given in Section V followed by conclusions.

II. BACKGROUND

Reaction–diffusion equations have been employed to simu-
late patterns abundant in nature. For example, a key issue in de-
velopmental biology is the dynamic arrangement of embryonic
cells into particular patterns. Turing [38] suggested that two or
more chemicals can diffuse and react within neighboring cells,
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Fig. 1. Stripe formation using coupled PDE.

depending on the concentration of the cell and its neighbor-
hood. He proposed a set of coupled PDEs to simulate such pat-
terns, , and

. In this case, and are the two chemicals that dif-
fuse depending on neighborhood concentration (computed via
the Laplacian operator), and and are the corresponding
diffusion rate constants. Changes ofand per time unit are
given by and respectively. The local concentrations

and are iteratively computed, and the process
of reaction–diffusion continues until a stable pattern emerges.

The Turing model was subsequently extended by Meinhardt
[30] to simulate the stripe formation process. An intuitive un-
derstanding of this technique could be obtained if we consider a
situation where concentration and diffusion of chemicalpro-
hibits chemical to be present at the same place and at the same
time. So, the chemicals are locally exclusive. A striped pattern
generated by the PDE model in [30] is shown in Fig. 1. Similar
models have been used to produce a variety of synthetic tex-
tures [40]. A major difficulty of this approach is the selection
of the constants needed to generate a stable pattern. Priceet al.
[35] have used similar coupled PDE models to enhance finger-
print images and addressed the issue of parameter selection. For
the texture completion problem, generating patterns of a spe-
cific granularity and directionality is difficult, as is matching
the pattern at the boundary of the occluded region. Thus, pattern
formation is possible with the Meinhardt approach, but an ac-
ceptable disocclusion solution is not amenable. In a related PDE
based application to supervised texture segmentation, Paragios
and Deriche [32] have used a global statistical texture model.
The contour detection for a homogeneous pixel cluster and re-
gion based segmentation are integrated in a single framework
defining ageodesic active region.

In a similar context, Sherstinsky and Picard [37] have
introduced the -lattice system to produce restored textures
from corrupted imagery. The -lattice is a nonlinear dynamic
system founded on reaction–diffusion. In the-lattice system,
a warping function is introduced in the reaction process to facil-
itate stability. These warping functions are typically sigmoidal
functions that prevent numerical overflow at every time step.
The -lattice system uses orientation sensitive filters, similar
to the flow field analysis in [19].

Zhu et al. [42] have proposed a statistical theory for texture
modeling with the objective of texture synthesis. A set of filters
is selected from a general filter bank to capture texture features.
The histograms of the filtered images estimate a marginal dis-
tribution of the image. A maximum entropy distribution based

Fig. 2. (a) Original “oriented” fingerprint image. (b) Flow field depicting
orientation of patterns of Fig. 2(a). For visual clarity, the flow field orientations
are plotted in a magnified scale and quantized according to the following
orientation ranges: (0; �=4), (�=4; �=2), (�=2; 3�=4), and (3�=4; �).

technique is used to fuse these features to generate a unified tex-
ture model for texture synthesis. By contrast, our texture model
is based on AM–FM modeling and dominant component anal-
ysis, which are most suitable for locally narrow-band, quasi-pe-
riodic repetitive patterns. Nonparametric statistical sampling is
also used by Efroset al. [7] for texture synthesis.

Kass and Witkin [19] have also investigated the generation of
oriented textures. Since the pattern embedded in a fingerprint
essentially consists of oriented contours, their flow field anal-
ysis model is suitable for fingerprint pattern generation and anal-
ysis. Bandpass filters, similar to those of the classical Marr–Hil-
dreth scheme [28], are used for edge detection. The Kass/Witkin
method provides a flow field with direction vectors at every
point of the oriented pattern. The flow field for the “oriented”
fingerprint image in Fig. 2(a) is shown in Fig. 2(b). The flow
field orientations are plotted in a magnified scale and quantized
by the following set of four orientations: (0, ), ( ),
( ), and ( . In [19], it is suggested that this
method could be used to synthesize fingerprints under limited
occlusion as they become extremely regular in flow field coor-
dinates.

For the general problem of image disocclusion, Masnou and
Morel [29] have proposed a solution that exploits the connected
components within the image level sets. The level setat the
intensity of an image is given by the set
where is the intensity of the image at location. Level
lines are then defined as the boundaries of connected compo-
nents within the image level sets. In an occluded area, Masnou
and Morel enforce continuity of the level lines to reconstruct the
occluded region. A cost function is used to minimize the total
variation in angle for the connected pairs of level line termina-
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(a) (b) (c)

Fig. 3. (a) Original “stripe” fingerprint image. (b) After occlusion (square
region in black) in Fig. 3(a). (c) After disocclusion of Fig. 3(b) following the
level line method.

tions. A term within the cost function enforces continuity of the
level lines. A simplified version of this method (using only hor-
izontal and vertical level lines) is implemented for the original
“stripe” fingerprint image as shown in Fig. 3(a). The result of
disocclusion through continuity of level sets in the square oc-
cluded region of Fig. 3(b) is shown in Fig. 3(c). For small oc-
clusions, this method proves to be effective. However, for larger
occlusions where the pattern curves within the occluded area,
the level line continuation method is unsuccessful. The level
set method produces piecewise constant stripes in the repaired
fingerprint, which appear unnatural in the reconstruction [see
Fig. 3(c)]. The same criticism could be levied on the classical
interpolation-based disocclusion solutions [31]. Therefore, an
adaptive pattern formation technique is required for the finger-
print latency problem.

Kokaramet al. [20]–[23] have performed extensive studies
on detecting and interpolating missing data in image sequences.
Their work involves primarily two components: estimation of
motion using MRF models for spatio-temporal changes in cor-
responding blocks of a movie image sequence and generation of
a variety of interpolators including median, MRF and AR based
techniques. The approach is most suitable for detecting and in-
terpolating small homogeneous image mass that is uncorrelated
with neighboring regions. For the generation of oriented tex-
ture features, which is the focus of this paper, domain specific
heuristics and exploitation of characteristics specific to image
sequences may not be appropriate.

Rather than manual selection of the pattern regenerating
filters, our method hinges on an automated AM–FM dominant
component analysis. Joint AM–FM modeling of one-dimen-
sional (1-D) signals has recently been studied extensively [3],
[4], [25]. In two-dimensional (2-D) images, the Teager–Kaiser
operator [26], [27] and other related techniques [2], [9], [15]
have been used to extract dominant AM–FM information from
oriented textured images. Multicomponent multidimensional
AM–FM models have also been investigated recently [13], [15].
Here, we employ dominant component analysis in the design
of reaction filters that are used in a reaction–diffusion process.
In Section III, we describe the reaction–diffusion mechanism.
Section IV details the dominant component analysis.

III. REACTION–DIFFUSION FORTEXTURE COMPLETION

Zhu and Mumford [41] have motivated the use of reac-
tion–diffusion models in image processing with an analysis of
universal image statistics. Analyzing a set of natural images,

they have shown that a family of potential functions can be used
in a reaction–diffusion paradigm to capture the smoothness and
also the prominent patterns of an image. The typical potential
functions lead to image smoothing via anisotropic diffusion.
Inverted potential functions produce pattern formation or
reaction. From this basis, we approach the problem of texture
disocclusion.

The reaction–diffusion mechanism used for texture disocclu-
sion is

(1)

where is the diffusion term, is the reaction term; and
and are the rate of diffusion and reaction, respectively. For a
specific image location , we have

(2)

A discrete Jacobi update for (2) is given by

(3)

where is the intensity of position at iteration and
. The initial image intensities in are equal to those in the

input image , except in the case of the occluded region.
For the occluded region, we “seed” the reaction–diffusion

process with noise that is distributed identically to that of the
surrounding region. Let denote the domain of the image and

denote the unoccluded region. Let denote the re-
gion surrounding the occlusion/latency and denote the
occluded region. If , then ). But, if ,
then , where is a random variable with density

where is the intensity histogram for
region and is the cardinality of . The width of (the re-
gion surrounding the occlusion) depends on, e.g., the maximum
ridge-to-ridge spacing in a fingerprint pattern. Let denote
this maximum width (estimated by the AM–FM dominate com-
ponent analysis presented in Section IV). Then, we define the
width of to be pixels. Using this method of defining
the boundary region , we ensure that the width of the boundary
region exceeds one full pattern period.

Seeding the region with noise identically distributed as the
intensities of the surrounding region has the effect of providing
a disocclusion solution admitting intensity distribution and con-
trast similar to the image. If uniformly distributed noise is used
instead, as was done in [41], the repaired region tends not to
match the surrounding region in graylevel distribution. This typ-
ically results in an unnatural appearance.

In the texture disocclusion problem, several aspects of
equation (2) are important. Since the disocclusion process
not only generates a pattern but also adapts the pattern to the
existing boundaries, the reaction–diffusion approach excels in
mating the new pattern with the existing unoccluded pattern (as
compared to nonadaptive texture generation approaches such
as [30]). In the case of [30], the stripe generation process is
independent of the orientation of the texture at boundaries of
the occluded region.
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A. Diffusion Model

Given the basic reaction–diffusion model, we now define the
diffusion and reaction terms for texture disocclusion. Diffusion
and reaction have conflicting objectives. The goal of diffusion
is smoothing, while the goal of reaction is pattern formation.
Without diffusion, a smooth texture pattern could not be gen-
erated from the seed noise. Since anisotropic diffusion encour-
ages intra-region, not inter-region, smoothing, the texture can
be smoothed without eliminating the important intensity transi-
tions (edges). A continuous anisotropic diffusion PDE [33] is

(4)

where is the diffusion coefficient. Alternatively, the diffu-
sion operator can be expressed as a combination of
where and represent second directional derivatives along
image gradients and the normal respectively [24].

The equivalent discrete representation of (4) for substitution
in (3) is given by

(5)

where is the number of directions in which diffusion is
computed and is the directional derivative (simple
difference) in direction at location . For , we use
the simple differences with respect to the “western,”
“eastern,” “northern,” and “southern” neighbors. For example,
if , . Here, the
parameter defines the sample spacing used to estimate the
directional derivative in the direction (and is typically
unity-valued).

The selection of the diffusion coefficient is the most
important step in designing the diffusion process. Essentially,
we want a diffusion coefficient that is low (near zero) at image
edges and is high (near one) within image regions. Withas an
edge strength parameter, a logical choice is given by [33]

(6)

With the initial solution for disocclusion seeded with noise, the
traditional diffusion coefficients cannot remove significant out-
liers [where ]. To regularize the diffusion opera-
tion, we use a modification of the gradient image used to com-
pute the diffusion coefficients, as suggested by [5]. A Gaussian-
convolved version of the image is then utilized in computing the
gradient magnitudes used in the diffusion coefficients

(7)

where is the convolution of with a Gaussian of
standard deviation . The regularized diffusion given by (7) is
stable and well posed [5]. Another regularized implementation,
calledmorphological anisotropic diffusion, can be formed by
substituting into (7) [36]. In this case, is a
structuring element of size , is the morphological

opening of by , and is the morphological closing of
by . However, for texture disocclusion, the morphological

approach tends to flatten image regions, leading to a piecewise
constant result. The constant regions are not appropriate models
for highly oriented, repetitive textures. On the other hand, the
smooth Gaussian filter result does produce smooth transitions
in image intensity within the texture.

In the above diffusion model using (7), there are two parame-
ters: and . For the case of diffusion within the texture pattern,
these diffusion parameters can be selected without ambiguity.
First, since controls the scale of the features retained in diffu-
sion, the value of is set to , the minimum periodicity
of the texture pattern (e.g., in a fingerprint, the minimum dis-
tance between ridges). We computeusing the dominant com-
ponents extracted in the analysis of Section IV. Since it controls
the maximum change between pixels,is set to , the
maximum contrast (intensity difference) within the texture pat-
tern in the surrounding area.

B. Reaction Model

In the reaction process, we encourage formation of patterns of
a given granularity and directionality, corresponding to a local-
ized area in the frequency domain covered by a specific Gabor
filter given by

(8)

for an image indexed by and a Gaussian
, where is the scale parameter (standard deviation

of the Gaussian). In this case, the Gabor function has standard
deviation (width) of and center frequency . The Gabor
parameters are automatically determined by the AM–FM
dominant component analysis method given in Section IV.

To produce patterns that correspond to oriented texture fea-
tures, the reaction term is given by

(9)

Here, is the Gabor filter matched to the dominant compo-
nent at position . The operator denotes correlation and
denotes convolution. The function weighs the contribution
of the Gabor filter. For , we use the formulation proposed in
[41]

(10)

where is a scaling constant. For example, in the case of fin-
gerprint pattern generation, we can setaccording the desired
contrast within the fingerprint ridges, as with (7).

The net effect of (9) is to produce a reaction where the pat-
tern of specified granularity and directionality has not emerged.
Therefore, (9) will stabilize when the local spectrum ofcon-
tains components within the localized spectral region covered
by the Gabor filter frequency response. Since the patterns that
emerge are not necessarily smooth, the simultaneous diffusion
process allows the creation of smooth patterns localized in both
space and frequency.
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C. Rate of Reaction–Diffusion

The update rate is an important factor effecting the implemen-
tation of reaction–diffusion for the repair of broken textures. In
the previous sections, we specified the form for both reaction,

, and diffusion, . We did not specify the two rate functions
and . Because the objectives of processing within the un-

occluded region , the boundary region and the occluded
region are different, we allow and to vary with
position . Specifically, we diffuse within the entire unoccluded
region , to provide simultaneous enhancement and disocclu-
sion, and to balance the level of smoothing between the unoc-
cluded and occluded regions. We also perform reaction within
the boundary region , to guarantee pattern matching within the
boundary region. The rate of reaction decreases withinas a
function of distance from , the occluded/latent region.

Of course, both reaction and diffusion are performed within
at constant rates. For

which is determined by the constraints of stability and the max-
imum number of iterations. Likewise, if ,

where for stability.
For pixels outside of the occluded area, we have

where . In the simulations given in Section V, the
value was utilized. While we have not yet found an au-
tomatic method for selecting, two conflicting constraints need
to be satisfied: the generated pattern should meld with the ex-
isting boundary of while simultaneously inducing minimum
distortion in the region .

If but , then , since enforcing a pat-
tern on the remainder of the image would produce distortion.
However, if , we allow the rate of reaction to decrease to
zero in a linear manner, as a function of the distance from the oc-
cluded region . Let specify the minimum Euclidean
distance between pointand the occluded region. Then

(11)

where is the width of the band bordering the occluded re-
gion, defined as . The reaction–diffusion algo-
rithmic steps are illustrated in Fig. 4.

The success of the reaction–diffusion model depends on the
reaction filters used in reconstructing the texture patterns. We
utilize an AM–FM dominant component analysis to derive the
filter parameters for the occluded regions, as described next.

IV. ESTIMATING THE DOMINANT COMPONENTMODULATIONS

In this section, we describe the AM–FM modeling of the input
texture image and briefly review thedominant component anal-
ysis(DCA) technique [9], [10], [15] that is used for computing
estimates of the dominant AM and FM functions along a con-
tour that encloses the occluded or missing portion of the image.

Fig. 4. Reaction–diffusion algorithm flowchart.

A. AM–FM Modeling Fundamentals

A 2-D AM–FM function takes the form

(12)

where and are arbitrary real-valued functions.
Without loss of generality, we assume that . The AM
and FM components of interest that are contained in in
(12) are the instantaneous amplitude and the instanta-
neous frequency vector . The
functions and are the horizontal and vertical in-
stantaneous frequencies of .

Given , the AM and FM functions may be calculated
using the straightforward demodulation formulae

(13)

and

(14)

which yield exact solutions at all points where [15].
The frequency equation (13) may be interpreted as a specialized
instance of aPoletti equation[34]; its use is motivated by the
fact that the exponential function in (12) is invariant under dif-
ferentiation.

Oriented, highly repetitive images such as fingerprints are
well suited for AM–FM modeling because they are dominated
by nonstationary, locally narrowband processes [6] and contain
locally quasiperiodic patterns. However, note that in
(12) is complex-valued, whereas typical images are real-valued.
The reason for considering a complex model is that the AM–FM
functions of any real image are not unique. By adding
an imaginary component to , we regularize the
demodulation problem and obtain

(15)

where and
.

Clearly, irrespective of how we
choose . By setting equal to the directional
multidimensional Hilbert transform of [16], we ensure
that admits multidimensional analogs of many of the
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most attractive features of the well known 1-D analytic signal
[8]. When is chosen in this way, we call the
analytic imageassociated with . The AM and FM
functions of can then be determined uniquely using
(13) and (14), and we define these modulations to be the AM
and FM functions of .1 The AM function may
be interpreted as the image contrast function, while
characterizes the local texture orientation and granularity.

B. Discrete AM–FM Models

A 2-D discrete version of the directional multidimensional
Hilbert transform was given in [10], where it was specified
in terms of its spectral multiplier. For a real-valued discrete
image , this transform may be used to obtain an imag-
inary component and formulate the complex-valued
AM–FM model

(16)

(17)

We define in (17) to be the AM function of .
Upon carefully discretizing (13) and (14), one obtains the

equivalent expressions for the discrete demodulation algorithm:

(18)

(19)

(20)

(21)

and

(22)

where . While a derivation of
these discrete frequency algorithms is based on rigorous theoret-
ical arguments [15], some intuition can be gained by observing
that the derivatives in (13) are replaced by first-order central dif-
ferences and averages in (18)–(21). Unlike the continuous-do-
main frequency algorithm (13), which is exact, (18)–(21) are
based on a novel discrete quasieigenfunction approximation and
generally contain approximation errors unless is a pure
sinusoid [11]. However, these errors are typically negligible for
images that are locally narrowband [15].

1Often, modulating functions similar to those calculated using the analytic
image can alternatively be obtained by applying the multidimensional
Teager–Kaiser operator [26] directly to a real-valued image. We generally
prefer the approach based on the analytic image because of its strong theoretical
correspondence to the 1-D analytic signal. For example, when the analytic
image is used, the instantaneous and Fourier frequency spectra have identical
first moments.

C. Dominant Component Analysis

For ideal digital fingerprint images and other oriented textural
images, (18)–(22) can generally be used to compute the AM and
FM functions accurately. Because of many factors [17], how-
ever, the images obtained in practice are often multipartite and
fail to be everywhere locally narrowband [6], [14], [39]. These
factors can lead to approximation errors in (18)–(21) that are not
negligible. To overcome this problem, we model the textured
image not as the real part of a single AM–FM function,
but rather as , where

(23)

is the sum of AM–FM functions
. With this

multicomponent model, can still be obtained
precisely as before [by setting ]
by virtue of the fact that the directional multidimensional
Hilbert transform is a linear operator.

Our approach is then to demodulate allcomponents in
(23) simultaneously and select the AM and FM functions corre-
sponding to the component that dominates the local image spec-
trum on a pixelwise basis. This technique is known as dominant
component analysis (DCA) [9], [10], [15]. The single pair of
AM and FM functions obtained by DCA are referred to as the
dominant modulationsof the image; they provide a rich descrip-
tion of the locally dominant image structure.

In performing DCA, the components are isolated from one
another by analyzing with a multiband Gabor filter-
bank of the type described in [2]. The choice of Gabor filters is
motivated by two considerations. First, because of their optimal
conjoint localization in space and frequency, an appropriately
designed bank of Gabor filters is capable of resolving the com-
ponents from one another spectrally, while simultaneously cap-
turing spatially local nonstationarities. Second, the responses of
Gabor filters are locally narrowband [1], [2].

Let be the response of a particular Gabor filter (8)
with impulse response and frequency response .
We assume that some particular component dominates

at the pixel , so that

(24)

By applying a sequence of quasieigenfunction approximations
[3], [11], [15], one may verify the validity of estimating

by applying (18)–(21) directly to . The
AM function is then estimated using

(25)

which differs from (22) only in that the amplitude scaling of
relative to has been factored out. Thus by

applying (18)–(21) and (25) to the response of every filter in the
filterbank, we obtain estimates of the AM and FM functions of
all components in (23) at every pixel in the image.
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At each pixel, we define the dominant component as the one
that dominates the response of the filter that maxi-
mizes the selection criterion

(26)

This criterion tends to select filters that are dominated by
large amplitude components with instantaneous frequencies
lying near the maximum transmission frequency of the filter,
thereby rejecting cross-component interference and out-of-band
noise. Estimates of the dominant modulations are taken from
the filter that maximizes (26) on a pixelwise basis. The domi-
nant frequency estimates along the perimeter of the occlusion
are used to design the reaction filters for the reaction–diffusion
process of (2). From the dominant component analysis, we
obtain values for horizontal and vertical frequency, and

, at each image position. Recall that, the unoccluded
region bordering the occluded region, is pixels in width.
We obtain a sample sequence of values and
values contained within a path throughthat is pixels
from . If the pattern is homogeneous in the occluded region,
we can find the values used in (8) by taking the average

values and values along the path.
In Section V, we demonstrate this approach, providing graphs

of the dominant components around the occluded area. We also
show example dominant component images obtained from this
approach. The automation of the reaction filter selection is a
major contribution of this work.

V. RESULTS

In this section, we present a set of results generated using
the proposed reaction–diffusion model. The focal application
we have chosen for demonstration is the repair of broken, oc-
cluded fingerprints. We also apply the AM–FM reaction–diffu-
sion technique to a general set of textures. For the fingerprint
application, the original images were collected from the NIST
database. The occlusions are generated via natural [Fig. 7(a)]
and synthetic means [Figs. 3(b), 5(a), 6(a)]. Results are given
for the level line continuity disocclusion algorithm and also for
the synthetic stripe formation process. Finally, a measure of ac-
curacy is defined with respect to ground truth to show the fidelity
of disocclusion process.

The analysis of fingerprint images has long attracted atten-
tion from the image processing community because of the many
biometric and law enforcement applications. Beyond the signif-
icant work performed in coding and compression of fingerprint
images, the processing techniques have mainly focused on en-
hancement or restoration of the fingerprint patterns from cor-
rupted, noisy versions. A number of these fingerprint enhance-
ment and restoration methods are guided by reaction–diffusion
processes.

Because most latent fingerprints (those lifted from crime
scenes) are fragmentary in nature, typical classification and
file search methods are not practicable due to the occlusion
of important features. Fingerprint occlusions can also occur
through faulty mechanical operation in ink-based fingerprints.
Focal points (deltas and cores) may be occluded if the finger

(a) (b) (c)

Fig. 5. (a) Occluded image of Fig. 2(a). (b) After disocclusion using proposed
AM–FM reaction–diffusion method. (c) After disocclusion following stripe
formation method.

(a) (b)

Fig. 6. (a) Occluded “stripe” fingerprint image of Fig. 3(a). (b) After
disocclusion using AM–FM reaction–diffusion method.

has not been rolled from one side to the other, or if the bulb
of the finger has not been completely inked. Similarly, if
movement occurs, such as a twist or slip, the fingerprint can
be partially smeared or blurred. Poor quality ink, excessive
ink or runny ink can also obliterate important features such
as the ridges. Finally, foreign substances and perspiration
can also cause occlusion of features within the fingerprint.
Image enhancement can be used to improve such prints, but
the image enhancement procedure should not provide artifacts
or false information. The enhancement process should allow
for bifurcations, terminations, islands, and variation in ridge
width. The PDE-based method suggested in this paper satisfies
these needs, whereas continuity-based methods cannot recreate
bifurcations, terminations, and islands. Typical texture repair
approaches are not fit for prints with varying widths. Moreover,
connecting broken ridges properly is a significant concern
in ridge counting and tracing within the fingerprint analysis
process. The reaction–diffusion solution given here adaptively
connects the ridges across the occlusion, whereas traditional
continuity-based solutions may lead to a false increase in ridges
or leave the ridges unconnected across the occluded region.

Whether the occlusions result from latent prints or faulty
printing on ink, the occlusions can adversely affect fingerprint
classification and matching. The FBI divides these problems
into three cases. In the first case, the impression is so scarred
that neither the general type of pattern (arch, whorl, loop, etc.)
nor the ridge tracing or counting can be accomplished. The
second case includes prints in which the general type cannot be
determined with reasonable accuracy, but ridges can be traced
and counted. In the third case, the general type of fingerprint
can be determined, but partial occlusion impedes ridge tracing
and counting. Our disocclusion method concentrates on this
third case—repairing occluded ridges for tracing and counting.
Thus, the method described in this paper seeks to reconstruct
occluded ridges. The approach, therefore, does not address the
recreation of the fingerprint delta or the core.
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(a) (b)

Fig. 7. (a) Original fingerprint image with “natural occlusion.” (b) After disocclusion using AM–FM reaction–diffusion method.

Fig. 5(a) depicts a partially occluded image of the “oriented”
fingerprint shown in Fig. 2(a). In Fig. 5(b), the disoccluded ver-
sion of the image in Fig. 5(a) is shown, using the reaction–dif-
fusion technique and DCA. Notice that the generated pattern is
perceptually compatible with the overall embedded pattern of
the fingerprint, providing a smooth transition at the boundary
of the occlusion. The reconstructed image from the Meinhardt
stripe formation process [30] is shown in Fig. 5(c). In the case
of Fig. 5(c), for reconstruction, a smaller occluded patch is used
compared to Fig. 5(a) since with the method of [30], larger oc-
clusions are untenable. In all cases, note that the location of the
occluded region is assumed to be knowna priori. The AM–FM
reaction–diffusion method does not address the occlusion detec-
tion problem.

Fig. 6(a) shows another fingerprint image with an arbitrarily
selected missing patch from the original “stripe” fingerprint
image of Fig. 3(a). Fig. 6(b) is the resultant image after
disocclusion using reaction–diffusion. The preservation of the
ridges in Fig. 6(b) is an example of the inter-region smoothing
of anisotropic diffusion. Compare the result with that of
Fig. 3(c) where a similar patch is reconstructed using level
lines continuity. In the case of Fig. 3(c), the natural appearance
of the reconstructed patch suffers due to enforcement of level
line continuity.

Fig. 7(a) is a fingerprint image with natural but irregular
occlusions due to partial contact of an uneven finger surface.
The reconstructed image from reaction–diffusion is shown in
Fig. 7(b). In this case, two Gabor filters were used to perform
disocclusion. Note the junctions and bifurcations created in
the texture regeneration. Also note that the thickness of the
reconstructed ridges are almost uniform and compatible with
the existing pattern.

As noted earlier, the successful pattern generation at the oc-
clusion is rooted in the use of DCA in the bordering region of
the occlusion. For the results cited above, the dominant compo-
nent frequencies were plotted and are shown in Fig. 8.
Fig. 8(a)–(c) are the corresponding dominant component fre-
quencies of the occluded images of Figs. 5(a), 6(a) and 7(a)
respectively. In Fig. 8, the-axis represents the position of a
path taken through around the occluded region. The corre-
sponding reconstructed images from the dominant component
frequencies are shown in Figs. 9(a), (b), and (c), respectively.
From Fig. 9, we can make two conclusions. First, the dominant
component analysis extracts the dominant patterns in the fin-
gerprint imagery. Second, dominant component analysis/recon-
struction alone is not sufficient to perform disocclusion.

The quality of reconstruction is also substantiated using the
mean square error (MSE) measure over the occluded region. In
the case of Figs. 5(b) and 6(b), the original images shown in
Figs. 2(a) and 3(a) are taken as ground truth. For Fig. 5(b) the

MSE is 755 for the method given here. Using the stripe for-
mation process of [30], the in case of Fig. 5(c)
(even using a smaller occlusion). Similarly, for Fig. 6(b), the

whereas the same MSE for Fig. 3(c) is 343.
As discussed in Section III, a boundary regionis consid-

ered for every occluded region. The rate of reaction–diffusion
is decreased in region in order to obtain a seamless integra-
tion of the generated pattern in the occluded regionwithin

. We have also extended the MSE measure to include region

. The MSE in the boundary region represents the amount of
distortion the process has introduced in the existing pattern in
order to have a perceptually acceptable oriented pattern gen-
eration. For Fig. 5(b), taking boundary region width to be ten
pixels, the MSE is 99, while taking the width to be 20 pixels,
the MSE reduces to 51. For Fig. 6(b), under similar conditions,
the MSE’s are 182 and 79 respectively. The error decreases as
the boundary region is increased in size and consequently dis-
tortion in the original pattern is minimized. For Fig. 5(c), the
MSE’s are 813 and 487, respectively, which are still greater in
error than the AM–FM reaction–diffusion results.

Table I provides a summary of the example results. The table
includes results for both fingerprint and general texture results.
From the table, one may note the extent of the occluded region,
the MSE for AM–FM reaction–diffusion result, the number
of reaction–diffusion updates required, and the MSE for the
level lines method result. Even though the level lines method
is not appropriate for each example, we included results for
this method for completeness. In seven of the eight examples,
the AM–FM method provides superior results in terms of
visual quality (see Figs. 10–13) and in terms of MSE. The final
example (shown in Fig. 14) shows a case where the level lines
approach is more appropriate than the AM–FM reaction–diffu-
sion technique. The level lines method excels in the presence
of smooth, directed textures without bifurcations or changes
in orientation. In contrast, note the excelled performance of
AM–FM reaction–diffusion on the “sand” image of Fig. 13.
In this case, the AM–FM reaction–diffusion method is able to
recreate the graininess and orientation of the original texture.

VI. CONCLUSIONS

The paper presents a useful application of the reaction–dif-
fusion paradigm. The major contribution is in developing a
scheme that not only generates a texture for the missing part
of an image but also maps and combines smoothly within
the existing pattern. The approach does not use a continuity
constraint on level lines [29], an interpolation scheme [19],
nor a texture sewing technique [40]. The algorithm allows the
intensity distribution of the generated pattern to be similar to
that of the surrounding region.
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Fig. 8. Graphs of dominant component frequencies(u; v) around the perimeter of the occluded area: (a) for “oriented” fingerprint image; (b) for “stripe”
fingerprint image; and (c) for fingerprint image with “natural” occlusion. In each figure, thex-axis represents distance around the perimeter, and they-axis
represents frequency in cycles per sample.

(a) (b) (c)

Fig. 9. Images generated from the occluded images by reconstructing the dominant components: (a) for “oriented” fingerprint image; (b) for “stripe”fingerprint
image; and (c) for fingerprint image with “natural” occlusion.

In automating the selection of the texture parameters via dom-
inant component analysis, we provide a rigorous method for tex-

ture disocclusion. We apply the method to a significant practical
problem, that of fingerprint repair/completion.
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TABLE I
RESULTS FROMTHREE FINGERPRINTS ANDFIVE GENERAL ORIENTED TEXTURE EXAMPLES. MEAN SQUARED ERROR ISCOMPUTED ACROSS THEOCCLUDED

REGION 0 AND THE BOUNDARY REGIONB

(a) (b) (c) (d)

Fig. 10. (a) Original “bark” fingerprint image. (b) After occlusion (square region in black) in Fig. 3(a). (c) After disocclusion of Fig. 10(b) by AM–FM
reaction–diffusion. (d) After disocclusion of Fig. 10(b) by the level line method.

(a) (b) (c) (d)

Fig. 11. (a) Original “woodgrain” fingerprint image. (b) After occlusion (square region in black) in Fig. 3(a). (c) After disocclusion of Fig. 11(b) by AM–FM
reaction–diffusion. (d) After disocclusion of Fig. 11(b) by the level line method.

(a) (b) (c) (d)

Fig. 12. (a) Original “rock” fingerprint image. (b) After occlusion (square region in black) in Fig. 3(a). (c) After disocclusion of Fig. 12(b) by AM–FM
reaction–diffusion. (d) After disocclusion of Fig. 12(b) by the level line method.
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(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 14. (a) Original “wood” fingerprint image. (b) After occlusion (square region in black) in Fig. 3(a). (c) After disocclusion of Fig. 14(b) by AM–FM
reaction–diffusion. (d) After disocclusion of Fig. 14(b) by the level line method.
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