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Abstract—We provide an automated method to repair broken, textures, two processes must be considered. First, a suitable tex-
occluded oriented image textures. Our approach is based on par- ture must be generated that matches that in the image. Second,
tial differential equations (PDEs) and AM—FM image modeling. e texture must be adapted to the missing region so that the

Reconstruction of the texture occurs via simultaneous PDE-gen- h b . | text .
erated diffusion and reaction. In the diffusion process, the image uman observer may perceive a seamiess texture image.

is adaptively smoothed, preserving important boundaries and fea- I our approach, we provide a robust method of pattern esti-
tures. The reaction process produces the reconstructed textural mation and generation. The input image is modeled within an
information in the occluded image regions. Gabor filters are de- AM—FM framework, and the dominant components of the ori-
signed and used in the reaction process using an AM-FM domi- gniaq texture are estimated at each position. Dominant image
nant component analysis. An AM—FM model of the texture image - - . .

is constructed, making it possible to localize the reaction filters components in a region su_rrount_jlng the occlusion are used to
spatio—spectrally. In contrast to previous disocclusion techniques generate texture for the region of interest. In contrast to methods
that depend on interpolation, on continuity of the connected com- that generate a texture and attempt to insert this texture within
ponents within the image level sets, or on texture estimation, the the image in one step, our approach adapts or grows the tex-
reaction—diffusion process proposed here yields a seamless transi—tLlre via partial differential equations (PDES). A reaction—diffu-

tion between the recreated region and the unoccluded image re- . - - - S .
gions. Using AM—FM dominant component analysis, we avoid the 'O mechanism, in the spirit of Turing’s morphogenesis [38],

ad hocparameter selection typified with other reaction—diffusion IS applied. Here, texture generation and smoothing are com-
approaches. As a useful example, we focus on the repair of broken, bined using coupled PDEs. The reaction mechanism utilizes
occluded fingerprints. We also treat several exemplary natural tex- the AM—FM dominant component analysis to enforce a suit-
tures to demonstrate the technique’s generality. able pattern on the missing region. At the same time, anisotropic
Index Terms—AM-FM image models, anisotropic diffusion, dis- ~ diffusion is used to adaptively smooth the image, producing a
occlusion, texture. seamless restoration.
As a significant and useful example, we apply the methods
l. INTRODUCTION we Qev_elop to .the_ problem of fingerprint repair. Often, regions
within fingerprint images are lost due to the inhomogeneity of
R EPAIR of occluded or missing parts of digital images is afhe surface, movement of the finger (smudging), partial contact,
important problem that has been studied by psychophygy problems associated with imaging the fingerprint. The gen-
cists [18], mathematicians [29], computer scientists and sig@htion of fingerprint-like textures is well established [19], [37].
processing engineers [31]. Tkexture completiorr disocclu-  Typically, a bank of Gabor filters is used to replicate the undu-
sionproblem can be solved adequately for small occlusions pyting patterns observed in fingerprints. The selection of the par-
forcing continuity ofimage intensity and edges [29], [31]. Wheficy|ar Gabor filters is accomplished using a generalized model
large occlusions or substantial missing portions of the imagf_g] or by trial and error. To demonstrate generality of this ap-
exist, it is likely that continuation-based methods will fail, Si”C%roach, we also apply the method to several other naturally oc-
internal variations due to patterns and detail exist within thﬁjrring textural regions.

missing region. _ o In the following section, we discuss relevant advances in pat-
This paper focuses on the reconstruction of large missing fgry generation and enhancement, and we also review work in

gions of homogeneous oriented textures. To reconstruct thga@ge disocclusion. The reconstruction of image textures begins
with the reaction—diffusion model outlined in Section Ill. The
success of reaction—diffusion for disocclusion is based on the
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Fig. 1. Stripe formation using coupled PDE.

depending on the concentration of the cell and its neighbor-
hood. He proposed a set of coupled PDESs to simulate such pat-
terns,(8a/6t) = F(a, b) + D,V2a, and(6b/6t) = G(a, b) +
D,V2b. In this casea andb are the two chemicals that dif-
fuse depending on neighborhood concentration (computed via
the Laplacian operator), and, and D, are the corresponding
diffusion rate constants. Changesafandb per time unit are
given byéa /6t andéb/ 6t respectively. The local concentrations
F(a, b) andG(a, b) are iteratively computed, and the process
of reaction—diffusion continues until a stable pattern emerges.

The Tl_Jring model Wa_IS SUbseql-Jently extended t-)y M-einha'gé 2. (@) Original “oriented” fingerprint image. (b) Flow field depicting
[30] to SI_mUIate t_he strlp_e formation proce_ss. A_n |ntU|t|ve_ UNsrientation of patterns of Fig. 2(a). For visual claritil, the flow field orientations
derstanding of this technique could be obtained if we consides@ piotted in a magnified scale and quantized according to the following
situation where concentration and diffusion of chemic@ro- orientation rangesO( 7 /4), (r/4, 7/2), (v/2, 3x/4), and g7 /4, 7).
hibits chemicab to be present at the same place and at the same
time. So, the chemicals are locally exclusive. A striped pattetechnique is used to fuse these features to generate a unified tex-
generated by the PDE model in [30] is shown in Fig. 1. Simildure model for texture synthesis. By contrast, our texture model
models have been used to produce a variety of synthetic texbased on AM—FM modeling and dominant component anal-
tures [40]. A major difficulty of this approach is the selectiorysis, which are most suitable for locally narrow-band, quasi-pe-
of the constants needed to generate a stable pattern.éPate riodic repetitive patterns. Nonparametric statistical sampling is
[35] have used similar coupled PDE models to enhance fingatso used by Efrost al.[7] for texture synthesis.
printimages and addressed the issue of parameter selection. Fétass and Witkin [19] have also investigated the generation of
the texture completion problem, generating patterns of a smeiented textures. Since the pattern embedded in a fingerprint
cific granularity and directionality is difficult, as is matchingessentially consists of oriented contours, their flow field anal-
the pattern at the boundary of the occluded region. Thus, pattgais model is suitable for fingerprint pattern generation and anal-
formation is possible with the Meinhardt approach, but an agsis. Bandpass filters, similar to those of the classical Marr—Hil-
ceptable disocclusion solution is not amenable. In a related PDEeth scheme [28], are used for edge detection. The Kass/Witkin
based application to supervised texture segmentation, Paragiethod provides a flow field with direction vectors at every
and Deriche [32] have used a global statistical texture modpbint of the oriented pattern. The flow field for the “oriented”
The contour detection for a homogeneous pixel cluster and figerprint image in Fig. 2(a) is shown in Fig. 2(b). The flow
gion based segmentation are integrated in a single framewdigkd orientations are plotted in a magnified scale and quantized
defining ageodesic active region by the following set of four orientations: (9/4), (w/4, 7/2),

In a similar context, Sherstinsky and Picard [37] haver/2, 3x/4), and @n /4, =). In [19], it is suggested that this
introduced the)-lattice system to produce restored texturesiethod could be used to synthesize fingerprints under limited
from corrupted imagery. Th&/-lattice is a nonlinear dynamic occlusion as they become extremely regular in flow field coor-
system founded on reaction—diffusion. In thelattice system, dinates.

a warping function is introduced in the reaction process to facil- For the general problem of image disocclusion, Masnou and
itate stability. These warping functions are typically sigmoidd¥iorel [29] have proposed a solution that exploits the connected
functions that prevent numerical overflow at every time stepomponents within the image level sets. The levells#tthe
The M-lattice system uses orientation sensitive filters, similantensityg of an image! is given by the set= {x : I(x) > ¢}
to the flow field analysis in [19]. where I(z) is the intensity of the image at locatian Level

Zhu et al.[42] have proposed a statistical theory for texturknes are then defined as the boundaries of connected compo-
modeling with the objective of texture synthesis. A set of filtersents within the image level sets. In an occluded area, Masnou
is selected from a general filter bank to capture texture featurasd Morel enforce continuity of the level lines to reconstruct the
The histograms of the filtered images estimate a marginal decluded region. A cost function is used to minimize the total
tribution of the image. A maximum entropy distribution basedariation in angle for the connected pairs of level line termina-
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they have shown that a family of potential functions can be used
in a reaction—diffusion paradigm to capture the smoothness and
also the prominent patterns of an image. The typical potential
functions lead to image smoothing via anisotropic diffusion.
Inverted potential functions produce pattern formation or
reaction. From this basis, we approach the problem of texture
disocclusion.

@) () © The reaction—diffusion mechanism used for texture disocclu-
Fig. 3. (a) Original “stripe” fingerprint image. (b) After occlusion (squareSion is

region in black) in Fig. 3(a). (c) After disocclusion of Fig. 3(b) following the
level line method. ol

—= = opD R 1
e poD + pr (1)
tions. A term within the cost function enforces continuity of thg,hereD is the diffusion termR is the reaction term: angp

level lines. A simplified version of this method (using only horandpR are the rate of diffusion and reaction, respectively. For a
izontal and vertical level lines) is implemented for the Origin%l,pecific image locatiox = (z, %), we have

“stripe” fingerprint image as shown in Fig. 3(a). The result of

disocclusion through continuity of level sets in the square oc- aI(x)

cluded region of Fig. 3(b) is shown in Fig. 3(c). For small oc- 5r = PR(X)D(X) + pr(x) R(x). 2

clusions, this method proves to be effective. However, for larger

occlusions where the pattern curves within the occluded aréadiscrete Jacobi update for (2) is given by

the level line continuation method is unsuccessful. The level

set method produces piecewise constant stripes in the repaired  , +1(x) — L(x) + pp(x)D(x) + pr(x)R(x) (3)

fingerprint, which appear unnatural in the reconstruction [see

Fig. 3(c)]. The same criticism could be levied on the classic@herel,(x) is the intensity of positiox at iterationt andx &€

interpolation-based disocclusion solutions [31]. Therefore, &?. The initial image intensities i, are equal to those in the

adaptive pattern formation technique is required for the fingghput imagel, except in the case of the occluded region.

print latency problem. For the occluded region, we “seed” the reaction—diffusion
Kokaramet al. [20]-[23] have performed extensive studieprocess with noise that is distributed identically to that of the

on detecting and interpolating missing data in image sequencgisrrounding region. Le® denote the domain of the image and

Their work involves primarily two components: estimation otJ ¢ € denote the unoccluded region. [Rtc U denote the re-

motion using MRF models for spatio-temporal changes in cajion surrounding the occlusion/latency a@d= U¢ denote the

responding blocks of a movie image sequence and generatiopéluded region. Ik € U, thenlp(x) = I(x). But, if x € O,

a variety of interpolators including median, MRF and AR basatien Ip(x) = R, whereR is a random variable with density

techniques. The approach is most suitable for detecting and j‘@;—(i) = Hp(i)/|B| whereHg (i) is the intensity histogram for

terpolating small homogeneous image mass that is uncorrelategionB and|B] is the cardinality oB. The width ofB (the re-

with neighboring regions. For the generation of oriented texion surrounding the occlusion) depends on, e.g., the maximum

ture features, which is the focus of this paper, domain specifigige-to-ridge spacing in a fingerprint pattern. [%&t,. denote

heuristics and exploitation of characteristics specific to imagigis maximum width (estimated by the AM—FM dominate com-

sequences may not be appropriate. ponent analysis presented in Section 1V). Then, we define the
Rather than manual selection of the pattern regeneratingith of B to be 27, pixels. Using this method of defining

filters, our method hinges on an automated AM—FM dominattie boundary regioB, we ensure that the width of the boundary

component analysis. Joint AM—FM modeling of one-dimenegion exceeds one full pattern period.

sional (1-D) signals has recently been studied extensively [3],Seeding the region with noise identically distributed as the

[4], [25]. In two-dimensional (2-D) images, the Teager—Kaisgntensities of the surrounding region has the effect of providing

operator [26], [27] and other related techniques [2], [9], [15 disocclusion solution admitting intensity distribution and con-

have been used to extract dominant AM—FM information fromast similar to the image. If uniformly distributed noise is used

oriented textured images. Multicomponent multidimensiongistead, as was done in [41], the repaired region tends not to

AM-FM models have also been investigated recently [13], [15hatch the surrounding region in graylevel distribution. This typ-
Here, we employ dominant component analysis in the desigally results in an unnatural appearance.

of reaction filters that are used in a reaction—diffusion process.In the texture disocclusion problem, several aspects of
In Section Ill, we describe the reaction—diffusion mechanismaquation (2) are important. Since the disocclusion process
Section IV details the dominant component analysis. not only generates a pattern but also adapts the pattern to the
existing boundaries, the reaction—diffusion approach excels in
mating the new pattern with the existing unoccluded pattern (as
compared to nonadaptive texture generation approaches such

Zhu and Mumford [41] have motivated the use of rea@s [30]). In the case of [30], the stripe generation process is
tion—diffusion models in image processing with an analysis afdependent of the orientation of the texture at boundaries of
universal image statistics. Analyzing a set of natural imagdhge occluded region.

I1l. REACTION—DIFFUSION FORTEXTURE COMPLETION
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A. Diffusion Model opening ofl by E, andI e E is the morphological closing of

Given the basic reaction—diffusion model, we now define tHePY £ However, for texture disocclusion, the morphological
diffusion and reaction terms for texture disocclusion. DiffusiofPProach tends to flatten image regions, leading to a piecewise

and reaction have conflicting objectives. The goal of diffusioRPnstantresult. The constant regions are not appropriate models

is smoothing, while the goal of reaction is pattern formatiofior Nighly oriented, repetitive textures. On the other hand, the

Without diffusion, a smooth texture pattern could not be geﬁ_mooth Gaussian filter result does produce smooth transitions
erated from the seed noise. Since anisotropic diffusion encolflimage intensity within the texture.

ages intra-region, not inter-region, smoothing, the texture can'n_ the above diffusion model using (7), there are two parame-
be smoothed without eliminating the important intensity trandiers:o andk. For the case of diffusion within the texture pattern,

tions (edges). A continuous anisotropic diffusion PDE [33] is these diffusion parameters can be selected without ambiguity.
First, sinces controls the scale of the features retained in diffu-
aft(x)

L sion, the value of is settos = T},,;,, the minimum periodicity
ot div{c(x)VLx)} “) of the texture pattern (e.g., in a fingerprint, the minimum dis-
wherec(x) is the diffusion coefficient. Alternatively, the diffu- tance between ridges). We computesing the dominant com-

. o ponents extracted in the analysis of Section IV. Since it controls
sion operator can be expressed as a combinatienygf+-c, I,,,, . I
N > the maximum change between pixélds set tok = Ciax, the
wherel;, andl,, represent second directional derivatives annr% . g - -
. . . aximum contrast (intensity difference) within the texture pat-
image gradients and the normal respectively [24]. tern in the surrounding arda
The equivalent discrete representation of (4) for substitution 9 '
In (3) is given by B. Reaction Model
In the reaction process, we encourage formation of patterns of
D(x) = Z ca(x)Via(x) (®)  a given granularity and directionality, corresponding to a local-
d=1 ized area in the frequency domain covered by a specific Gabor
where T is the number of directions in which diffusion isfilter G given by
computed andviu(x) is the directional derivative (simple
difference) in directiond at locationx. ForI' = 4, we use G = cos[(2n/N)(uz + vy)] 9o (2, y) (8)
the simple difference¥ 1,(x) with respect to the “western,” ) ) )
“eastern,” “northern,” and “southern” neighbors. For examplér an N x N image indexed by(z, y) and a Gaussian
if x = (2, y), VIi(z, y) = I(x — h1, y) — I(z, y). Here, the 9-(2, y), whereo is the scale parameter (standard deviation
parameter; defines the sample spacing used to estimate tﬁgthelGausglan). In this case, the Gabor function has standard
directional derivative in thel = 1 direction (and is typically deviation (width) ofo- and center frequency, v. The Gabor
unity-valued). parameters are automatically determined by the AM-FM
The selection of the diffusion coefficientx) is the most dominant component analysis method given in Section IV.
important step in designing the diffusion process. Essentially, To produce patterns that correspond to oriented texture fea-
we want a diffusion coefficient that is low (near zero) at image!res. the reaction term is given by
edges and is high (near one) within image regions. Wids an

T

edge strength parameter, a logical choice is given by [33] R(x) = Gx @ [p(Gx"D)]. ©)
VI(x) 2 Here, G is the Gabor filter matched to the dominant compo-
o(x) = exp{ — {T} . (6) nent at positionk. The operatorp denotes correlation antl

denotes convolution. The functigs( ) weighs the contribution

With the initial solution for disocclusion seeded with noise, th@f the Gabor filter. Foy( ), we use the formulation proposed in
traditional diffusion coefficients cannot remove significant ouf41]

liers [where|VI(x)| 3 k]. To regularize the diffusion opera-

tion, we use a modification of the gradient image used to com- o(€) = — <1 _ 1 ) (10)
pute the diffusion coefficients, as suggested by [5]. A Gaussian- 14+ (|£|//€)2

convolved version of the image is then utilized in computing the

gradient magnitudes used in the diffusion coefficients wherek is a scaling constant. For example, in the case of fin-
gerprint pattern generation, we can geiccording the desired
VS(x) 2 contrast within the fingerprint ridges, as with (7).
o(x) = exp {_ { % } } (M The net effect of (9) is to produce a reaction where the pat-

tern of specified granularity and directionality has not emerged.
whereS = T*g, is the convolution ofl with a Gaussian of Therefore, (9) will stabilize when the local spectrumlafon-
standard deviatioa. The regularized diffusion given by (7) istains components within the localized spectral region covered
stable and well posed [5]. Another regularized implementatioby the Gabor filter frequency response. Since the patterns that
called morphological anisotropic diffusigrcan be formed by emerge are not necessarily smooth, the simultaneous diffusion
substitutingS = (Io E) e E into (7) [36]. In this caseE is a process allows the creation of smooth patterns localized in both
structuring element of sizex x m, I o E is the morphological space and frequency.
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C. Rate of Reaction—Diffusion SetO
SetB

The update rate is an important factor effecting the impleme
tation of reaction—diffusion for the repair of broken textures. II Seed region O with noise R | >
the previous sections, we specified the form for both reactic

R, and diffusion,D. We did not specify the two rate functions xeU,1(x)=1(x)
pr andpp. Because the objectives of processing within the ul xe0,1(x)=R
occluded regiorlU, the boundary regioi3 and the occluded . »
regionO are different, we allovyr (x) andpp (x) to vary with For p and p, values
positionx. Specifically, we diffuse(wi)thin the (en)tire unoccludec I’*‘(x)(_rl‘(x))'p o(¥IDE)+ pr(RIR()] referto section T C.
regionU, to provide simultaneous enhancement and disoccl D(x)=§C.:(X)V14(X)
sion, and to balance the _Ievel of smoothing between.the un R(x)=G,80G,+])] [Temmeac)
cluded and occluded regions. We also perform reaction witt
the boundary regioB, to guarantee pattern matching within the M i
boundary region. The rate of reaction decreases withas a
function of distance fron®, the occluded/latent region. Fig. 4. Reaction—diffusion algorithm flowchart.
Of course, both reaction and diffusion are performed within
O at constant rates. Fer € O A. AM—FM Modeling Fundamentals

A 2-D AM—FM function p(z, y) takes the form
PR(X) = pRO

= 1
which is determined by the constraints of stability and the max- ulw, v) = alw, y)exp iy, u) (12)
imum number of iterations. Likewise, ¥ € O, wherea(z, y) andy(z, y) are arbitrary real-valued functions.
Withoutloss of generality, we assume thét, y) > 0. The AM
pp(X) = ppo and FM components of interest that are containea(ie, %) in

(12) are the instantaneous amplitude:, v) and the instanta-
neous frequency vect&W+(z, ) = [w(x, ¥) v(z, y)]*. The
functionsu(x, y) andv(z, y) are the horizontal and vertical in-
stantaneous frequenciesefz, y).
Givenu(zx, y), the AM and FM functions may be calculated
whereppu = eppo. In the simulations given in Section V, theusing the straightforward demodulation formulae
valuees = 0.1 was utilized. While we have not yet found an au- Viulz, )
tomatic method for selecting two conflicting constraints need Vi(z, y) =Re {7’} (13)
to be satisfied: the generated pattern should meld with the ex- iz, y)
isting boundary oB while simultaneously inducing minimum an
distortion in the regiorJ. a(z, y) = [z, y)| (14)
If x € Ubutx ¢ B, thenpgr(z) = 0, since enforcing a pat-

tern on the remainder of the image would produce distortio . . -
g b he frequency equation (13) may be interpreted as a specialized

However, ifx € B, we allow the rate of reaction to decrease t : ¢ Poletii ton34l: it A iivated by th
zeroin alinear manner, as a function of the distance from the <¥Q§ ance of éPoletti equation{34]; its use is motivated by the

cluded regiorD. Let d(x, O) specify the minimum Euclidean act that the exponential function in (12) is invariant under dif-

distance between poistand the occluded regio@. Then feren_t|at|0n. . o ) :
Oriented, highly repetitive images such as fingerprints are

pr(X) = pro[WB — d(x, O)]/Ws (11) Wwell suited for AM—FM modeling because they are dominated
by nonstationary, locally narrowband processes [6] and contain
whereWg is the width of the band bordering the occluded rdecally quasiperiodic patterns. However, note thét, v) in
gion, defined adVp = 27,.x. The reaction—diffusion algo- (12) is complex-valued, whereas typical images are real-valued.
rithmic steps are illustrated in Fig. 4. The reason for considering a complex model is that the AM—FM
The success of the reaction—diffusion model depends on fections of any real imag&(z, i) are not unique. By adding
reaction filters used in reconstructing the texture patterns. \&aimaginary componeft}(z, y) to 3(z, y), we regularize the
utilize an AM—FM dominant component analysis to derive thdemodulation problem and obtain
filter parameters for the occluded regions, as described next.

whereppo < 1/4 for stability.
For pixels outside of the occluded ar®awe have

PD (X) = PDU

hich yield exact solutions at all points wheréc, ) # 0[15].

w(w, y) =Sz, y) + 5=, y) (15)
IV. ESTIMATING THE DOMINANT COMPONENT MODULATIONS where 3(z, y) = a(x, y)cosy(z, v)] and Qz,y) =
In this section, we describe the AM—FM modeling of the inpui(z, ¥) sin[(x, y)].
texture image and briefly review tlilominant component anal-  Clearly, Re[u(z, y)] = S(z, y) irrespective of how we

ysis(DCA) technique [9], [10], [15] that is used for computingchoose@(x, ). By settingQ(x, v) equal to the directional
estimates of the dominant AM and FM functions along a comultidimensional Hilbert transform &%(z, v) [16], we ensure
tour that encloses the occluded or missing portion of the imagdkat 1.(z, v) admits multidimensional analogs of many of the
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most attractive features of the well known 1-D analytic sign&. Dominant Component Analysis

[8]. When Q(z, y) is chosen in this way, we call(x, y) the o1 iqeqa| digital fingerprintimages and other oriented textural
analytic imageassociated with3(z, y). The AM and FM 4065 (18)—(22) can generally be used to compute the AM and
functions of si(x, y) can then be determined uniquely using\; fnctions accurately. Because of many factors [17], how-
(13) and (14)_’ and we define these modulgﬂons to be the er, the images obtained in practice are often multipartite and
and FM functions of3(, y).* The AM functiona(z, y) May  t4i| to be everywhere locally narrowband [6], [14], [39]. These
be interpreted as the image contrast function, wRile(x, u)  factors can lead to approximation errors in (18)—(21) that are not
characterizes the local texture orientation and granularity. negligible. To overcome this problem, we model the textured
_ imageI(z, y) not as the real part of a single AM—FM function,

B. Discrete AM-FM Models but rather ad (x, v) = Re[M(z, )], where

A 2-D discrete version of the directional multidimensional
Hilbert transform was given in [10], where it was specified
in terms of its spectral multiplier. For a real-valued discrete M(z,y) =
image(z, y), this transform may be used to obtain an imag- !
inary component)(x, ) and formulate the complex-valued.
AM-FM model 'S

M=

Ml (.’IZ, y) (23)

Il
—

the sum of L AM-FM functions
ex

Mi(z,y) =  ale, y)expliva(z, y)]. With this
_ . multicomponent model, M(z, y) can still be obtained
M(z, y) =1(x, y) +5Q(z, v) (16) precisely as before [by setting (x, i) = I(x, y)+jQ(x, )]
=a(z, y)exp [j¥(z, v)]. (17) by virtue of the fact that the directional multidimensional
Hilbert transform is a linear operator.
We definea(z, y) in (17) to be the AM function of (=, v). Our approach is then to demodulate allcomponents in

Upon carefully discretizing (13) and (14), one obtains th@3) simultaneously and select the AM and FM functions corre-
equivalent expressions for the discrete demodulation algorithemonding to the component that dominates the local image spec-
trum on a pixelwise basis. This technique is known as dominant
M +1,y)+ Mz -1, y)} component analysis (DCA) [9], [10], [15]. The single pair of
2M(x, v) AM and FM functions obtained by DCA are referred to as the
(18) dominant modulationsf the image; they provide a rich descrip-
Mz +1,y) - Mz -1, y) tion of the Iogally dominant image structure.
25 Mz, 1) } In performing D_CA, the com_ponents are isolated frqm one
J Y another by analyzing/ (x, y) with a multiband Gabor filter-
(19) bank of the type described in [2]. The choice of Gabor filters is
Mz, y+ 1)+ M(z,y—1) motivated by two considerations. First, because of their optimal
2M(z, y) } conjoint localization in space and frequency, an appropriately
(20) designed bank of Gabor filters is capable of resolving the com-
ponents from one another spectrally, while simultaneously cap-
Mz, y+ ,1) — M,y — 1)} turing spatially local nonstationarities. Second, the responses of
2jM(z, y) Gabor filters are locally narrowband [1], [2].
(21) Let G;(z, y) be the response of a particular Gabor filter (8)
and with impulse responseg, (z, i) and frequency respongg (w).
a(z, y) = |M(z, v)| (22) Weassume thatsome particular componéftr, ) dominates
G;(z, y) at the pixel(z, y), so that

|w(z, y)| = arccos [

sgnu(x, y) ~ sgn arcsin [

|v(z, ¥)| & arccos [

sgnv(x, y) A sgn arcsin [

where Vi (z, y) = [u(z, y)v(z, y)]*. While a derivation of
these discrete frequency algorithms is based on rigorous theoret; (z, v) = M (z, v)* g:(z, v) = Mi(z, v)* g:(z, v). (24)

ical arguments [15], some intuition can be gained by observing

that the derivatives in (13) are replaced by first-order central di8y applying a sequence of quasieigenfunction approximations
ferences and averages in (18)—(21). Unlike the continuous-d8}, [11], [15], one may verify the validity of estimating
main frequency algorithm (13), which is exact, (18)—(21) ar€;(x, ) by applying (18)—(21) directly td7;(z, y). The
based on a novel discrete quasieigenfunction approximation akd function «;(«x, ¥) is then estimated using
generally contain approximation errors unlé¢s, y) is a pure

sinusoid [11]. However, these errors are typically negligible for Gi(z, y) ‘

images that are locally narrowband [15]. w(z, y) ~ ‘m (25)

10ften, modulating functions similar to those calculated using the analytic, . . . . .
image can alternatively be obtained by applying the multidimensiondyhich differs from (22) only in that the amplitude scaling of

Teager—Kaiser operator [26] directly to a real-valued image. We generally;(z, ) relative toM;(z, y) has been factored out. Thus by

prefer the approach based on the analytic image because of its strong theoreﬁﬁ%lying (18)—(21) and (25) to the response of every filter in the
correspondence to the 1-D analytic signal. For example, when the anal

image is used, the instantaneous and Fourier frequency spectra have iderﬁ&grbankv we Obtajin estimates of the AM and_ FM functions of
first moments. all L components in (23) at every pixel in the image.
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At each pixel, we define the dominant component as the one
that dominates the responég(z, y) of the filter that maxi-
mizes the selection criterion

|Gi(z, y)
Oz, y) = ———F—. 26
@ ¥) = e 163 ()] (26)
This criterion tends to select filters that are dominated by @) (b) ©

Ia_rge amp“tUde cqmponents Wl.th .mStantaneous freque_ncllegi 5. (a) Occluded image of Fig. 2(a). (b) After disocclusion using proposed
lying near the maximum transmission frequency of the filtefm-Fm reaction—diffusion method. (c) After disocclusion following stripe
thereby rejecting cross-component interference and out-of-bderthation method.

noise. Estimates of the dominant modulations are taken from
the filter that maximizes (26) on a pixelwise basis. The domi-
nant frequency estimates along the perimeter of the occlusion
are used to design the reaction filters for the reaction—diffusion
process of (2). From the dominant component analysis, we
obtain values for horizontal and vertical frequendys, ) and
v(z, y), at each image position. Recall tHat the unoccluded
region bordering the occluded region?2ig;, .. pixels in width.
We obtain a sample sequencegfr, y) values andv(zx, ¥) @ ®
values contained within a path throug@hthat is7},., pixels Fig. 6. (a) Occluded “stripe” fingerprint image of Fig. 3(a). (b) After
from O. If the pattern is homogeneous in the occluded regiofiS°cclusion using AM-FM reaction-diffusion method.
we can find theu, v) values used in (8) by taking the averag
w(x, y) values and:(z, y) values along the path.

In Section V, we demonstrate this approach, providing grapﬂ

%as not been rolled from one side to the other, or if the bulb
tsthe finger has not been completely inked. Similarly, if

of the dominant components around the occluded area. We vemgnt occurs, such as a twist or slip, the _fingerprint can
show example dominant component images obtained from thi partially smeared or blurred. Poor quality ink, excessive

approach. The automation of the reaction filter selection iy OF runny ink can also ot_Jllterate important features .SU(.:h
major contribution of this work. as the ridges. Finally, foreign substances and perspiration

can also cause occlusion of features within the fingerprint.
Image enhancement can be used to improve such prints, but
the image enhancement procedure should not provide artifacts

In this section, we present a set of results generated usorgfalse information. The enhancement process should allow
the proposed reaction—diffusion model. The focal applicatidar bifurcations, terminations, islands, and variation in ridge
we have chosen for demonstration is the repair of broken, agidth. The PDE-based method suggested in this paper satisfies
cluded fingerprints. We also apply the AM—FM reaction—diffuthese needs, whereas continuity-based methods cannot recreate
sion technique to a general set of textures. For the fingerprinfurcations, terminations, and islands. Typical texture repair
application, the original images were collected from the NISapproaches are not fit for prints with varying widths. Moreover,
database. The occlusions are generated via natural [Fig. 7@hnecting broken ridges properly is a significant concern
and synthetic means [Figs. 3(b), 5(a), 6(a)]. Results are givienridge counting and tracing within the fingerprint analysis
for the level line continuity disocclusion algorithm and also foprocess. The reaction—diffusion solution given here adaptively
the synthetic stripe formation process. Finally, a measure of @pnnects the ridges across the occlusion, whereas traditional
curacy is defined with respect to ground truth to show the fidelitgontinuity-based solutions may lead to a false increase in ridges
of disocclusion process. or leave the ridges unconnected across the occluded region.

The analysis of fingerprint images has long attracted atten-Whether the occlusions result from latent prints or faulty
tion from the image processing community because of the mgoynting on ink, the occlusions can adversely affect fingerprint
biometric and law enforcement applications. Beyond the signilassification and matching. The FBI divides these problems
icant work performed in coding and compression of fingerprimto three cases. In the first case, the impression is so scarred
images, the processing techniques have mainly focused on &t neither the general type of pattern (arch, whorl, loop, etc.)
hancement or restoration of the fingerprint patterns from camer the ridge tracing or counting can be accomplished. The
rupted, noisy versions. A number of these fingerprint enhancgecond case includes prints in which the general type cannot be
ment and restoration methods are guided by reaction—diffusidetermined with reasonable accuracy, but ridges can be traced
processes. and counted. In the third case, the general type of fingerprint

Because most latent fingerprints (those lifted from crimean be determined, but partial occlusion impedes ridge tracing
scenes) are fragmentary in nature, typical classification aadd counting. Our disocclusion method concentrates on this
file search methods are not practicable due to the occlusitrird case—repairing occluded ridges for tracing and counting.
of important features. Fingerprint occlusions can also occtlihus, the method described in this paper seeks to reconstruct
through faulty mechanical operation in ink-based fingerprinteccluded ridges. The approach, therefore, does not address the
Focal points (deltas and cores) may be occluded if the fingercreation of the fingerprint delta or the core.

V. RESULTS
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Fig. 7. (a) Original fingerprint image with “natural occlusion.” (b) After disocclusion using AM—FM reaction—diffusion method.

Fig. 5(a) depicts a partially occluded image of the “orientedVISE is 755 for the method given here. Using the stripe for-
fingerprint shown in Fig. 2(a). In Fig. 5(b), the disoccluded vemation process of [30], th&#ISE = 5081 in case of Fig. 5(c)
sion of the image in Fig. 5(a) is shown, using the reaction—difeven using a smaller occlusion). Similarly, for Fig. 6(b), the
fusion technique and DCA. Notice that the generated patternM&SE ~ 335 whereas the same MSE for Fig. 3(c) is 343.
perceptually compatible with the overall embedded pattern of As discussed in Section IIl, a boundary regiBns consid-
the fingerprint, providing a smooth transition at the boundamsred for every occluded regidd. The rate of reaction—diffusion
of the occlusion. The reconstructed image from the Meinhardtdecreased in regioB in order to obtain a seamless integra-
stripe formation process [30] is shown in Fig. 5(c). In the cagion of the generated pattern in the occluded redibmvithin
of Fig. 5(c), for reconstruction, a smaller occluded patch is us®&l We have also extended the MSE measure to include region
compared to Fig. 5(a) since with the method of [30], larger o®. The MSE in the boundary region represents the amount of
clusions are untenable. In all cases, note that the location of thistortion the process has introduced in the existing pattern in
occluded region is assumed to be knaavpriori. The AM—FM  order to have a perceptually acceptable oriented pattern gen-
reaction—diffusion method does not address the occlusion detexation. For Fig. 5(b), taking boundary region width to be ten
tion problem. pixels, the MSE is 99, while taking the width to be 20 pixels,

Fig. 6(a) shows another fingerprint image with an arbitrarilthe MSE reduces to 51. For Fig. 6(b), under similar conditions,

selected missing patch from the original “stripe” fingerprinthe MSE's are 182 and 79 respectively. The error decreases as
image of Fig. 3(a). Fig. 6(b) is the resultant image aftehe boundary region is increased in size and consequently dis-
disocclusion using reaction—diffusion. The preservation of thertion in the original pattern is minimized. For Fig. 5(c), the
ridges in Fig. 6(b) is an example of the inter-region smoothingSE'’s are 813 and 487, respectively, which are still greater in
of anisotropic diffusion. Compare the result with that oérror than the AM—FM reaction—diffusion results.
Fig. 3(c) where a similar patch is reconstructed using level Table | provides a summary of the example results. The table
lines continuity. In the case of Fig. 3(c), the natural appearaniceludes results for both fingerprint and general texture results.
of the reconstructed patch suffers due to enforcement of levbm the table, one may note the extent of the occluded region,
line continuity. the MSE for AM—FM reaction—diffusion result, the number

Fig. 7(a) is a fingerprint image with natural but irregulaof reaction—diffusion updates required, and the MSE for the
occlusions due to partial contact of an uneven finger surfadevel lines method result. Even though the level lines method
The reconstructed image from reaction—diffusion is shown ia not appropriate for each example, we included results for
Fig. 7(b). In this case, two Gabor filters were used to perforthis method for completeness. In seven of the eight examples,
disocclusion. Note the junctions and bifurcations created the AM—FM method provides superior results in terms of
the texture regeneration. Also note that the thickness of thisual quality (see Figs. 10-13) and in terms of MSE. The final
reconstructed ridges are almost uniform and compatible wigkample (shown in Fig. 14) shows a case where the level lines
the existing pattern. approach is more appropriate than the AM—FM reaction—diffu-

As noted earlier, the successful pattern generation at the siwn technique. The level lines method excels in the presence
clusion is rooted in the use of DCA in the bordering region a¥f smooth, directed textures without bifurcations or changes
the occlusion. For the results cited above, the dominant comp-orientation. In contrast, note the excelled performance of
nent frequencie$u, v) were plotted and are shown in Fig. 8AM—FM reaction—diffusion on the “sand” image of Fig. 13.
Fig. 8(a)—(c) are the corresponding dominant component fie-this case, the AM—FM reaction—diffusion method is able to
guencies of the occluded images of Figs. 5(a), 6(a) and 7(atreate the graininess and orientation of the original texture.
respectively. In Fig. 8, the-axis represents the position of a
path taken througB around the occluded regidn. The corre-
sponding reconstructed images from the dominant component
frequencies are shown in Figs. 9(a), (b), and (c), respectively.The paper presents a useful application of the reaction—dif-
From Fig. 9, we can make two conclusions. First, the dominafuision paradigm. The major contribution is in developing a
component analysis extracts the dominant patterns in the fstcheme that not only generates a texture for the missing part
gerprintimagery. Second, dominant component analysis/recai-an image but also maps and combines smoothly within
struction alone is not sufficient to perform disocclusion. the existing pattern. The approach does not use a continuity

The quality of reconstruction is also substantiated using tkenstraint on level lines [29], an interpolation scheme [19],
mean square error (MSE) measure over the occluded regionnbr a texture sewing technique [40]. The algorithm allows the
the case of Figs. 5(b) and 6(b), the original images shown imensity distribution of the generated pattern to be similar to
Figs. 2(a) and 3(a) are taken as ground truth. For Fig. 5(b) tthet of the surrounding region.

VI. CONCLUSIONS
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Fig. 8. Graphs of dominant component frequenciesv) around the perimeter of the occluded area: (a) for “oriented” fingerprint image; (b) for “stripe”
fingerprint image; and (c) for fingerprint image with “natural” occlusion. In each figure xtais represents distance around the perimeter, ang-thés

represents frequency in cycles per sample.

@ (b)

Fig. 9.
image; and (c) for fingerprint image with “natural” occlusion.

Images generated from the occluded images by reconstructing the dominant components: (a) for “oriented” fingerprint image; (b) fingstppiat

In automating the selection of the texture parameters via dotare disocclusion. We apply the method to a significant practical
inant component analysis, we provide a rigorous method for tgpoblem, that of fingerprint repair/completion.
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TABLE |
RESULTS FROMTHREE FINGERPRINTS ANDFIVE GENERAL ORIENTED TEXTURE EXAMPLES. MEAN SQUARED ERROR ISCOMPUTED ACROSS THEOCCLUDED
REGION O AND THE BOUNDARY REGION B

Image Occluded MSE Iterations MSE
Region (top, | AM/FM For Level lines Method
left) — Reaction- Reaction-

{bottom, Diffusion Diffusion
right) Method

“Oriented” (50,50) - 755.1 32 1365.0

Fingerprint (65,65)

“Stripe” Fingerprint | (35,75) - 3353 25 343.4
(55,95)

Fingerprint with (25,0) - 24341 30 4867.8

“Natural Occlusion” | (45,200)

Bark (50,50) - 1651.6 25 2658.1
(65,65)

Woodgrain (50,50) - 1764.5 50 2724.7
(65,65)

Rock (50,50) — 98.8 10 164.5
(65,65)

Sand (50,50) - 22735 25 3653.4
(65,65)

Wood (55,65) - 3340.1 30 2088.5
(70,80)

@) (b) (© (d)

Fig. 10. (a) Original “bark” fingerprint image. (b) After occlusion (square region in black) in Fig. 3(a). (c) After disocclusion of Fig. 10(b) byMAM-F
reaction—diffusion. (d) After disocclusion of Fig. 10(b) by the level line method.

@) (b) (©) (d)

Fig. 11. (a) Original “woodgrain” fingerprint image. (b) After occlusion (square region in black) in Fig. 3(a). (c) After disocclusion of Fig. 1 Ad)-BM
reaction—diffusion. (d) After disocclusion of Fig. 11(b) by the level line method.

@) (b) (©) (d)

Fig. 12. (a) Original “rock” fingerprint image. (b) After occlusion (square region in black) in Fig. 3(a). (c) After disocclusion of Fig. 12(b) byMAM—F
reaction—diffusion. (d) After disocclusion of Fig. 12(b) by the level line method.
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Fig. 14.
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reaction—diffusion. (d) After disocclusion of Fig. 14(b) by the level line method.
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