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Abstract—We develop multicomponent AM—FM models for structure can only be created by constructive and destructive
multidimensional signals. The analysis is cast in a generat-di- interference between Stationary components. In many engi_
mensional framework where the component modulating functions neering applications, however, nonstationary variations in
are assumed to lie in certain Sobolev spaces. For both contin- g e ' - .
uous and discrete LSI systems with AM—FM inputs, powerful IocaI_S|gnaI quantities such as th_e mstan_tane(_)us amplitude
new approximations are introduced that provide closed form and instantaneous frequency are information rich. Thus, an
expressions for the responses in terms of the input modulations. advantage can be gained by obtaining representations directly
The approximation errors are bounded by generalized energy in terms of the nonstationarities. This is a primary impetus for
variances quantifying the localization of the filter impulse re- performing time-frequency and wavelet analyses.

sponse and by Sobolev norms quantifying the smoothness of the R ty. th has b ing int t in techni
modulations. The approximations are then used to develop novel ecently, thereé has been a growing Interest in echniques

spatially localized demodulation algorithms that estimate the AM that model signals in terms of quasisinusoidal AM—FM func-
and FM functions for multiple signal components simultaneously tions which admit nonstationary amplitude and frequency

from the channel responses of a multiband linear filterbank used modulations. Such AM—EM functions have been used suc-
to isolate components. Two discrete computational paradigms are cessfully in the study of nonstationary one-dimensional (1-D)

presented. Dominant component analysis estimates the locally _. Is includi h h (115 I in th
dominant modulations in a signal, which are useful in a variety signals including human speech [1]-[5], as well as in the

of machine vision applications, while channelized components Study of images and other multidimensional signals [6]-[12].
analysis delivers a true multidimensional multicomponent signal It is well known that joint amplitude and frequency modu-

representation. We demonstrate the techniques on several imagesjations can be computed most accurately for signals having

of general interest in practical applications, and obtain recon- instantaneous frequency content that is highly coherent on

structions that establish the validity of characterizing images of - .

this type as sums of locally narrowband modulated components. a spatially local basis [2], [3], [8] ,[11]’ [13]_[15]'_ Fur-
thermore, such locally narrowband signals are precisely the

. i ) OFF nes for which instantaneous amplitude and fr ncy ar
mation theory, channel bank filters, frequency modulation, image ones 1o eous plitude d frequency are

demodulation, image modulation models, image representation, the .most physmally meaningful. Since th? compI!cated ”9”'
multicomponent models. stationary signals frequently encountered in practical applica-

tions do not generally admit representation as a single locally
coherent AM—FM function, it is desirable to model these
signals instead as multicomponent sums of locally narrow-
N THIS paper, we develop new techniques for representilignd AM—FM functions. However, this is a difficult problem
multidimensional signals in terms of their nonstationargnd relatively few multicomponent AM—FM techniques have
structure. This is in contrast to the classical Fourier reprbeen reported.
sentation, which is a composition of stationary sinusoidal In 1-D, the energy demodulation of mixture6EDM)
components each with an amplitude and frequency that algorithm has been applied to demodulate synthetic two-com-
constant. Hence, with the Fourier transform, nonstationappnent signals [16], and an iterative method involving the
Teager—Kaiser energy operatqiTKEO) has been used to
track and demodulate multiple narrowband formants in human
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This paper studies the problem of analyzing a conk = [k; k» --- k,]%. Again without loss of generality, we
plex-valued signat: R® — C against the multidimensional, assume a unity sampling interval throughout. The discrete
multicomponent AM—FM model functionsa(k): 7™ — [0, oo) ande(k): Z* — R contain the

X i samples of their continuous-domain counterparts. We write
: . - Ve(k) to denote the samples of the continuous-domain FM
Hz) = ; ai(@) expliei@)] = ; ti(=) @ function V(z). The following definition will prove useful in
formulating the constraints.
where Definition: Fors € R, denote byP™ the set of connected

K eN; paths (i.e., trajectoriesj(s) = [o1(s) oa(s) --- on(s)]T

a;  R" — [0, 00); throughR™ or any connected subset®? for which eachy;(s)

v, R'"—R is a polynomial ins of degreem or less. ThusP! is the set of

We also consider the corresponding discrete problem along Wit straight lines and line segments through.

discrete implementations. In (1), wiefinethe instantaneous  For the AM functions in (1), we require that the smoothness
amplitude of component;(z) to be the functione;(z); it is  functional

alternatively known as thamplitude modulation functioof

t;(x). For two—dimensional _(2—D) imagee;é(:c_) may be inter- £(a) = sup / Va(z) - dz
preted as the contrast functionigfz). By definition, the mul- oePt |Ja
tidimensional instantaneous frequency of the (complex—valued%_ . _ o
component;(z) is the vectorVy;(z) [15]. We alternatively which is the supremum of the rr_lagmtudes of all line _m_tegrals of
call Vi;(z) thefrequency modulation functiaf ¢, (z). For 2-D Va(x) along straight lines and line segment&ih, be finite. In

- : : ; dhe 1-D caser{ = 1), £'(a) < Di(a). Similarly, for the FM
images,Vy; () embodies local texture orientation and coarse-* - SN = 1 i

ness. While the model (1) is complex-valued, many applicatioftg1ctions we require that the smoothness functionals

are concerned exclusively with real signals. To analyze a real

signal s(z) against (1), it is necessary to compute a complex G (p) = sup / [V, (x)| ds (6)
extensiont(z) such thatRe[t(x)] = s(z). Our technique for oelt Ja

doing this is described in Section 1. _ _ be finite. Note thatS (i) is the supremum of all path integrals
For the remainder of this section, we will drop the subscnpbsf the magnitude oF¢.,, (z) along straight lines and line seg-

from the component modulating functions in (1) in the i”tere?ﬁents inR™. In the 1-D caseS(y) is identical to the Sobolev
of notational brevity. Lete = [x; @2 - z,]%, and use the norm St | (). !

notationa.. () to denote partial differentiation of amodulating |, saction 1. we introduce new multidimensional
function with respect ta;;. We quantify the coherency of each ;

| guasi-eigenfunction approximation$QEA's) for the re-
component;(z) in (1) by the smoothness of the AM and FMg 565 of linear shift invariant (LSI) systemsid AM—FM
functions expressed as functiond®(a) = ||D!(a)/¢« and

el . inputs and develop tight bounds on the approximation errors.
S1(e) = |15 ;(P)les, where Analogous approximations have been studied previously for
1/q the case of 1-D continuous and discrete signals [3], [14] and
Di(a) = [/ |z, ()]* dx} (2) 2-D continuous signals [11]. TheD discrete theory presented
" here is both new and distinctive. For the continuous case, a
and newnD error bound is presented that contains an interesting
\/a dimensionally dependent term not previt_)usly revealed. We
ST (p) = {/ |¢T_ T_(I)|q dx} 3) use the new QEA’_s to derive novel nonlineab AM—FM
7 o demodulation algorithms.
are Soboley;-norms of orders one and two. For the functionals. In Section 1V, we mtroduce fwo new computational tech-
' nigques that formulate estimates of the unknown AM and FM

De(a) and5s(p), which simultaneously quantify the Smooth_functions in (1). Both techniques begin by analyzing the signal

tr]heesisojﬁe?rﬁgg;ag??h;ﬂ?ﬁgfﬁvg all directions, we emploty@) with a_multiband linear filterbank. For each p_oint in the
e signal,dominant component analygI3CA) uses the filterbank
1/q channel responses to estimate the instantaneous amplitude and

S¢ '((p)rz ) 4) frequency of the component that dominates the local signal

’ spectrum. Thus, it delivers as output only a single pair of mod-
ulating functions.Channelized components analy83CA) is
Throughout the paper, we assume that the AM and FM functioasmulticomponent technique that seeks to estimate simulta-
in (1) and their first partials lie in appropriate Sobolev spaces geously the modulating functions of the multiple components
that the norms (2) and (3) exist and take finite values. Witholit an »D signal. The difference between CCA and TMCA is
loss of generality, we also assume that the AM functions aif¢ how they decompose(x) into components [note that the
positive semidefinite. component-wise decomposition indicated in (1) is not unique].

For the discrete case, we impose two additional smootit-CCA, modulating functions for one component are estimated
ness constraints. Lef(k): Z* — C contain the samples from each filterbank channel response. Thus, with CCA, the
of a component;(x) in (1), wheret;(k) = a(k)eW(k) and filterbank channels are assumed to isolate components on a

(®)
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global scale. By contrast, in TMCA the instantaneous frequencyLet e; be the unit vector in an arbitrarily chosen directign

of each individual component is permitted to lie in differenThe method we favor for generating the complex extension is to
channels at different points and Kalman filters are used &mld an imaginary part equal jotimes the directional multidi-
track the modulating functions of each component across timensional Hilbert transform [21]-[23]
filterbank channel responses [6].

1 d
At present, a standardized method for evaluating the perfor- H[s(x)] =p.v. — / s(z — Ee;) g
mance of computed AM—FM modeling techniques does not T Hl
exist. In many of the previous studies, analysis was limited to =s(x) * H §(z"er) (7)

synthetic signals [1], [3], [7], [10], [14], [16], [17], making it male; i
possible to compare the computed modulations with the ANehere p.v. indicates the Cauchy principal value. It is trivial to

lytical model used to generate the test signals. In other Casvesr,”;y that the singular operatdt is linear. The complex signal

AM-FM demodulation was applied to human speech or natur; ) — s(x) + jH[s(z)] admits many of the attractive proper-

Images and. the computed modulatloqs were .SUbJe.Ct'V?I s of the 1-D analytic signalThus, byabus de langagewe
compared with nonstationary structures in the original signals

2] [41, [8], [11]. We believe that the best way to evaluatca”t(x) theanalytic imageassociated with the real signdl).

. 2 om o )
computed AM—FM modeling techniques is to first reconstru(;?verthe Hilbert spacé*(R"), #(z) satisfies the frequency mo

the signal by substituting the computed modulations back in{gen_t propertles of G?‘bOr and Ville [.24]' [25], the amplltude_
continuity, homogeneity, and harmonic correspondence condi-

e.g., (1), and subsequently check fOT perceptual or quant'Fat{Yc(fns of Vakman [26] (up to a set of Lebesgue measure zero),
agreement between the reconstruction and the original signa d admits a Fourier spectrum that is supported only,
This approach was used to evaluate the performance of MB P P y

. . requency orthants where it is equal to twice the spectrum of
in [5] and [19] and the performance of TMCA in [6], [18], andséx). Although it is not difficult to extend the discrete Hilbert

[20]. The question of whether quantitative or perceptual criter . . : . . : : .
: - : ransform given in [27] into multiple dimensions to discretize
are more appropriate for characterizing the extent to which t . .
, the details are beyond the scope of this paper.

reconstru_ctions and originals agree is application depend he complex extensioffz) and associated transform (7) are
and remains unanswered in general. distinct from the ones used for 2-D Wigner analysis by Zhal.
[28], the 2-D discrete Hilbert transform used by Read and Treitel
for stabilizing IR filters [29], and Hahn’somplex signals with
Il. COMPLEX EXTENSION OF REAL-VALUED SIGNALS single-orthant spectr§30]. Indeed, none of these admit all of
, i the attractive properties mentioned above. Therefore, for com-
The instantaneous ampl!tude and phase of any complex C:ﬁﬂfing multidimensional AM—FM models, we feel that the ana-
ponentti; R* — C are unique. The instantaneous frequen ¥tic image is the preferable complex extension. Accordingly,
Is also therefpre unique. For a r(_eal compongntR™ — R, ¢, any given component-wise decomposition, definethe
however, the instantaneous amplitude, phase, and fre(;1uencyc'i1)rﬁe]ponent modulating functions of the real sigs@#) to be
gmbiguous. ]n _fact, forany given.real componentthere are infif <o ot its associated analytic imatge) = s(x) + jH[s(x)].
!tely many distinct pairs of functions; (x). and% () t_hat sat- Multiband linear filtering to isolate the multiple signal com-
isfy s;(z) = a;(«) cos[p;(2)]. Thus, adding an imaginary part, o< is a crucial step in the DCA and CCA paradigms. If this
to s;(x) is equivalent to selecting one particular pair of mod

lating f . d . ity inear filtering is implemented via pointwise spectral multipli-
ating functionsa; () andVy;(x) to associate withs;(x). We = 4450 g it typically is for discrete multidimensional signals,

?ote .in pafssingr:hat a?y TethOd WIhiCh com;r)]utesrf\M and FMen generation of the analytic image can be incorporated di-
unctions from the real va ues(x) alone (suc "’,‘St .e.TKEO, rectly into the filterbank by zeroing half of each filter's spec-
for example) may conversely be interpreted as implicitly SPeGjy,m Thus there is no additional computational overhead in

fying an imaginary parja;(x) sinfe; ()] computing the extension. In fact, the number of multiplications

K
Let s(z) = 3 ;- si(x), wheresi(z) = ai(x)cos[pi(z)] required to compute each filter response is reduced by half.

and where the modulating functiong(z) andV¢; (z) areun-

knownandnonunigueBefores(x) can be analyzgd aga?nst (_1), IIl. M ULTIDIMENSIONAL QUASI-EIGENFUNCTION
acomplex extension must.be formulated by addlr)g animaginary A pproxiMATIONS AND DEMODULATION ALGORITHMS
part. If the imaginary part is computed froste) using a linear _ _ _ _
operator, then it is precisely equaU(Eik:l a;(z) sinfp;(x)]. Anglyms of the behavior of AM—FM signals in LSI_ systems
This is true at once for aiossibledecompositions of the signal 'S difficult because a general closed-form expression for the
into components and irrespective of what particular linear opyStem response cannot be obtained in terms of the input mod-
erator is used. The key to understanding this is to keep in miH&ting functions. In this section, we introduce new approxima-
that the component modulating functions become uniquely déns for the responses afb LS| systems to AM—FM inputs
termined only after an imaginary part is added to the signall and develop bounds on the approximation errors. We use the ap-
a decomposition into components is specified. For any given dg©ximations to develop noveD algorithms for demodulating
composition ofs(z) into components, different linear operatord Signal directly and also for estimating the signal’s modulating
will compute different imaginary parts for the specified Compd‘unctmns from the response of an LSl filter. It will be convenient

nents and will th_erefore |_ead to different solutions for the cOmM- 1, general, however, it may fail to satisfy the multidimensional Cauchy—Rie-
ponent modulating functions. mann equations.
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to restrict our attention to single component AM—FM signalsup  Proof: The lengthy proof, which is omitted for brevity,

until Section llI-E. may be found in [31] and proceeds along arguments similar to
Let g: R® — C be the impulse response of an LSI systenthose used to prove [11, Theorem 1]. The dimensionally depen-

with frequency respons€(£2). If the system input ig(z) = denttermsy/(q — n) andg®amax/{(q — n)(2¢ — n)} emerge

Ao expli ¢ z], whereA, and €, are fixed, then the responseas natural conditions for convergence of the involved integrals.

is given exactly by The bound (10) fails to converge unless n, which implies
p < n/(n+1).Inthe limtasq — oo andp — 1, the terms
y(x) = t(x) * g(x) = t(x)G (). (8) q/(q —n) and¢®amax/{(qg — n)(2¢ — n)} approach one and

amax/2, respectively. In Theorem 1, the spatial concentration of
In this case, the monochromatic inpigk) is an eigenfunction g(x) is quantified in terms of generalized directiopaénergy
of the system and the complex numlégi€2,) is the associated variances
eigenvalue. For a general AM—FM inpitr) = a(x)c’# %), (8)

g 1/p
motivates the QEA Al(g) = { / |z g(x)|” dx} (11)
y(x) = §(x) = t(x)G[Ve(z))]. (9)  and cross-variances
. . . 1/p
Whereas the eigenvalug(£2,) in (8) is a constant, the term @’ (o) = / . P g 12
G[Ve(x)] in (9) varies withz. Over neighborhoods where the wile) = | [, lmesg@)l de (12)

approx!mgtlon holds well, this term locally characterizes thv(\a/herel < i, j < n. These functionals grow as the effective
transmission ot(z) through the system.

) . : .- patial support of the filter increases, while they vanish in the
When the input modulating functions are sufficiently smooth ) X . )
. . ) - . . ._limit as the filter support is reduced to a point. The functional
in a region that is sufficiently large [with relation to the sig-——

nificant support ofy(x)], accuracy of the QEA (9) is generallyép(g) n (1.0)’ V.Vh'Ch §|mu!tane9usly quantifies the concentra-
) NG . ¢ . tion of the filter in all directions, is thé’-norm of the sequence
excellent. This notion is made rigorous in Sections IlI-A ani

p 5 imi @r — P
[1I-C, where we bound the approximation error by the effectiv A(g)}. i € [1, n]. Similarly, ©7(g) — ||_®i,j(9)””'
S . . The error bound of Theorem 1 is tight in the sense that
duration (i.e., spatial concentration)@fr) and by the smooth- Di(a) andSi(s) both go to zero in the limit a&(z) becomes
ness functional®i(a), £*(a), S4(p), andS}(p). QEAS are s 9

: / 7 .monochromatic, verifying that there is no error in (9) when the
most useful, in the sense of incurring small errors, when applie . : . . .

: . - ) Mmput is a true eigenfunction. The bound is a useful analytical
to signals that admit a decomposition (1) wherein each compo

. : . 0ol because the individual contributions of each modulating
nent might be globally wideband, but is locally narrowband ovel o o X
unction and of the filter impulse response are clearly artic-

much of the domain. On a global scale, such components Mitdted. Note that the bound can be made uniformly small

bear little resemblance to true eigenfunctions. In the example . . _—
of Section V, we demonstrate that this characterization is apdﬁ_aependent of the modulating functions by designitg) to

. o minimize Ar(g) and®r(g). Whenn = 1 or 2, (10) collapses
cable to 2-D images of general practical interest. . : .
. L : . to the bounds given previously in [3] and [11].
In the remainder of the paper, it will at times be desirable {0 . . . .
In Section 111-B, we will develop continuous demodulation

write a vector in terms of its components using a compact, non-. . A
standard notation. We will use angle brackets for this purposartlgomhms and the need will arise to apply a QEA when the

Thus, we will writez = [z, 25 -+ 2] = (z:), where it System input is the partial derivative

is understood that the indexruns from 1 ton. We will also ¢ () = a, (z) exp [jo(®)] +ja(x)¢., (z) exp [jo(x)] (13)
write expressions such &a’ V... (p)), p € 7", which are in-

terpreted as follows. Far € [1, n], ¢, (p) are the samples of
the partials ofp. The gradienVy,,, of each partial is a vector,

and, for each, p” V... (p) takes scalar values. The vector with = (02, (%) + jal@) 0z (@)] exp [ p(2)] (14)
these scalars as entries is denofgtVe.,., (p)). wheret(z) = a(x)c#®) as before. Let
A. Continuous QEA's and Error Bounds pi(x) = te, (x) * g(x) (15)

For the Signat("’") = a("”.)ej(;(x)l let Umax = SUPgcRn CL(.’L’) and define the QEA
and denote the absolute error in the QEA (9¥pir) = |y(x)—

#(=)|- Theorem 1 below places a uniform upper bound fe). 0i(x) = i(x) = to. (2)G [Ve(z)]. (16)
The functionalsAr(g) and®r(g) are defined after the theorem _ _ S
is stated. The absolute error in this approximation is, (x) =
Theorem 1:Let n be finite and letp and ¢ be any pair of [%i(x) — ¢i(x)|. Note that the approximations (16) and (9)
conjugate exponentgg = p + g, such thag > n. Then are different: the AM functionsi,, (z) and a(z)e.,(z) in
(15) might not be positive semidefinite. Thus, Theorem 1
e,(x) < q A(g)D(a) cannot b_e used directly to establish a boundsgr_(x). Ap-
q—n proximations such as (16) have not been considered before.
02 Umax Let at(x) = max{a(x), 0} anda™(z) = —min{a(x), 0}.

m@(g)ﬁ(w) (10) Clearly,a(x) = a*(x) — a~ (x). Moreover,a*(x) anda™ (x)
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are both positive semidefinite. With this notation, (13) may b&zx) + g(z), wheret(z) = a(x)c’¢®. Since differentiation and

written as convolution commute, we have that
tr,(€) = af, (z) exp [jo(x)] — g, (&) exp [ip(=)] Vu(z) = g(z) + Vi(z) = 9 (2). (1)
+ ja(z)ey () exp[jo(z)] Written in vector form, the QEA (16) then becomes
— ja(xz)ps, (x) exp [jo(z)] . (17

V(@) = J(z) = Vi(@)G [Ve()]. (22)

Bpon applying the frequency demodulation algorithm (19) di-
rectly toy(x) and subsequently applying (22) to the numerator
and (9) to the denominator, we obtain

We now give a corollary to Theorem 1 which uniformly bound

e, (x). The following definition is used in the hypothesis.
Definition: A pointzo, € R™ is azero crossingf the func-

tion a(x) if every open neighborhood abaeg contains a point

zt such thatgn[a(z)] = 1 and also contains a poirt” such Viy(x) () ()

thatsgn[a(z~)] = —1. The set of all such points, is thezero { y } = { } ~ Re | — (23)
: jy(®) Jy(x) J(=)

crossing sebf a(x).

Corollary 1: Let n be finite and letp and ¢ be conjugate

exponents with; > n. Leta(x) andy(x) be such that the zero — Re | V@) (24)

crossing sets of, (x) andy,, (x) have Lebesgue measure zero. Jgt(x) |-

Then

The approximation error in each component of the numerator
9 - a4 oy — o/ 4 of (23) must everywhere fall below the bound of Corollary 1,
s () < Ar Di1(al ) +Di(a,, )+ D2 . _ . ;
ey () < qg—n (9) { (a5,) + Dag,) + DHaw) while that in the denominator must everywhere fall below the

(e G Gmax B\ TT bound of Theorem 1. Comparison of (24) with (19) validates
+D (a%‘f)} - (q —n)(2qg — n) Or(g)S1(x). the filtered frequency demodulation algorithm

(18)

Vo(z) ~ V(z) = Re [V,y(‘”)} . (25)
Proof. See the Appendix. 7y(=)

The assumption that,, () andy., (x) admit zero crossing This important result shows that, at points whefe) # 0, the
sets of Lebesgue measure zero is a mild one. It can fail onlyAl function of a locally narrowband signal may be estimated
the partials of the modulating functions cross zero uncountalglirectly from the filter response. Note that, in a practical imple-
many times, a condition that is not expected to occur in signafgentation,V(x) can be estimated at points wheyer) ~ 0
of practical interest. Interpretation of (18) is similar to that oy interpolating the values 6¥¢(x) at nearby points where
(10). The bound falls to zero in the limit &s (x) tends toward y(x) # 0.
atrue eigenfunction, which implies thdtr) also tends towarda  To estimate the AM function of(z), we apply (9) on top and
true eigenfunction. As before, the errors in (16) can be made ubbttom to obtain
formly small by designing(z) to minimize A?(g) and®?(g).
For signals that are reasonably locally narrowband, errors in the ‘G yv(z) ‘ ~ ‘t(:gGVW(p(x)]‘ = a(x).
QEA's (9) and (16) may be expected to be small or negligible. [Vé(z)] [Velz)]

This motivates the filtered amplitude demodulation algorithm

(26)

B. Continuous Demodulation

For any arbitrary single component AM—FM sigrék) = a(z) ~ a(x) = ‘% ; (27)
a(x)e!¥®)  one may verify by direct calculation that, at points v
wheret(z) # 0, the demodulation algorithms which may be applied to estimatéz) from y(z) onceV@(x)
has been calculated using (25).
Vi(x)
V() = Re |:jt(:v) } 19) ¢ piscrete QEA and Error Bounds

In this section, we present a new multidimensional discrete
QEA analogous to (9) and develop bounds on the approximation
a(x) = |t(x)] (20) error. Lett(x) = a(x)e’?™® as before, and lefk): 7" — C

contain the samples ofx). Letanax = supgcz~ a(k) and sup-

are exactIn DCA and CCA, however, the modulating functionspose thay (k) € #*(7") is the unit pulse response of a discrete

must be estimated from the channel responses of a multibarsl system with frequency responSéw). The system response

linear filterbank. In this section, we derive filtered demodulatiop(k) = t(k) = g(k) is given exactly by

algorithms for this purpose. Let(z) = (¢;(x)) andy(x) =

(1h;(x)), where; (x) and; (z) were defined in (15) and (16). y(k) = > g(p)tk —p)- (28)

Let g(x) be the impulse response of an LSl filter andyét) = pcz”

2At points wheref(z) = 0, (20) indicates that(x) = 0. Thus, the instanta- In analogy to (9), the QEA for the response is

neous values ap(z) andVy(x) at such points are immaterial to the equality R
in (1). 9(k) = (k)G [Ve(k)], (29)
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while the absolute approximation erroeig k) = |y(k)—4(k)|. wheres(k) is the Kronecker delta and constants n. € Z and

The following theorem locally bounds; (k). g € {—1, +1} are parameters. The system frequency response
Theorem 2: Let n be finite and ley(k) € £*(Z™). Then is Hy(w) = eimw’er 4 geinaw’es The system output is given
exactly by

Q®< Y o) { ok — p) — a(k)|

1 . .
Tl / |pT <pTv%i (k — SP)>| ds} . (30) Applying the QEA (29), we obtain
0

(k) = t(k) {exp [jme] Vo(k)] + gexp [jnae] Vo (k)] } .
(35)
kingn; = +1 andny = ¢ = —1, equating the right sides

y(k) = t(k) = h;y(k) = t(k + nie;) + gt(k + noe;).  (34)

Proof: See the Appendix.
In (30), the absolute approximation error incurred by (29?

is bounded by a path integral quantifying the smoothnesso (34) and (35) to within approximation errors, and subse-

Vip(z) and by the absolute deviations effk), both weighted %uently dividing through by (k) and applying a routine series

by the magnitudes of the filter coefficients. For filters that are, . A o . .
. : . . of trigonometric substitutions leads almost immediately to the
spatially localized, only the local behavior of the modulatin ] . . .
patially localized discrete frequency algorithm

functions contributes significantly to the bound. For locally naf-

rowband signals, the local amplitude deviations and second par- E k

tials of p(«) are both expected to have small magnitudes. The-¢I' v (k) ~ ef V(k) = arcsin {t( te) —tk - ei)J
36)

orem 2 is of practical interest because (30) is spatially varying - 2jt(k)

and locally tracks the QEA error. The bound can be studied nu- . . . . ~
merically for any particular combination of signal and filter. Wéalppllcable at points whewgk) 7 0. Alternatively, taking, =
next introduce a corollary to Theorem 2 which bourgék) 9
uniformly.

Corollary 2: Assume the hypothesis of Theorem 2. Then e} Vo(k) ~ el V@(k) = arccos {t(k +ei) k- ei)l .
37)

2t(k)
ey(k) < {llgller = 19(0)]} £(a) + amax (Ai(9))" (S} () -
(31)

= +1andn, = —1 gives

To within QEA errors and numerical roundoff errors, the ar-
guments of the transcendentals in (36) and (37) will have imagi-

Proof: See the Appendix. -
As with Theorem 1 and Corollary 1, the individual contribut 2% components that are equal to zero. In a practical implemen-

tions of each modulating function and eff) are clearly artic- tation, any nonzero imaginary component should be discarded

ulated in the bound of Corollary 2. Dependence of the bou#&fore the traqscendentals are evaluatgd. Becam[s.m and' .
on the spatial concentration gfk) is through the generalized arccos are multivalued, the frequency estimates delivered indi-

o 4 vidually by (36) and (37) are ambiguous by an additive factor of
directional energy moment functional kn,k € Z. However, the algorithms can be used together to cor-
rectly place the estimated frequencies in the intefval, ].

In view of the fact that DCA and CCA must estimate the mod-
ulating functions of(k) from filterbank channel responses, we
and through the’*-norm modified by deletion ofg(0)|. This next develop discrete filtered demodulation algo_rithms analo-
has the interesting consequence that both (30) and (31) are iR to (25) and (27). Let(k) andG(w) be the unit pulse re-
pendent of(0). If the filter unit pulse response is the KroneckePPONS€ and frequency response of an LSl filter, wia€kg €
delta, then both bounds are identically zero, reflecting the fdctZ™)- The system outpuy(k) = t(k) = g(k) is given by
that all inputs are then true eigenfunctions. The local bound &8)- As in the continuous case, we will establish the validity
Theorem 2 is always equal to or below the uniform bound &f @Pplying the unfiltered frequency algorithms (36) and (37)
Corollary 2. Both bounds are tight in the sense that they vanidiiectly toy(k). Consider a system formed by cascading (33)

Ai(g) = > |ke[k| |g(k)| (32)
kez»

in the limit ast(k) becomes monochromatic. with g(k). The unit pulse response of the cascade system is
hi(k)*xg(k) = g(k+nie;)+gg9(k+nae;), while the frequency
D. Discrete Demodulation response iG(w)[ej"I‘”Tef +qej"2"“‘Tef]. Let the response of the

cascade system lgk) = t(k) * g(k) = h;(k) = y(k) % h; (k).

In this section, we use the QEA of Section 1lI-C to developrheng(k) may be written in terms of(k) according to
new amplitude and frequency demodulation algorithms appli-

cable to anmnD discrete AM—FM signak(k) = a(k)e’®),

Clearly,a(k) = |t(k)|. However, an exact algorithm analogousé (k) = Z hi)y(k —p) = y(k +niei) + qy(k + n2e:).

to (19) does not exist in the discrete case. Thus, even for an pezr (38)

unfiltered signal, some labor is required to perform frequen : .

demodulation. Consider a discrete LSI system with unit pul?gaplymg the QEA (29) to the overall cascade system yields

response . o
§(k) =t(k)G [Vop(k)] {exp [jne; Vip(k)]

hi(k) = 6(k +nie;) + qb6(k + noe;) (33) + qexp [jnoe] Vo(k)] }. (39)
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Now, the approximation (29) may also be applied to the systemn a jointly localized basis. The demodulation algorithms (25)
g(k) alone to obtain(k)G[Ve(k)] = 9(k) =~ y(k). Substi- and (27) [or (41)—(43) in the discrete case] are applied in the
tuting this result into (39) gives blocks markedDEMOD. We define the dominant component
. o o at each point to be the one that dominates the response of the
§(k) ~ y(k) {exp [inie] Vio(k)] + qexp [jn2e; Vo(K)| } . channel that maximizes the channel selection criterion
(40) [ym ()|
U, (z) = Um

Upon equating the right sides of (38) and (40), dividing through maxgq |G, ($2)]

by y(k), and takingr; = +1 andn, = ¢ = —1, we obtain

(44)

and we extract estimates of the dominant modulations
yk+e)—yk—e) aD_(:c) ~and V<_pD(:c) from the maximizing channel on a
25y(k) } pointwise ba_S|s. Use of the cr!tenon (44) is motivated by
. (41) the assumption that some particular compongtt) dom-
inates the channel response at any given peintso that

el Vo(k) ~ el V¢(k) = arcsin [

Likewise, choosingi; = ¢ = +1 andny, = —1 yields Ym(x) = t;(x) * g (x) at the point. Upon application of the
QEA 4, (z) = t;(2)Gn[Vi(x)], (44) becomes
el Vo(k) = el V@(k) = arccos yk+e) +ylk—e) . G Vo
2y (k) U, (@) = Jas()| 1 V2L (45)
(42) maxgq |G ()]

Thus, each component & (k) may be estimated from(k) Thus (44) tends to select channels that are dominated by large
at points wheray(k) # 0. OnceV@(k) has been obtained, aamplitude components with frequency vectors lying near the

final application of the QEA (29) validates the filtered amplitudEﬂaXirnum trgnsmis;ion frequency of the channgl. This approach
demodulation algorithm affords maximal rejection of cross-component interference and

noise.
o AL y(k) The dominant frequencies, which carry a rich description
alk) = a(k) = | =—==1. (43) i
of the local texture structure, were termethergentin [11].
Emergent image frequencies have been estimated previously by
E. Component Demodulation a constrained iterative relaxation procedure in [11] and by the
TKEO in [8]. The advantages in using DCA are twofold. First,

1We gor\:v rg'g;\n ogrggintion to th_e mlIJItiCOrgponen't: m%d e frequency algorithms (25), (36), and (37) are local and
(1) and the an computational paradigms. For bo mputationally inexpensive. Second, DCA delivers signed

.technique_s,.the structure ofthefiltert.)ankplays.animportant e %quency estimates, whereas the TKEO estimates unsigned
in determining the multicomponent interpretation of the signg equency. In multiple dimensions, the relative signs of the

With C_CAthe component-wise decomppsition Is carrie(_JI out omponents of the instantaneous frequency vector embody
assuming that each channel response is globally dom'natedol?l)éntation, and are thus significant. DCA is primarily of
a single cor(rj]por)ent, wherﬁas DCA assumer? that a,i mo;t Brest in machine vision applications, where the dominant
component dominates each response at each point. For the gong, ations are useful for solving a variety of problems

pnuous—domam case, suppose thal(z) andGm.(Q) are the including texture segmentation [11], [32], three-dimensional
impulse response and frequency response of filterbank chan

E f truction [11], [33], [34], and tational
m, and lety,,(z) = t(z)* g..(x) be the channel response. Supg,[;re);:;sc[:ggﬁig%s ruction [11], [33], [34], and computationa
pose further that componefitz) dominates,, (x) at the point '
Zo, SO thaty,,, (o) = t;(x) * gm(x)|z=x, - Since the frequency B. ccA
algorithm (25) operates on a pointwise baSiss;(x) may be CCA is depicted in the block diagram of Fig. 2. As in DCA

estimated at the point, by the filterbank channel responses are demodulated using (25) and
Vei(%o) & V§i(20) = Re [ Vi (2)/ {j9m (%) Hors, - (27) or (41)—(43). The component-wise decomposition of the
signal is obtained by considering that the filterbank channels
Subsequently;; (z) may be estimated at, by applying (27) to isolate components on a global basis. Modulating function esti-
the response of channel to obtain mates for one component in (1) are extracted from each filter-
. . bank channel. In 2-D applications, the filterbank used for CCA
ai(z0) % &i(%0) = [ (2)/ G [V i)l 3=, - typically includes a baseband channel not present in Fig. 1. This
Since the algorithms (41)—(43) are also highly spatially localé because the Fourier spectra of most images are dominated by
ized, an identical line of reasoning may be applied in the di§1€ DC component, which is of little interest in DCA. In CCA,

crete case. however, which seeks to compute image representations, incor-
poration of a baseband channel to capture visually important
IV. DCA AND CCA COMPUTATIONAL TECHNIQUES low frequency structure such as large scale shading and inten-

A DCA sity variations is essential.

For an M-channel filterbank, CCA necessarily leads to an
A block diagram of DCA appears in Fig. 1, whergr) is M-component computed model. The approach is inherently in-
analyzed with ami/-channel filterbank to isolate component®fficient in this respect. In many cases, the AM functions of
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guencies. Such regions are characterized by relatively large spa-
tial extent and a paucity of high frequency structure that might
otherwise conceal the errors.

C. Filterbank

DCA and CCA are essentially independent of the particular
filterbank that is used, and thus far we have made no specific as-
sumptions about the filters except that they are of the LSI type.
Clearly, they must be spectrally localized if they are to resolve
multiple signal components from one another. They must also
be spatially localized if they are to capture local nonstationary
signal structure. Furthermore, in the continuous case, spatially
localized filters generally admit smaltenergy variances that

Cg:;:zl lead to small approximation errors in (25) and (27). Spatially
localized discrete filters tend to have sméltnorms and also
Fig. 1. Block diagram of DCA. to yield small values for the energy functional (32). The de-
R sirability of spatially local discrete filters is made explicit in
W: 4 (30). These observations strongly suggest the use of multidi-
Vo mensional Gabor filters, which, in the continuous case, uniquely

a, realize the uncertainty principle lower bound on simultaneous
Vo, spatio-spectral localization. This optimal localization comes at

a price, however. Since Gabor filterbanks are not orthogonal,
their use in CCA generally leads to representation errors of the
type discussed in Section IV-B when an image contains struc-
ture lying within frequency bands covered by the effective spec-
iy tral support of multiple channel filters.
Vo, Typically, we use a bank of isotropic uni?-norm Gabor
filters with half-peak radial bandwidths of one octave. The ef-
Fig. 2. Block diagram of CCA. ficacy of such a filterbank for AM—FM demodulation has been
well established [3], [11], [32], [38]. A 2-D Gabor filterbank of
the type described in [11] is depicted in the frequency domainin
Fig. 3, augmented by two high-frequency Gabor filters to cover
the outermost corners of the right frequency half-plane. When
the Hilbert transform (7) is taken in the horizontal direction, the
Fourier spectra of complex signals generated by the technique
described in Section Il are supported only in the right frequency
half-plane. The filterbank of Fig. 3 also incorporates a baseband
channel for CCA and has 43 channels in total.

as

Vs

D. Post Processing

In estimating amplitude and frequency modulations from the
responses of bandpass filters, post processing is generally re-
quired to compensate for approximation errors in the demodu-
Fig. 3. Frequency domain depiction of multiband Gabor filterbank withation algorithm arising from signal perturbations that are not
baseband filter and two high frequency corner filters. locally narrowband. Such signal perturbations were studied in

detail in [38], where post-smoothing of the channel responses
several channelized components are negligibly small over latgye low-pass filters having envelopes of the same shape as the
regions. If nonorthogonal filters are used, as they often aredbannel filters themselves was shown to be effective. In the par-
achieve good spatial localization without sacrificing a dendieular case of Gabor filters, it was recommended that each post
frequency covering, then certain elements of the signal struiiter space constant be designed 1.5 times larger than the space
ture are inevitably manifest redundantly in multiple channelizesbnstant of the corresponding channel filter. In [1], low-pass
components. Furthermore, in regions where the signal structpestfiltering subsequent to bandpass Gabor filtering was used to
is locally narrowband, the pass bands of many channels wittmpensate for approximation errors in the TKEO. Large spikes
lie far away from the signal frequencies. These channels anethe TKEO amplitude estimates were also smoothed by me-
susceptible to noise and can produce modulating function egan filtering in [2].
timates that are physically meaningless. In CCA signal recon-It was demonstrated in [39] that input phase discontinuities
structions, the effects of these problems are generally most apn lead to unbounded excursions in the channel response
parent over narrowband regions that are dominated by low fiastantaneous frequencies. Furthermore, natural images and
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Fig. 4. DCA analysis offreeimage: (a) image, (b) needle diagram depicting estimated emergent frequencies (arrow length is proportional to the instantaneous
period), (c) estimated dominant component amplitude modulation function, and (d) reconstruction of dominant component from estimated ddofatenmsno

video generally contain phase discontinuities arising frof,255]. If the reconstructed values are linearly mapped into the
a host of factors including occlusions, surface discontinuange [0,255] for display, most of the accurately reconstructed
ities, deformations and defects in surface topology, surfateage structure willbe compressed into a dynamic range of only
reflectance, shadows, specularities, and noise [32]. The effeztfew bits and lost.
of nonsmooth phase perturbations can be severe for DCA and\s will be demonstrated in Section V, we have found that
CCA. The QEA's break down in the neighborhood of a phagmst-smoothing of the channel responses is not effective for
discontinuity, and the frequency demodulation algorithmsontrolling this problem. Instead, our approach is to apply a
may suffer from large approximation errors. Because thew-pass Gaussian filter directly to the frequency estimates. The
frequency estimates appear in the denominators of (27) amhce constant of this Gaussian postfilter is set to a multiple of
(43), wideband frequency excursions and large frequenthat of the channel filter, yielding a simple relationship between
estimation errors generally lead to noise susceptibility arnle postfilter and channel filter envelopes. We use the smoothed
numerical instability that produce absurdly large amplitudeequency estimates to compute the amplitudes, and then post-
estimates. The resulting increase in dynamic range can cafiber the amplitude estimates themselves. It is likely that other
severe quantization errors when the signal is reconstructed. smoothing approaches such as median filtering would also be
For example, suppose that CCA is used to compute a mubiective.
component AM—FM representation for a gray scale image with
eight-bit plxe]s taking valqes in the range [Q,ZSS]. Suppose fur- V. EXAMPLES
ther that the image contains phase discontinuities or other non-
smooth perturbations that lead to absurdly large amplitude estiDCA and CCA were applied to several 256 x 256 gray
mates in the computed representation. Since the erroneoussesie images with eight bit pixels. In all cases, the (discretized)
timates often tend to be spatially localized, it is possible, artllbert transform (7) acted in the horizontal direction. A dis-
indeed even likely, that the computed representation will stikete version of the filterbank in Fig. 3 was used with Gaussian
be useful for machine vision applications. However, if one apostfilters. Except where noted, the postfilter linear bandwidths
tempts tareconstructhe image from the representation, the emwere equal to those of the corresponding channel filters. For
roneous amplitude estimates will generally cause the rangel€A, the baseband channel was eliminated from the filterbank.
pixel values in the reconstructed image torbechlarger than Reconstruction was performed using the algorithm given in
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(b)

(© (d)

Fig. 5. DCA texture segmentation obtained by applying4y edge detector to the estimated emergent frequency magnitudedic&@)Burlapimage, (b)
dominant component reconstruction, (c) estimated emergent frequency magnitudes displayed as a gray scale image, and (d) segmentation result.

[6] with a phase reconstruction interval of four pixels in eacktruction of Fig. 6(c). A reconstruction of one of the individual
dimension. channelized components is given in Fig. 6(d). Fig. 6(e) shows
DCA was first applied to th&reeimage shown in Fig. 4(a). A the 43-component CCA reconstruction that is obtained in the
needle diagram depicting the estimated emergent frequencieglisence of postfiltering. Because of the unmitigated effects of
given in Fig. 4(b), where needle length is inversely proportionabnsmooth signal perturbations, almost no useful structure can
to |V¢p(z)| (proportional to the instantaneous period). The ebe recovered from the computed modulation model in this case.
timated dominant AM function is shown in Fig. 4(c), and may be Fig. 6(f) and (g) also show 43-component CCA reconstruc-
interpreted as contrast of the dominant component: bright aréiass, but with postfiltering applied to the channel responses
in Fig. 4(c) generally correspond to regions of high contrast instead of directly to the modulating function estimates. In
Fig. 4(a). The dominant component reconstruction is given kig. 6(f), each postfilter space constant was two-thirds as large
Fig 4(d). The similarity between Fig. 4(d) and the original iss that of the corresponding channel filter (our convention is to
striking, and suggests that much of the total image structure herste the space constamton the bottom in the space domain, so
been captured in a single AM—FM component. a smaller space constant results in a narrower impulse response
Fig. 5 demonstrates the use of DCA to perform texture segrd a wider spectrum). Although some useful structure has
mentation on the imag®lica-Burlap shown in Fig. 5(a). The been recovered in Fig. 6(f), the overall quality is quite poor.
reconstructed dominant component appears in Fig. 5(b), dndsingle precision floating point, the extremes of the original
the estimated emergent frequency magnitudes are displayeithzage were-1.0 and 0.7175. Because of absurd amplitude
a gray scale image in Fig. 5(c). The patch-like regions that apstimates, the extremes of the floating point reconstruction in
pear in Fig. 5(b) and (c) occur because different componeftg. 6(f) were amplified to-167.9172 and 202.3926. For the
are dominant in the different regions. The segmentation showatonstruction of Fig. 6(g), the postfilter space constants were
in Fig. 5(d) was obtained by applying a LoG edge detector witdtaled by a factor of 1.5 as compared to those of the channel
gradient magnitude thresholding [40] to the estimated emergéiiters. In this case, the essential structure of the image was
frequency magnitudes in Fig. 5(c). successfully recovered from the computed modulation model.
The familiar imageMandrill appears in Fig. 6(a). Fig. 6(b) Significant detail was lost due to the excessive postfiltering,
shows the dominant component reconstruction computed lgwever, and numerous amplitude spikes are still clearly
DCA. CCA was also applied to obtain the 43-component recowisible. In single precision floating point, the extremes of the
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@)

Fig. 6. AM-FM representation dflandrill image: (a) image, (b) dominant component reconstruction, (c) reconstruction from 43 channelized components, (d)
reconstruction of one channelized component, (e) 43-component CCA reconstruction without postfiltering, (f) 43-component CCA reconstrpctstiitering
applied to channel responsesis scaled by2/3, and (g) 43-component CCA reconstruction with postfiltering applied to channel resperisesaled by 1.5.
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(e) ®
Fig. 7. Channelized component analysis: Zaymattimage, (b) CCA reconstruction, (§alesmarnmage, (d) CCA reconstruction, (Eeppersmage, and (f)
CCA reconstruction.

reconstruction in Fig. 6(g) were39.0345 and 19.0505. The VI. CONCLUSION
results of setting the postfilter and channel filter space constant

Thi dd dth bl f modeli histicated
equal were not unlike those shown in Fig. 6(f). ' Paper acdressec the prov'sm of moceling sophistica’e

. . : multidimensional signals as multicomponent sums of locally
In Fig. 7, CCA was applied to the imaggermatt Salesman narrowband AM—FM functions. Working in a generatlimen-

and PeppersAIthc_)ugh the_rgconstrucuons arein good PErCeRonal framework, we developed powerful approximations that
tual agreementwith the originals, the MAE is onthe orderof 10Q < e responses of LSI systems to AM—FM inputs di-

(out of 255) in each case. The most noticeable errors appearé tly in terms of the input modulating functions. This is sig-

be contrast distortions occurr_ing in _re_:gi_ons th"’?t are dominatﬁ icant because a closed form solution for the response cannot
bi/tlkc])w-freqlllqucyr/]tsgu::ture. F'Pa”y'l't IS Tr;certestlrgﬁtoéake r]:c;tge obtained due to the inherently nonlinear interaction between
g | € small brig Tho gg&eamng aton% € fog].edet geh(.)b.trfﬁe modulating functions and the system impulse response. We

alesmanmage. The reconstruction or this dot exnibily,, ,,jed the errors in these guasi-eigenfunction approximations

finging arufactg rem|n|§cent of those commonly seenin Imea generalized energy variances quantifying the spatial concen-
image restoration and in many wavelet-based signal represgiiz. " ¢ the filter and by the local smoothness of the modu-

tation algorithms. Similar ringing artifacts are vi_sibl_e along thﬁ’iting functions expressed as Sobolev norms in the continuous
left and right edges of thBeppergeconstruction in Fig. 7(f). case and path and line integrals in the discrete case.
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We applied the approximations to derive novel nonlinedvlake similar definitions foB(x), C(x), andD(x). Sinceg(x)
multidimensional demodulation algorithms capable of olis linear, it follows from (A.1) that
taining estimates of a signal's amplitude and frequency
modulations from the channel responses of a multiband linedfi (&) = i, A(®) — Vi, (&) + jibi, c(&) — Jbi, (). (A.2)
fllterbgnk. Two practical techmques for computl_ng mUItIOII'Direct substitution of (A.1) into the right side of (16) yields
mensional AM—FM models for multicomponent signals were
introduceq and dgmonstrgted. Domin_ant component analysis, () = 1/3¢,A(:v) — 1/31,3(:6) +j1/3¢,c(:v) — jz/;i,D(""')' (A.3)
(DCA) delivers a single pair of modulating functions that char-
acterize the dominant signal structure on a spatially local bag®y, subtracting (A.3) from (A.2), taking the magnitude of the dif-
In addition to being useful for general nonstationary analysi€rence, and applying the triangle inequality, we boupdx)
the dominant modulations form the basis for a variety @fccording to
texture-based approaches to the solution of classical problems
in machine vision. Channelized components analysis (CCA) is ¥ (z) < ea(®) +eplz) +ec(z) +ep(@). (A4)
a tr.ue _mult?dimgnsional multicompoqent technique_ capable .R[)ph/ing Theorem 1 ta 4(z), we obtain
delivering rich signal representations in the modulation domain.

It is particularly novel in view of the paucity of competing ealz) < 4 AP(g)D(af)
methods. q—n

The CCA examples presented in Section V are the first I 7% max ©7(¢)37(y)
to demonstrate multidimensional multicomponent AM—FM (g—n)(2¢g—n) '

modglmg_and recc_>nstruct|on for.the_ types of images that afeﬂﬁe result (18) follows immediately upon applying Theorem 1
practical interest in broad application areas. Consequently, a

number of important que_stions remain to be answered by fut&?eegéfgbfco(f )T*rf‘e”(;’fefr)n(‘”z)zg‘xgﬁé;‘;df(zgeg'lg 1t‘|er;n§r d:r
research. The computation of multicomponent AM—FM modellsaylor series with explicit remainder [41], we obtain
is inherently ill-posed, both with respect to the decomposition '
of a real-valued muItipart!te signal into components and with ok —p) = p(k) — p Vo(k) + Q.(k, p) (A.5)
respect to the demodulation of those components. The Gabor

filterbank used in this work was chosen for its attractive locawhere

ization properties. It is entirely possible that improved results 1

could be obtained using orthogonal filterbanks or alternative Q.(k, p) :/ (1= s)p" (p" Vs, (k— sp)) ds.  (A.6)
filter types designed to minimize the ringing artifacts and con- 0

trast distortions visible in Figs. 6 and 7. Nonlinear regressi®ubstitution oft(k — p) = a(k — p) exp[jp(k — p)] and (A.5)
techniques may also prove useful for decomposing a signal ifteo (28) then yields

components; unfiltered demodulation algorithms such as (36)

and (37) could then be applied directly on a component-wise ~ ¥(k) = Y _ g(p)a(k — p) exp [jo(k)]

basis. In addition, improved postfiltering and reconstruction pezr

techniques merit considerable future investigation. Finally, the ~exp [—jp" Vo(k)] exp[jQ,(k, p)]. (A7)
development of new and meaningful criteria for evaluating the _ _ _ o )
performance of multicomponent AM—FM models is anothd?POn replacing=(-) in (29) with the definition of the Fourier

important open problem. transform of a sequence [42], we have
(k) =t(k) 9(p) exp [—ip"w]| _c.,
APPENDIX pgm | vek)

Proof of Corollary 1: Define _ Z g(p)a(k) exp [j¢(k)] exp [_jPTWP(k)] '
Alw) = a3 (@) explie(@)],  B(s) = a, (@) explie(o)] A8
C(z) = a(x)¢y, () expjo(z)] _ o

and Now, we write the QEA erro, (k) = |y(k) —§(k)| in terms of
_ . (A.7) and (A.8), apply the triangle inequality, and finally apply
D(z) = a(x)p;, (x) explip()]- the inequalitylor — | < | — #| + |z — /3| [43] to obtain
Then ey(6) < 3 o)l la(k — p) exp [iQu(k, p)] - a(k)|
tu.(2) = A() - B(s) + jC(z) — jD(@). (A1)
< Y o)l {lalk —p) — a(k)|
For A(x), define pez”
B ) R PRy +a(k — p) [exp [[Qu(k, p)] — 1|}
s, Alz) = g(zx) x A(x), T/)i,A(l') = A(x)G[Ve(z)] < Z lg(P)| {|alk — p) — a(k)|
and pezr

EA(z) = W%,A(z) - 1/317A($)| +amax | €xp [JQ‘P(kv P)] - 1|}



240 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 2, FEBRUARY 2000

whereupon application of the inequaljey? — 1| < |6, 6 € R, Upon substitution of (A.6) into the expression (A.11) for
gives ey, (k) and alternating between angle bracket notation and
sums, we have that

alk —p) — alk Omax | Qe (K, .
Spgz lg(®)| {la(k —p) — a(k)| + |Q.(k, p)[} o< Y loo)

(A.9) pezr
Taking the magnitude of (A.6), applying the triangle inequality, b

1 n n
and observing thdll — s| < 1V s € [0, 1], we verify that . / (1—s) Z Z PiPmPe, o, (k— sp)ds
0 =1 m=1

S5 o)

1
1Qulk, p)] < / 11— 5| |7 (B Vepu, (k — sp))| ds

<
1 pez” =1
T /. T pro
< / |p <p Ve, (k— sp)>| ds. (A.10) 1 n
0 . / (1 - S)pi Z PmPz;, x,, (k - Sp) ds
The proof is completed by further observing that.(k, p)| = 0 m=1
0 and|a(k — p) — a(k)| = 0 whenp = 0, and then substituting _
(A.10) back into (A.9). n 1; ; l9(p)
Proof of Corollary 2: We begin by isolating the contribu- p#0

tions of amplitude and phase in the approximation error. Dis-

1
. Ju— . T p—
tributing multiplication over addition under the sum in (A.9), /0 (1= 5)pip” Vipa, (k — sp) ds (A.15)
we have
Now, for each € [1, n], the integrand in (A.15) is zeidp such
Z l9(0)| |a(k — p) — a(k)| thatp; = 0. For the remaining terms of the sum we have that
o) p; # 0andp # 0. Then|p;||p| # 0, and hence
T ® ene®= D D Inillplloe)]
+ama.x Z |g(p)| |Q‘P(k7 p)| (All) Ppejg Zizlig
{JEZ” 1 p‘pT
g . 1—58) “— Vo, (k—sp)ds|. (A.16
voon (B) /0 ( )|pi||p| pa, (k — sp) (A.16)
For eachp € Z™ such thaip # 0 and for each € [1, n] such
2 ). (k) + Gmaxey, (k) (A.12) thatp; # 0, let
where (A.12) defines, .(k) ande, (k). Fors € [0, 1], let u;(p) = b
i p(s) = k — sp. Application of the first form of the funda- [pil lp]

mental theorem of calculus then gives Clearly, u;(p) is a unit vector. Upon applying the triangle in-

equality, observing thafl — s| < 1Vs € [0, 1], and inter-
Va(z) - dr = a(k) — a(k — p) changing the order of summation in (A.16), there results
HFkp

S0 €y, <f Z Z |pz| |p| |9

pezn e
/ Va(z) - dx|.
B

pP#0 PﬁfO

(A.13) / '

|a(k —p) — a(k)| =

u; (p)Vu, (k — sp)| ds

P
< T
Substituting this result into the expression#gr, (k) in (A.11) - P;:n ;Z Ipil lpl1g(p)
and observing that (A.13) is identically zero wher= 0, we pro i
obtan | Fea@las
Pk p
€y,a(k) = Z l9(p)] / Va(x) - dz < Z S Z Telp| 19(p)
< Va(z) - d -
< s | [ V) - e 2 o) =3 A8 y)
PAO i=1

{llgller — 19(0)[} £(a). (A.14) = (Wi(9)" (&} (). (A.17)
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Substitution of (A.14) and (A.17) into (A.12) immediately [19]

yields the desired result (31).

]
(20]
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