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Abstract—We develop multicomponent AM–FM models for
multidimensional signals. The analysis is cast in a general -di-
mensional framework where the component modulating functions
are assumed to lie in certain Sobolev spaces. For both contin-
uous and discrete LSI systems with AM–FM inputs, powerful
new approximations are introduced that provide closed form
expressions for the responses in terms of the input modulations.
The approximation errors are bounded by generalized energy
variances quantifying the localization of the filter impulse re-
sponse and by Sobolev norms quantifying the smoothness of the
modulations. The approximations are then used to develop novel
spatially localized demodulation algorithms that estimate the AM
and FM functions for multiple signal components simultaneously
from the channel responses of a multiband linear filterbank used
to isolate components. Two discrete computational paradigms are
presented. Dominant component analysis estimates the locally
dominant modulations in a signal, which are useful in a variety
of machine vision applications, while channelized components
analysis delivers a true multidimensional multicomponent signal
representation. We demonstrate the techniques on several images
of general interest in practical applications, and obtain recon-
structions that establish the validity of characterizing images of
this type as sums of locally narrowband modulated components.

Index Terms—AM-FM models, amplitude modulation, approxi-
mation theory, channel bank filters, frequency modulation, image
demodulation, image modulation models, image representation,
multicomponent models.

I. INTRODUCTION

I N THIS paper, we develop new techniques for representing
multidimensional signals in terms of their nonstationary

structure. This is in contrast to the classical Fourier repre-
sentation, which is a composition of stationary sinusoidal
components each with an amplitude and frequency that are
constant. Hence, with the Fourier transform, nonstationary
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structure can only be created by constructive and destructive
interference between stationary components. In many engi-
neering applications, however, nonstationary variations in
local signal quantities such as the instantaneous amplitude
and instantaneous frequency are information rich. Thus, an
advantage can be gained by obtaining representations directly
in terms of the nonstationarities. This is a primary impetus for
performing time-frequency and wavelet analyses.

Recently, there has been a growing interest in techniques
that model signals in terms of quasisinusoidal AM–FM func-
tions which admit nonstationary amplitude and frequency
modulations. Such AM–FM functions have been used suc-
cessfully in the study of nonstationary one-dimensional (1-D)
signals including human speech [1]–[5], as well as in the
study of images and other multidimensional signals [6]–[12].
It is well known that joint amplitude and frequency modu-
lations can be computed most accurately for signals having
instantaneous frequency content that is highly coherent on
a spatially local basis [2], [3], [8], [11], [13]–[15]. Fur-
thermore, such locally narrowband signals are precisely the
ones for which instantaneous amplitude and frequency are
the most physically meaningful. Since the complicated non-
stationary signals frequently encountered in practical applica-
tions do not generally admit representation as a single locally
coherent AM–FM function, it is desirable to model these
signals instead as multicomponent sums of locally narrow-
band AM–FM functions. However, this is a difficult problem
and relatively few multicomponent AM–FM techniques have
been reported.

In 1-D, the energy demodulation of mixtures(EDM)
algorithm has been applied to demodulate synthetic two-com-
ponent signals [16], and an iterative method involving the
Teager–Kaiser energy operator(TKEO) has been used to
track and demodulate multiple narrowband formants in human
speech [4]. Two interesting multicomponent parametric
methods have also emerged recently for the 1-D case: the
model-based demodulation algorithm(MBDA), which is based
on an extended Kalman filter, was used to demodulate mul-
tiple formants in human speech [5], while a multicomponent
maximum likelihood estimation technique was demonstrated
on synthetic two-component chirp signals in [17]. For mul-
tidimensional signals, thetracked multicomponent analysis
(TMCA) approach reported in [6], [18] is the only previous
multicomponent AM–FM technique of which we are aware.

1057-7149/00$10.00 © 2000 IEEE
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This paper studies the problem of analyzing a com-
plex-valued signal against the multidimensional,
multicomponent AM–FM model

(1)

where
;

;
.

We also consider the corresponding discrete problem along with
discrete implementations. In (1), wedefine the instantaneous
amplitude of component to be the function ; it is
alternatively known as theamplitude modulation functionof

. For two–dimensional (2-D) images, may be inter-
preted as the contrast function of . By definition, the mul-
tidimensional instantaneous frequency of the (complex-valued)
component is the vector [15]. We alternatively
call thefrequency modulation functionof . For 2-D
images, embodies local texture orientation and coarse-
ness. While the model (1) is complex-valued, many applications
are concerned exclusively with real signals. To analyze a real
signal against (1), it is necessary to compute a complex
extension such that . Our technique for
doing this is described in Section II.

For the remainder of this section, we will drop the subscripts
from the component modulating functions in (1) in the interest
of notational brevity. Let , and use the
notation to denote partial differentiation of a modulating
function with respect to . We quantify the coherency of each
component in (1) by the smoothness of the AM and FM
functions expressed as functionals and

, where

(2)

and

(3)

are Sobolev -norms of orders one and two. For the functionals
and , which simultaneously quantify the smooth-

ness of the modulating functions in all directions, we employ
the usual definition of the -norm;viz.,

(4)

Throughout the paper, we assume that the AM and FM functions
in (1) and their first partials lie in appropriate Sobolev spaces so
that the norms (2) and (3) exist and take finite values. Without
loss of generality, we also assume that the AM functions are
positive semidefinite.

For the discrete case, we impose two additional smooth-
ness constraints. Let contain the samples
of a component in (1), where and

. Again without loss of generality, we
assume a unity sampling interval throughout. The discrete
functions and contain the
samples of their continuous-domain counterparts. We write

to denote the samples of the continuous-domain FM
function . The following definition will prove useful in
formulating the constraints.

Definition: For , denote by the set of connected
paths (i.e., trajectories)
through or any connected subset of for which each
is a polynomial in of degree or less. Thus, is the set of
all straight lines and line segments through.

For the AM functions in (1), we require that the smoothness
functional

(5)

which is the supremum of the magnitudes of all line integrals of
along straight lines and line segments in, be finite. In

the 1-D case ( ), . Similarly, for the FM
functions we require that the smoothness functionals

(6)

be finite. Note that is the supremum of all path integrals
of the magnitude of along straight lines and line seg-
ments in . In the 1-D case, is identical to the Sobolev
norm .

In Section II, we introduce new multidimensional
quasi-eigenfunction approximations(QEA’s) for the re-
sponses of linear shift invariant (LSI) systems toD AM–FM
inputs and develop tight bounds on the approximation errors.
Analogous approximations have been studied previously for
the case of 1-D continuous and discrete signals [3], [14] and
2-D continuous signals [11]. TheD discrete theory presented
here is both new and distinctive. For the continuous case, a
new D error bound is presented that contains an interesting
dimensionally dependent term not previously revealed. We
use the new QEA’s to derive novel nonlinearD AM–FM
demodulation algorithms.

In Section IV, we introduce two new computational tech-
niques that formulate estimates of the unknown AM and FM
functions in (1). Both techniques begin by analyzing the signal

with a multiband linear filterbank. For each point in the
signal,dominant component analysis(DCA) uses the filterbank
channel responses to estimate the instantaneous amplitude and
frequency of the component that dominates the local signal
spectrum. Thus, it delivers as output only a single pair of mod-
ulating functions.Channelized components analysis(CCA) is
a multicomponent technique that seeks to estimate simulta-
neously the modulating functions of the multiple components
in an D signal. The difference between CCA and TMCA is
in how they decompose into components [note that the
component-wise decomposition indicated in (1) is not unique].
In CCA, modulating functions for one component are estimated
from each filterbank channel response. Thus, with CCA, the
filterbank channels are assumed to isolate components on a
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global scale. By contrast, in TMCA the instantaneous frequency
of each individual component is permitted to lie in different
channels at different points and Kalman filters are used to
track the modulating functions of each component across the
filterbank channel responses [6].

At present, a standardized method for evaluating the perfor-
mance of computed AM–FM modeling techniques does not
exist. In many of the previous studies, analysis was limited to
synthetic signals [1], [3], [7], [10], [14], [16], [17], making it
possible to compare the computed modulations with the ana-
lytical model used to generate the test signals. In other cases,
AM–FM demodulation was applied to human speech or natural
images and the computed modulations were subjectively
compared with nonstationary structures in the original signals
[2], [4], [8], [11]. We believe that the best way to evaluate
computed AM–FM modeling techniques is to first reconstruct
the signal by substituting the computed modulations back into,
e.g., (1), and subsequently check for perceptual or quantitative
agreement between the reconstruction and the original signal.
This approach was used to evaluate the performance of MBDA
in [5] and [19] and the performance of TMCA in [6], [18], and
[20]. The question of whether quantitative or perceptual criteria
are more appropriate for characterizing the extent to which the
reconstructions and originals agree is application dependent
and remains unanswered in general.

II. COMPLEX EXTENSION OFREAL-VALUED SIGNALS

The instantaneous amplitude and phase of any complex com-
ponent are unique. The instantaneous frequency
is also therefore unique. For a real component ,
however, the instantaneous amplitude, phase, and frequency are
ambiguous. In fact, for any given real component there are infin-
itely many distinct pairs of functions and that sat-
isfy . Thus, adding an imaginary part
to is equivalent to selecting one particular pair of modu-
lating functions and to associate with . We
note in passing that any method which computes AM and FM
functions from the real values alone (such as the TKEO,
for example) may conversely be interpreted as implicitly speci-
fying an imaginary part .

Let , where
and where the modulating functions and areun-
knownandnonunique. Before can be analyzed against (1),
a complex extension must be formulated by adding an imaginary
part. If the imaginary part is computed from using a linear
operator, then it is precisely equal to .
This is true at once for allpossibledecompositions of the signal
into components and irrespective of what particular linear op-
erator is used. The key to understanding this is to keep in mind
that the component modulating functions become uniquely de-
termined only after an imaginary part is added to the signaland
a decomposition into components is specified. For any given de-
composition of into components, different linear operators
will compute different imaginary parts for the specified compo-
nents and will therefore lead to different solutions for the com-
ponent modulating functions.

Let be the unit vector in an arbitrarily chosen direction.
The method we favor for generating the complex extension is to
add an imaginary part equal totimes the directional multidi-
mensional Hilbert transform [21]–[23]

(7)

where p.v. indicates the Cauchy principal value. It is trivial to
verify that the singular operator is linear. The complex signal

admits many of the attractive proper-
ties of the 1-D analytic signal.1 Thus, byabus de langage, we
call theanalytic imageassociated with the real signal .
Over the Hilbert space , satisfies the frequency mo-
ment properties of Gabor and Ville [24], [25], the amplitude
continuity, homogeneity, and harmonic correspondence condi-
tions of Vakman [26] (up to a set of Lebesgue measure zero),
and admits a Fourier spectrum that is supported only on
frequency orthants where it is equal to twice the spectrum of

. Although it is not difficult to extend the discrete Hilbert
transform given in [27] into multiple dimensions to discretize
(7), the details are beyond the scope of this paper.

The complex extension and associated transform (7) are
distinct from the ones used for 2-D Wigner analysis by Zhuet al.
[28], the 2-D discrete Hilbert transform used by Read and Treitel
for stabilizing IIR filters [29], and Hahn’scomplex signals with
single-orthant spectra[30]. Indeed, none of these admit all of
the attractive properties mentioned above. Therefore, for com-
puting multidimensional AM–FM models, we feel that the ana-
lytic image is the preferable complex extension. Accordingly,
for any given component-wise decomposition, wedefine the
component modulating functions of the real signal to be
those of its associated analytic image .

Multiband linear filtering to isolate the multiple signal com-
ponents is a crucial step in the DCA and CCA paradigms. If this
linear filtering is implemented via pointwise spectral multipli-
cation, as it typically is for discrete multidimensional signals,
then generation of the analytic image can be incorporated di-
rectly into the filterbank by zeroing half of each filter’s spec-
trum. Thus there is no additional computational overhead in
computing the extension. In fact, the number of multiplications
required to compute each filter response is reduced by half.

III. M ULTIDIMENSIONAL QUASI-EIGENFUNCTION

APPROXIMATIONS AND DEMODULATION ALGORITHMS

Analysis of the behavior of AM–FM signals in LSI systems
is difficult because a general closed-form expression for the
system response cannot be obtained in terms of the input mod-
ulating functions. In this section, we introduce new approxima-
tions for the responses ofD LSI systems to AM–FM inputs
and develop bounds on the approximation errors. We use the ap-
proximations to develop novelD algorithms for demodulating
a signal directly and also for estimating the signal’s modulating
functions from the response of an LSI filter. It will be convenient

1In general, however, it may fail to satisfy the multidimensional Cauchy–Rie-
mann equations.
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to restrict our attention to single component AM–FM signals up
until Section III-E.

Let be the impulse response of an LSI system
with frequency response . If the system input is

, where and are fixed, then the response
is given exactly by

(8)

In this case, the monochromatic input is an eigenfunction
of the system and the complex number is the associated
eigenvalue. For a general AM–FM input , (8)
motivates the QEA

(9)

Whereas the eigenvalue in (8) is a constant, the term
in (9) varies with . Over neighborhoods where the

approximation holds well, this term locally characterizes the
transmission of through the system.

When the input modulating functions are sufficiently smooth
in a region that is sufficiently large [with relation to the sig-
nificant support of ], accuracy of the QEA (9) is generally
excellent. This notion is made rigorous in Sections III-A and
III-C, where we bound the approximation error by the effective
duration (i.e., spatial concentration) of and by the smooth-
ness functionals , , , and . QEA’s are
most useful, in the sense of incurring small errors, when applied
to signals that admit a decomposition (1) wherein each compo-
nent might be globally wideband, but is locally narrowband over
much of the domain. On a global scale, such components may
bear little resemblance to true eigenfunctions. In the examples
of Section V, we demonstrate that this characterization is appli-
cable to 2-D images of general practical interest.

In the remainder of the paper, it will at times be desirable to
write a vector in terms of its components using a compact, non-
standard notation. We will use angle brackets for this purpose.
Thus, we will write , where it
is understood that the indexruns from 1 to . We will also
write expressions such as , , which are in-
terpreted as follows. For , are the samples of
the partials of . The gradient of each partial is a vector,
and, for each, takes scalar values. The vector with
these scalars as entries is denoted .

A. Continuous QEA’s and Error Bounds

For the signal , let
and denote the absolute error in the QEA (9) by

. Theorem 1 below places a uniform upper bound on .
The functionals and are defined after the theorem
is stated.

Theorem 1: Let be finite and let and be any pair of
conjugate exponents, , such that . Then

(10)

Proof: The lengthy proof, which is omitted for brevity,
may be found in [31] and proceeds along arguments similar to
those used to prove [11, Theorem 1]. The dimensionally depen-
dent terms and emerge
as natural conditions for convergence of the involved integrals.

The bound (10) fails to converge unless , which implies
. In the limit as and , the terms

and approach one and
, respectively. In Theorem 1, the spatial concentration of

is quantified in terms of generalized directional-energy
variances

(11)

and cross-variances

(12)

where . These functionals grow as the effective
spatial support of the filter increases, while they vanish in the
limit as the filter support is reduced to a point. The functional

in (10), which simultaneously quantifies the concentra-
tion of the filter in all directions, is the -norm of the sequence

, . Similarly, .
The error bound of Theorem 1 is tight in the sense that

and both go to zero in the limit as becomes
monochromatic, verifying that there is no error in (9) when the
input is a true eigenfunction. The bound is a useful analytical
tool because the individual contributions of each modulating
function and of the filter impulse response are clearly artic-
ulated. Note that the bound can be made uniformly small
independent of the modulating functions by designing to
minimize and . When or 2, (10) collapses
to the bounds given previously in [3] and [11].

In Section III-B, we will develop continuous demodulation
algorithms and the need will arise to apply a QEA when the
system input is the partial derivative

(13)

(14)

where as before. Let

(15)

and define the QEA

(16)

The absolute error in this approximation is
. Note that the approximations (16) and (9)

are different: the AM functions and in
(15) might not be positive semidefinite. Thus, Theorem 1
cannot be used directly to establish a bound on . Ap-
proximations such as (16) have not been considered before.
Let and .
Clearly, . Moreover, and
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are both positive semidefinite. With this notation, (13) may be
written as

(17)

We now give a corollary to Theorem 1 which uniformly bounds
. The following definition is used in the hypothesis.

Definition: A point is azero crossingof the func-
tion if every open neighborhood about contains a point

such that and also contains a point such
that . The set of all such points is thezero
crossing setof .

Corollary 1: Let be finite and let and be conjugate
exponents with . Let and be such that the zero
crossing sets of and have Lebesgue measure zero.
Then

(18)

Proof: See the Appendix.
The assumption that and admit zero crossing

sets of Lebesgue measure zero is a mild one. It can fail only if
the partials of the modulating functions cross zero uncountably
many times, a condition that is not expected to occur in signals
of practical interest. Interpretation of (18) is similar to that of
(10). The bound falls to zero in the limit as tends toward
a true eigenfunction, which implies that also tends toward a
true eigenfunction. As before, the errors in (16) can be made uni-
formly small by designing to minimize and .
For signals that are reasonably locally narrowband, errors in the
QEA’s (9) and (16) may be expected to be small or negligible.

B. Continuous Demodulation

For any arbitrary single component AM–FM signal
, one may verify by direct calculation that, at points

where , the demodulation algorithms

(19)

(20)

are exact.2 In DCA and CCA, however, the modulating functions
must be estimated from the channel responses of a multiband
linear filterbank. In this section, we derive filtered demodulation
algorithms for this purpose. Let and

, where and were defined in (15) and (16).
Let be the impulse response of an LSI filter and let

2At points wheret(xxx) = 0, (20) indicates thata(xxx) = 0. Thus, the instanta-
neous values of'(xxx) andr'(xxx) at such points are immaterial to the equality
in (1).

, where . Since differentiation and
convolution commute, we have that

(21)

Written in vector form, the QEA (16) then becomes

(22)

Upon applying the frequency demodulation algorithm (19) di-
rectly to and subsequently applying (22) to the numerator
and (9) to the denominator, we obtain

(23)

(24)

The approximation error in each component of the numerator
of (23) must everywhere fall below the bound of Corollary 1,
while that in the denominator must everywhere fall below the
bound of Theorem 1. Comparison of (24) with (19) validates
the filtered frequency demodulation algorithm

(25)

This important result shows that, at points where , the
FM function of a locally narrowband signal may be estimated
directly from the filter response. Note that, in a practical imple-
mentation, can be estimated at points where
by interpolating the values of at nearby points where

.
To estimate the AM function of , we apply (9) on top and

bottom to obtain

(26)

This motivates the filtered amplitude demodulation algorithm

(27)

which may be applied to estimate from once
has been calculated using (25).

C. Discrete QEA and Error Bounds

In this section, we present a new multidimensional discrete
QEA analogous to (9) and develop bounds on the approximation
error. Let as before, and let
contain the samples of . Let and sup-
pose that is the unit pulse response of a discrete
LSI system with frequency response . The system response

is given exactly by

(28)

In analogy to (9), the QEA for the response is

(29)
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while the absolute approximation error is .
The following theorem locally bounds .

Theorem 2: Let be finite and let . Then

(30)

Proof: See the Appendix.
In (30), the absolute approximation error incurred by (29)

is bounded by a path integral quantifying the smoothness of
and by the absolute deviations of , both weighted

by the magnitudes of the filter coefficients. For filters that are
spatially localized, only the local behavior of the modulating
functions contributes significantly to the bound. For locally nar-
rowband signals, the local amplitude deviations and second par-
tials of are both expected to have small magnitudes. The-
orem 2 is of practical interest because (30) is spatially varying
and locally tracks the QEA error. The bound can be studied nu-
merically for any particular combination of signal and filter. We
next introduce a corollary to Theorem 2 which bounds
uniformly.

Corollary 2: Assume the hypothesis of Theorem 2. Then

(31)
Proof: See the Appendix.

As with Theorem 1 and Corollary 1, the individual contribu-
tions of each modulating function and of are clearly artic-
ulated in the bound of Corollary 2. Dependence of the bound
on the spatial concentration of is through the generalized
directional energy moment functional

(32)

and through the -norm modified by deletion of . This
has the interesting consequence that both (30) and (31) are inde-
pendent of . If the filter unit pulse response is the Kronecker
delta, then both bounds are identically zero, reflecting the fact
that all inputs are then true eigenfunctions. The local bound of
Theorem 2 is always equal to or below the uniform bound of
Corollary 2. Both bounds are tight in the sense that they vanish
in the limit as becomes monochromatic.

D. Discrete Demodulation

In this section, we use the QEA of Section III-C to develop
new amplitude and frequency demodulation algorithms appli-
cable to an D discrete AM–FM signal .
Clearly, . However, an exact algorithm analogous
to (19) does not exist in the discrete case. Thus, even for an
unfiltered signal, some labor is required to perform frequency
demodulation. Consider a discrete LSI system with unit pulse
response

(33)

where is the Kronecker delta and constants and
are parameters. The system frequency response

is . The system output is given
exactly by

(34)

Applying the QEA (29), we obtain

(35)
Taking and , equating the right sides
of (34) and (35) to within approximation errors, and subse-
quently dividing through by and applying a routine series
of trigonometric substitutions leads almost immediately to the
spatially localized discrete frequency algorithm

(36)
applicable at points where . Alternatively, taking

and gives

(37)
To within QEA errors and numerical roundoff errors, the ar-

guments of the transcendentals in (36) and (37) will have imagi-
nary components that are equal to zero. In a practical implemen-
tation, any nonzero imaginary component should be discarded
before the transcendentals are evaluated. Because and

are multivalued, the frequency estimates delivered indi-
vidually by (36) and (37) are ambiguous by an additive factor of

, . However, the algorithms can be used together to cor-
rectly place the estimated frequencies in the interval .

In view of the fact that DCA and CCA must estimate the mod-
ulating functions of from filterbank channel responses, we
next develop discrete filtered demodulation algorithms analo-
gous to (25) and (27). Let and be the unit pulse re-
sponse and frequency response of an LSI filter, where

. The system output is given by
(28). As in the continuous case, we will establish the validity
of applying the unfiltered frequency algorithms (36) and (37)
directly to . Consider a system formed by cascading (33)
with . The unit pulse response of the cascade system is

, while the frequency
response is . Let the response of the
cascade system be .
Then may be written in terms of according to

(38)
Applying the QEA (29) to the overall cascade system yields

(39)
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Now, the approximation (29) may also be applied to the system
alone to obtain . Substi-

tuting this result into (39) gives

(40)

Upon equating the right sides of (38) and (40), dividing through
by , and taking and , we obtain

(41)

Likewise, choosing and yields

(42)

Thus, each component of may be estimated from
at points where . Once has been obtained, a
final application of the QEA (29) validates the filtered amplitude
demodulation algorithm

(43)

E. Component Demodulation

We now return our attention to the multicomponent model
(1) and the DCA and CCA computational paradigms. For both
techniques, the structure of the filterbank plays an important role
in determining the multicomponent interpretation of the signal.
With CCA the component-wise decomposition is carried out by
assuming that each channel response is globally dominated by
a single component, whereas DCA assumes that at most one
component dominates each response at each point. For the con-
tinuous-domain case, suppose that and are the
impulse response and frequency response of filterbank channel

, and let be the channel response. Sup-
pose further that component dominates at the point

, so that . Since the frequency
algorithm (25) operates on a pointwise basis, may be
estimated at the point by

Subsequently, may be estimated at by applying (27) to
the response of channel to obtain

Since the algorithms (41)–(43) are also highly spatially local-
ized, an identical line of reasoning may be applied in the dis-
crete case.

IV. DCA AND CCA COMPUTATIONAL TECHNIQUES

A. DCA

A block diagram of DCA appears in Fig. 1, where is
analyzed with an -channel filterbank to isolate components

on a jointly localized basis. The demodulation algorithms (25)
and (27) [or (41)–(43) in the discrete case] are applied in the
blocks markedDEMOD. We define the dominant component
at each point to be the one that dominates the response of the
channel that maximizes the channel selection criterion

(44)

and we extract estimates of the dominant modulations
and from the maximizing channel on a

pointwise basis. Use of the criterion (44) is motivated by
the assumption that some particular component dom-
inates the channel response at any given point, so that

at the point. Upon application of the
QEA , (44) becomes

(45)

Thus (44) tends to select channels that are dominated by large
amplitude components with frequency vectors lying near the
maximum transmission frequency of the channel. This approach
affords maximal rejection of cross-component interference and
noise.

The dominant frequencies, which carry a rich description
of the local texture structure, were termedemergentin [11].
Emergent image frequencies have been estimated previously by
a constrained iterative relaxation procedure in [11] and by the
TKEO in [8]. The advantages in using DCA are twofold. First,
the frequency algorithms (25), (36), and (37) are local and
computationally inexpensive. Second, DCA delivers signed
frequency estimates, whereas the TKEO estimates unsigned
frequency. In multiple dimensions, the relative signs of the
components of the instantaneous frequency vector embody
orientation, and are thus significant. DCA is primarily of
interest in machine vision applications, where the dominant
modulations are useful for solving a variety of problems
including texture segmentation [11], [32], three-dimensional
(3-D) surface reconstruction [11], [33], [34], and computational
stereopsis [35]–[37].

B. CCA

CCA is depicted in the block diagram of Fig. 2. As in DCA,
the filterbank channel responses are demodulated using (25) and
(27) or (41)–(43). The component-wise decomposition of the
signal is obtained by considering that the filterbank channels
isolate components on a global basis. Modulating function esti-
mates for one component in (1) are extracted from each filter-
bank channel. In 2-D applications, the filterbank used for CCA
typically includes a baseband channel not present in Fig. 1. This
is because the Fourier spectra of most images are dominated by
the DC component, which is of little interest in DCA. In CCA,
however, which seeks to compute image representations, incor-
poration of a baseband channel to capture visually important
low frequency structure such as large scale shading and inten-
sity variations is essential.

For an -channel filterbank, CCA necessarily leads to an
-component computed model. The approach is inherently in-

efficient in this respect. In many cases, the AM functions of
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Fig. 1. Block diagram of DCA.

Fig. 2. Block diagram of CCA.

Fig. 3. Frequency domain depiction of multiband Gabor filterbank with
baseband filter and two high frequency corner filters.

several channelized components are negligibly small over large
regions. If nonorthogonal filters are used, as they often are to
achieve good spatial localization without sacrificing a dense
frequency covering, then certain elements of the signal struc-
ture are inevitably manifest redundantly in multiple channelized
components. Furthermore, in regions where the signal structure
is locally narrowband, the pass bands of many channels will
lie far away from the signal frequencies. These channels are
susceptible to noise and can produce modulating function es-
timates that are physically meaningless. In CCA signal recon-
structions, the effects of these problems are generally most ap-
parent over narrowband regions that are dominated by low fre-

quencies. Such regions are characterized by relatively large spa-
tial extent and a paucity of high frequency structure that might
otherwise conceal the errors.

C. Filterbank

DCA and CCA are essentially independent of the particular
filterbank that is used, and thus far we have made no specific as-
sumptions about the filters except that they are of the LSI type.
Clearly, they must be spectrally localized if they are to resolve
multiple signal components from one another. They must also
be spatially localized if they are to capture local nonstationary
signal structure. Furthermore, in the continuous case, spatially
localized filters generally admit small-energy variances that
lead to small approximation errors in (25) and (27). Spatially
localized discrete filters tend to have small-norms and also
to yield small values for the energy functional (32). The de-
sirability of spatially local discrete filters is made explicit in
(30). These observations strongly suggest the use of multidi-
mensional Gabor filters, which, in the continuous case, uniquely
realize the uncertainty principle lower bound on simultaneous
spatio-spectral localization. This optimal localization comes at
a price, however. Since Gabor filterbanks are not orthogonal,
their use in CCA generally leads to representation errors of the
type discussed in Section IV-B when an image contains struc-
ture lying within frequency bands covered by the effective spec-
tral support of multiple channel filters.

Typically, we use a bank of isotropic unity -norm Gabor
filters with half-peak radial bandwidths of one octave. The ef-
ficacy of such a filterbank for AM–FM demodulation has been
well established [3], [11], [32], [38]. A 2-D Gabor filterbank of
the type described in [11] is depicted in the frequency domain in
Fig. 3, augmented by two high-frequency Gabor filters to cover
the outermost corners of the right frequency half-plane. When
the Hilbert transform (7) is taken in the horizontal direction, the
Fourier spectra of complex signals generated by the technique
described in Section II are supported only in the right frequency
half-plane. The filterbank of Fig. 3 also incorporates a baseband
channel for CCA and has 43 channels in total.

D. Post Processing

In estimating amplitude and frequency modulations from the
responses of bandpass filters, post processing is generally re-
quired to compensate for approximation errors in the demodu-
lation algorithm arising from signal perturbations that are not
locally narrowband. Such signal perturbations were studied in
detail in [38], where post-smoothing of the channel responses
by low-pass filters having envelopes of the same shape as the
channel filters themselves was shown to be effective. In the par-
ticular case of Gabor filters, it was recommended that each post
filter space constant be designed 1.5 times larger than the space
constant of the corresponding channel filter. In [1], low-pass
postfiltering subsequent to bandpass Gabor filtering was used to
compensate for approximation errors in the TKEO. Large spikes
in the TKEO amplitude estimates were also smoothed by me-
dian filtering in [2].

It was demonstrated in [39] that input phase discontinuities
can lead to unbounded excursions in the channel response
instantaneous frequencies. Furthermore, natural images and
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(a) (b)

(c) (d)

Fig. 4. DCA analysis ofTreeimage: (a) image, (b) needle diagram depicting estimated emergent frequencies (arrow length is proportional to the instantaneous
period), (c) estimated dominant component amplitude modulation function, and (d) reconstruction of dominant component from estimated dominant modulations.

video generally contain phase discontinuities arising from
a host of factors including occlusions, surface discontinu-
ities, deformations and defects in surface topology, surface
reflectance, shadows, specularities, and noise [32]. The effects
of nonsmooth phase perturbations can be severe for DCA and
CCA. The QEA’s break down in the neighborhood of a phase
discontinuity, and the frequency demodulation algorithms
may suffer from large approximation errors. Because the
frequency estimates appear in the denominators of (27) and
(43), wideband frequency excursions and large frequency
estimation errors generally lead to noise susceptibility and
numerical instability that produce absurdly large amplitude
estimates. The resulting increase in dynamic range can cause
severe quantization errors when the signal is reconstructed.

For example, suppose that CCA is used to compute a multi-
component AM–FM representation for a gray scale image with
eight-bit pixels taking values in the range [0,255]. Suppose fur-
ther that the image contains phase discontinuities or other non-
smooth perturbations that lead to absurdly large amplitude esti-
mates in the computed representation. Since the erroneous es-
timates often tend to be spatially localized, it is possible, and
indeed even likely, that the computed representation will still
be useful for machine vision applications. However, if one at-
tempts toreconstructthe image from the representation, the er-
roneous amplitude estimates will generally cause the range of
pixel values in the reconstructed image to bemuchlarger than

[0,255]. If the reconstructed values are linearly mapped into the
range [0,255] for display, most of the accurately reconstructed
image structure will be compressed into a dynamic range of only
a few bits and lost.

As will be demonstrated in Section V, we have found that
post-smoothing of the channel responses is not effective for
controlling this problem. Instead, our approach is to apply a
low-pass Gaussian filter directly to the frequency estimates. The
space constant of this Gaussian postfilter is set to a multiple of
that of the channel filter, yielding a simple relationship between
the postfilter and channel filter envelopes. We use the smoothed
frequency estimates to compute the amplitudes, and then post-
filter the amplitude estimates themselves. It is likely that other
smoothing approaches such as median filtering would also be
effective.

V. EXAMPLES

DCA and CCA were applied to several 256 × 256 gray
scale images with eight bit pixels. In all cases, the (discretized)
Hilbert transform (7) acted in the horizontal direction. A dis-
crete version of the filterbank in Fig. 3 was used with Gaussian
postfilters. Except where noted, the postfilter linear bandwidths
were equal to those of the corresponding channel filters. For
DCA, the baseband channel was eliminated from the filterbank.
Reconstruction was performed using the algorithm given in
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(a) (b)

(c) (d)

Fig. 5. DCA texture segmentation obtained by applying ar g edge detector to the estimated emergent frequency magnitudes: (a)Mica–Burlap image, (b)
dominant component reconstruction, (c) estimated emergent frequency magnitudes displayed as a gray scale image, and (d) segmentation result.

[6] with a phase reconstruction interval of four pixels in each
dimension.

DCA was first applied to theTreeimage shown in Fig. 4(a). A
needle diagram depicting the estimated emergent frequencies is
given in Fig. 4(b), where needle length is inversely proportional
to (proportional to the instantaneous period). The es-
timated dominant AM function is shown in Fig. 4(c), and may be
interpreted as contrast of the dominant component: bright areas
in Fig. 4(c) generally correspond to regions of high contrast in
Fig. 4(a). The dominant component reconstruction is given in
Fig 4(d). The similarity between Fig. 4(d) and the original is
striking, and suggests that much of the total image structure has
been captured in a single AM–FM component.

Fig. 5 demonstrates the use of DCA to perform texture seg-
mentation on the imageMica-Burlap shown in Fig. 5(a). The
reconstructed dominant component appears in Fig. 5(b), and
the estimated emergent frequency magnitudes are displayed as
a gray scale image in Fig. 5(c). The patch-like regions that ap-
pear in Fig. 5(b) and (c) occur because different components
are dominant in the different regions. The segmentation shown
in Fig. 5(d) was obtained by applying a LoG edge detector with
gradient magnitude thresholding [40] to the estimated emergent
frequency magnitudes in Fig. 5(c).

The familiar imageMandrill appears in Fig. 6(a). Fig. 6(b)
shows the dominant component reconstruction computed by
DCA. CCA was also applied to obtain the 43-component recon-

struction of Fig. 6(c). A reconstruction of one of the individual
channelized components is given in Fig. 6(d). Fig. 6(e) shows
the 43-component CCA reconstruction that is obtained in the
absence of postfiltering. Because of the unmitigated effects of
nonsmooth signal perturbations, almost no useful structure can
be recovered from the computed modulation model in this case.

Fig. 6(f) and (g) also show 43-component CCA reconstruc-
tions, but with postfiltering applied to the channel responses
instead of directly to the modulating function estimates. In
Fig. 6(f), each postfilter space constant was two-thirds as large
as that of the corresponding channel filter (our convention is to
write the space constanton the bottom in the space domain, so
a smaller space constant results in a narrower impulse response
and a wider spectrum). Although some useful structure has
been recovered in Fig. 6(f), the overall quality is quite poor.
In single precision floating point, the extremes of the original
image were−1.0 and 0.7175. Because of absurd amplitude
estimates, the extremes of the floating point reconstruction in
Fig. 6(f) were amplified to−167.9172 and 202.3926. For the
reconstruction of Fig. 6(g), the postfilter space constants were
scaled by a factor of 1.5 as compared to those of the channel
filters. In this case, the essential structure of the image was
successfully recovered from the computed modulation model.
Significant detail was lost due to the excessive postfiltering,
however, and numerous amplitude spikes are still clearly
visible. In single precision floating point, the extremes of the
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 6. AM–FM representation ofMandrill image: (a) image, (b) dominant component reconstruction, (c) reconstruction from 43 channelized components, (d)
reconstruction of one channelized component, (e) 43-component CCA reconstruction without postfiltering, (f) 43-component CCA reconstruction with postfiltering
applied to channel responses;� is scaled by2=3, and (g) 43-component CCA reconstruction with postfiltering applied to channel responses;� is scaled by 1.5.
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(a) (b)

(c) (d)

(e) (f)
Fig. 7. Channelized component analysis: (a)Zermattimage, (b) CCA reconstruction, (c)Salesmanimage, (d) CCA reconstruction, (e)Peppersimage, and (f)
CCA reconstruction.

reconstruction in Fig. 6(g) were−39.0345 and 19.0505. The
results of setting the postfilter and channel filter space constants
equal were not unlike those shown in Fig. 6(f).

In Fig. 7, CCA was applied to the imagesZermatt, Salesman,
andPeppers. Although the reconstructions are in good percep-
tual agreement with the originals, the MAE is on the order of 100
(out of 255) in each case. The most noticeable errors appear to
be contrast distortions occurring in regions that are dominated
by low-frequency structure. Finally, it is interesting to take note
of the small bright dot appearing along the top left edge of the
Salesmanimage. The CCA reconstruction of this dot exhibits
ringing artifacts reminiscent of those commonly seen in linear
image restoration and in many wavelet-based signal represen-
tation algorithms. Similar ringing artifacts are visible along the
left and right edges of thePeppersreconstruction in Fig. 7(f).

VI. CONCLUSION

This paper addressed the problem of modeling sophisticated
multidimensional signals as multicomponent sums of locally
narrowband AM–FM functions. Working in a general-dimen-
sional framework, we developed powerful approximations that
express the responses of LSI systems to AM–FM inputs di-
rectly in terms of the input modulating functions. This is sig-
nificant because a closed form solution for the response cannot
be obtained due to the inherently nonlinear interaction between
the modulating functions and the system impulse response. We
bounded the errors in these quasi-eigenfunction approximations
by generalized energy variances quantifying the spatial concen-
tration of the filter and by the local smoothness of the modu-
lating functions expressed as Sobolev norms in the continuous
case and path and line integrals in the discrete case.
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We applied the approximations to derive novel nonlinear
multidimensional demodulation algorithms capable of ob-
taining estimates of a signal’s amplitude and frequency
modulations from the channel responses of a multiband linear
filterbank. Two practical techniques for computing multidi-
mensional AM–FM models for multicomponent signals were
introduced and demonstrated. Dominant component analysis
(DCA) delivers a single pair of modulating functions that char-
acterize the dominant signal structure on a spatially local basis.
In addition to being useful for general nonstationary analysis,
the dominant modulations form the basis for a variety of
texture-based approaches to the solution of classical problems
in machine vision. Channelized components analysis (CCA) is
a true multidimensional multicomponent technique capable of
delivering rich signal representations in the modulation domain.
It is particularly novel in view of the paucity of competing
methods.

The CCA examples presented in Section V are the first
to demonstrate multidimensional multicomponent AM–FM
modeling and reconstruction for the types of images that are of
practical interest in broad application areas. Consequently, a
number of important questions remain to be answered by future
research. The computation of multicomponent AM–FM models
is inherently ill-posed, both with respect to the decomposition
of a real-valued multipartite signal into components and with
respect to the demodulation of those components. The Gabor
filterbank used in this work was chosen for its attractive local-
ization properties. It is entirely possible that improved results
could be obtained using orthogonal filterbanks or alternative
filter types designed to minimize the ringing artifacts and con-
trast distortions visible in Figs. 6 and 7. Nonlinear regression
techniques may also prove useful for decomposing a signal into
components; unfiltered demodulation algorithms such as (36)
and (37) could then be applied directly on a component-wise
basis. In addition, improved postfiltering and reconstruction
techniques merit considerable future investigation. Finally, the
development of new and meaningful criteria for evaluating the
performance of multicomponent AM–FM models is another
important open problem.

APPENDIX

Proof of Corollary 1: Define

and

Then

(A.1)

For , define

and

Make similar definitions for , , and . Since
is linear, it follows from (A.1) that

(A.2)

Direct substitution of (A.1) into the right side of (16) yields

(A.3)

By subtracting (A.3) from (A.2), taking the magnitude of the dif-
ference, and applying the triangle inequality, we bound
according to

(A.4)

Applying Theorem 1 to , we obtain

The result (18) follows immediately upon applying Theorem 1
to , , and in (A.4) and collecting terms.

Proof of Theorem 2:Expanding in a first-order
Taylor series with explicit remainder [41], we obtain

(A.5)

where

(A.6)

Substitution of and (A.5)
into (28) then yields

(A.7)

Upon replacing in (29) with the definition of the Fourier
transform of a sequence [42], we have

(A.8)

Now, we write the QEA error in terms of
(A.7) and (A.8), apply the triangle inequality, and finally apply
the inequality [43] to obtain
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whereupon application of the inequality , ,
gives

(A.9)
Taking the magnitude of (A.6), applying the triangle inequality,
and observing that , we verify that

(A.10)

The proof is completed by further observing that
and when , and then substituting

(A.10) back into (A.9).
Proof of Corollary 2: We begin by isolating the contribu-

tions of amplitude and phase in the approximation error. Dis-
tributing multiplication over addition under the sum in (A.9),
we have

(A.11)

(A.12)

where (A.12) defines and . For , let
. Application of the first form of the funda-

mental theorem of calculus then gives

so

(A.13)

Substituting this result into the expression for in (A.11)
and observing that (A.13) is identically zero when , we
obtain

(A.14)

Upon substitution of (A.6) into the expression (A.11) for
and alternating between angle bracket notation and

sums, we have that

(A.15)

Now, for each , the integrand in (A.15) is zero such
that . For the remaining terms of the sum we have that

and . Then , and hence

(A.16)

For each such that and for each such
that , let

Clearly, is a unit vector. Upon applying the triangle in-
equality, observing that , and inter-
changing the order of summation in (A.16), there results

(A.17)
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Substitution of (A.14) and (A.17) into (A.12) immediately
yields the desired result (31).
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