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Abstract—Targets of interest in video acquired from imaging
infrared sensors often exhibit profound appearance variations
due to a variety of factors including complex target maneuvers,
ego-motion of the sensor platform, background clutter,etc., mak-
ing it difficult to maintain a reliable detection process andtrack
lock over extended time periods. Two key issues in overcoming
this problem are how to represent the target and how to learn its
appearance online. In this work, we adopt a recent appearance
model that estimates the pixel intensity histograms as wellas the
distribution of local standard deviations in both the foreground
and background regions for robust target representation. Appear-
ance learning is then cast as an adaptive Kalman filtering (AKF)
problem where the process and measurement noise variances are
both unknown. We formulate this problem using both covariance
matching and, for the first time in a visual tracking application,
the recent autocovariance least-squares (ALS) method. Although
convergence of the ALS algorithm is guaranteed only for the case
of globally wide sense stationary (WSS) process and measurement
noises, we demonstrate for the first time that the technique
can often be applied with great effectiveness under the much
weaker assumption of piecewise stationarity. The performance
advantages of the ALS method relative to classical covariance
matching are illustrated by means of simulated stationary and
nonstationary systems. Against real data, our results showthat
the ALS-based algorithm outperforms covariance matching as
well as traditional histogram similarity-based methods, achieving
sub-pixel tracking accuracy against the well-known AMCOM
closure sequences and the recent SENSIAC ATR dataset.

Index Terms–Appearance learning, histogram-based appear-
ance model, infrared tracking, adaptive Kalman filter

I. I NTRODUCTION

We consider the problem of tracking maneuvering ground
targets in infrared (IR) imagery acquired from airborne and
ground-based platforms, where the targets of interest are
often noncooperative. Such targets frequently exhibit complex,
unexpected maneuvers that can be both difficult to model and
difficult to track given noisy measurements from a passive
sensor. In this paper, we will be thinking primarily in terms
of a sensor that operates in the 3-5µm midwave IR (MWIR)
or 8-12µm longwave IR (LWIR) bands, both of which have
been used in production IR systems for a long time.
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Fig. 1. Nonstationary target signature evolution in AMCOM LWIR run
rng18_17. The lead vehicle is barely visible. The second vehicle is the
target of interest. (a) Frame 24. (b) Frame 165. (c)-(d) closeup views of the
second target in frames 24 and 165, respectively.

The imagery acquired by such sensors under actual field
conditions is typically characterized by strong structured clut-
ter, poor SNR, low target-to-clutter ratios, and strong ego-
motion. Particularly for a highly maneuverable target, this
implies that the target and background signatures observedat
the sensor focal plane array (FPA) may exhibit profound non-
stationary variations over relatively short time scales, making
it difficult to maintain both a reliable detection process and
a robust track lock over longer time scales – phenomena that
have been referred to variously as the “drifting problem” in[1],
[2], the “template update problem” in [3]–[6], and a “stale
template condition” in [7]. These challenges are exemplified
by the well-known AMCOM closure sequences1 [8]–[15] as
well as the newly released SENSIAC ATR dataset.2 One
instance of this kind of nonstationary target signature evolution
occurs in AMCOM LWIR sequencerng18_17. Here, an
LWIR sensor is situated on an airborne platform that closes on
a pair of maneuvering ground vehicles. Frames 24 and 165 are
shown in Fig. 1(a) and (b). The target of interest is the second
vehicle. A closeup view of this target in frame 24 is given in
Fig. 1(c). A closeup view from frame 165 is given in Fig. 1(d).
While the second vehicle exhibits a strong signature, the lead
vehicle is much dimmer and is in fact barely visible amid the
surrounding clutter, demonstrating that brightness alonecannot
be used as the sole basis for reliable detection and tracking.
Rather, more sophisticated techniques are generally required
for representing the target appearance and for adapting to

1Available from the Johns Hopkins University Center for Imaging Science
(http://cis.jhu.edu) and elsewhere.

2Available from the Military Sensing Information Analysis Center (https:
//www.sensiac.org).
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(e.g., learning) complex appearance changes that occur over
time. The choice of a particular target representation often
depends on the problem at hand and there exist several learning
strategies for each type of representation. In the remainder
of this section we consider the general problem and then
introduce the specific aspects that will be our focus for the
rest of the paper.

A. Target representation and appearance learning

Target representations may be broadly categorized as para-
metric, where a statistical model is typically assumed that
captures the key characteristics of the target appearance in
a way that facilitates estimation of the model parameters
continuously online [16], or non-parametric, where the target
appearance is characterized by empirically derived features
that can be updated online during tracking [17], [18]. Such
features may include kernel-based windows [19]–[21], non-
parametric or semiparametric contours [22], templates [20],
shape descriptors [19], or local statistics [20], [23] including,
e.g., intensity histograms and their moments.

Significant efforts have been directed towards developing
methods for online appearance learning [1], [3], [16], [24],
[25]. For both parametric and non-parametric approaches, the
design of an effective learning strategy is strongly coupled to
the choice of features. Drift correction strategies for template
tracking were proposed in [3], [26]. A more sophisticated
model combining stable, wandering, and outlier components
in a Gaussian mixture model (GMM) was proposed in [16],
where the model was updated via an expectation maximization
(EM) algorithm. GMM-based appearance learning was also
applied in [27], where a mean-shift algorithm was used to
update the parameters online. These methods rely on elaborate
parametric models and are effective for tracking extended
targets with large spatial signatures. However, for targets
such as those shown in Figs. 1 and 2, there may not be
enough pixels on the target to achieve robust and statistically
significant parameter estimation.

B. Histogram-based appearance learning

Histograms of the pixel intensities have been widely used
and were adopted in the appearance models of several re-
cent mean-shift trackers [17], [28]–[30]. Histograms of the
local standard deviation (stdev) were also used for mean-shift
tracking of IR targets in [23]. The popularity of histogram-
based features results at least in part from their simplicity
and efficiency, as well as their scale and rotation invariance
properties [17], [23], [31]. For histogram-based target repre-
sentations, appearance learning is generally accomplished by
iteratively updating a reference histogram [30], [32], [33].
Typically, the new reference histogram at each iteration is
given by a linear weighting of the previous reference histogram
and the most recent observation, where the weighting may
be based on an appropriate measure of histogram similarity.
While such techniques are often effective for adapting the
appearance model when the target has a large spatial extent,
they can be susceptible to drifting problems, particularly
when applied to smaller targets. Alternatively, a method was

proposed in [34] for updating the reference histogram which
treats the observed histogram as a realization of a generative
model that is a piecewise linear combination of several pairs
of histograms computed from representative key appearances
of the target. This approach is suitable when the objects to be
tracked share substantial similarity (e.g., in certain face and
head tracking problems) or when there exists a satisfactorya
priori means for estimating a meaningful set of key appearance
histograms.

An extension of the simple histogram-based appearance
learning strategies that has been used to combat the drifting
problem involves maintaining explicit appearance models for
both the target and the surrounding background. Background
information was explicitly incorporated in [35]–[39] to rep-
resent the target in terms of features capable of enhancing
background discrimination performance. In [14], we proposed
a dual foreground-background appearance model comprising
four histograms that characterize the pixel intensity distri-
bution and the local distribution of the sample stdev over
both the target and the surrounding background. The local
stdev statistic amplifies signatures of small and dim targets
while minimizing the effect of uniform background clutter.
This appearance model will be used by all of the target
tracking algorithms considered in this paper. We also found
that explicit appearance modeling of background immediately
around the target tends to improve the estimation of the target
magnification — a problem that is often under treated in part
due to the absence of any universal robust and learnable target
model [23].

C. Adaptive Kalman filtering for histogram learning

As an illustrative example, time traces of the normalized
pixel intensity histograms for the target and local background
in AMCOM LWIR sequencerng17_01 are given in Fig. 2
along with several raw video frames. In the early part of the
sequence the target is dim and is barely distinguishable from
the background. There is considerable overlap between the
target and background histograms throughout, as is typicalfor
sequences acquired under practical field conditions. Accurate
histogram estimation is critical in such cases, since the ac-
cumulation of small errors can corrupt the target model and
ultimately cause the track filter to lock onto background struc-
ture and fail. Improved histogram estimation was achieved by
modeling the temporal evolution of the reference histogramin
an adaptive Kalman filtering (AKF) framework in [30]. In [2],
[40], the AKF measurement noise variance was estimated
from the first frame and was assumed stationary, while the
process noise variance was estimated online using covariance
matching [41]. A robust Kalman filter was developed for
template-based appearance learning in [25], where the process
noise was assumed known and covariance matching was used
to estimate the innovations variance.

D. Original Contributions

In this paper, we present a new histogram-based appearance
learning algorithm where intensity histograms for both the
target and background are updated in each frame by a bank of
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Fig. 2. Nonstationary evolution of target foreground/background in AMCOM
sequencerng17_01. Five raw IR frames are shown above time plots of the
target histogram (left) and the local background histogram(right).

AKF’s. For the first time in an appearance learning application,
the unknown process and measurement noise variances are
estimated simultaneously using the recently developed auto-
covariance least-squares (ALS) method [42], [43]. In order
to provide robustness, to accommodate strong ego-motion,
and to provide flexibility in dealing with dynamic target size
estimation, we adopt a particle filter-based tracker where the
state vector gives the target position and magnification and
the likelihood function depends on the adaptive appearance
model. The proposed algorithm is able to estimate the target
position in challenging IR imagery with an average error of
less than 1.2 and 2 pixels respectively against the AMCOM
and SENSIAC datasets, achieving sub-pixel accuracy in many
cases. Estimation of the target magnification, which is nor-
mally under-treated in infrared tracking, is achieved withan
average error of two to four pixels for both the AMCOM and
SENSIAC sequences. We believe these results are among the
best reported against the AMCOM sequences and among the
best and earliest reported against the SENSIAC data.

The main contributions of this paper include application
of the ALS covariance estimation method in visual target
tracking, adaptation of the ALS method to block stationary
system dynamics, development of a robust appearance learning
algorithm based on a quad of dual foreground-background
histograms, and integration of these techniques to achievenear
sub-pixel tracking accuracy against the AMCOM and SEN-
SIAC sequences. The new appearance learning and tracking
techniques introduced here are distinct from those given in[2],
[23], [30] in the use of a particle filter as opposed to the mean-
shift algorithm and from those in [2], [25], [40] in the use
of histogram-based appearance learning. The experiments in
Section III demonstrate that the new ALS-based histogram
learning outperforms traditional histogram similarity (HS)-
based update methods [32], [33] and the previous AFK-
based method in [30] where the covariance matching (COV)
technique was used to estimate unknown noise parameters.

II. H ISTOGRAM-BASED APPEARANCELEARNING

Let yk be a sequence of video frames acquired from a
passive imaging sensor at discrete time instantsk ∈ N. For
simplicity, we assume that there is a single object of interest,
which could be,e.g., a target or a patch of background. Let

gk = {gbk}b=1,...,Nb
be the observed normalized histogram of

the object computed from the frameyk, where
∑Nb

b=1 g
b
k = 1

and the histogram is discretized toNb bins. Similarly, let
fk = {f b

k}b=1,...,Nb
be the reference histogram, which provides

an idealized model of the object appearance at timek.
The objective of histogram learning is to estimate the

present appearance modelfk by incorporating the current
observationgk into the previous appearance modelfk−1. This
is typically formulated as a time-varying linear filter

fk = ξk · gk + (1− ξk) · fk−1, (1)

where 1 is a vector with all entries equal to one and “·”
represents the Hadamard (or Schur) product. The vector
ξk = {ξbk}b=1,...,Nb

controls the balance between the previous
reference modelfk−1 and the new observationgk, where
0 ≤ ξbk ≤ 1 is the time dependent filter coefficient for thebth
histogram bin. Accurate tuning ofξk is the key to effective
appearance learning.

In this section we discuss three different learning techniques
that share the form (1) and differ only in howξk is com-
puted. The first is the traditional histogram similarity based
method where all bins are updated with the same coefficient
(ξbk = ξk; b = 1, ..., Nb). We shall refer to this method as HS.
After briefly reviewing the basic Kalman filter, we turn our
attention to two AKF methods that use different approaches
for estimating the process and measurement noise variances.
The first, which we will callAKFcov, uses covariance match-
ing where the same coefficient is applied to all bins. The
second, which we refer to asAKFals, uses the recent ALS
technique [42], [43] and maintains a separate coefficientξbk
for each histogram bin.

A. Histogram Similarity Method (HS)

In the widely used HS method, the coefficient vectorξk
in (1) is updated based on histogram similarity [33], [44]. All
Nb entries ofξk share a common value given by the metric

ξk = 1− h(fk−1,gk), (2)

whereh is a normalized histogram similarity measure such as
the Bhattacharyya coefficient [17]. In practice, however, we
find that the histogram intersection defined by [44]

h(fk−1,gk) =

Nb∑

i=1

min(f i
k−1, g

i
k) (3)

is more useful for quantifying histogram similarity in IR
imagery. With (3), if the observed and reference histograms
are nearly identical thenh(fk−1,gk) ≈ 1 and ξk is small,
implying that very little information from the observation
will be incorporated into the learning process at time step
k. Alternatively, if the two histograms are almost mutually
exclusive thenh(fk−1,gk) ≈ 0 and ξk ≈ 1, implying that
the new reference histogram will be heavily dependent on the
observation and will largely discard the historical information
contained infk−1. Thus, the observation is weighted strongly
when there is a sudden change in the object appearance.
Note that the similarity metric (2), (3) depends on allNb

histogram bins and is scalar-valued, implying that a common
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coefficient ξk is applied to all bins in the HS method. As
with many dynamic appearance learning strategies, the HS
method can potentially over adapt in the presence of strong
measurement noise and/or rapidly evolving target signatures,
causing track loss due to the target appearance model becom-
ing corrupted with background information. Explicit outlier
rejection algorithms were implemented in [30], [40] to mitigate
this problem.

B. Kalman Filtering

To reformulate appearance learning as a Kalman filtering
problem, we model corresponding binsf b

k and gbk from the
reference and observed histograms in state space accordingto

f b
k+1 = f b

k + wb
k, (4)

gbk = f b
k + vbk, (5)

where wb
k and vbk are mutually uncorrelated process and

measurement noises, both assumed zero-mean, white, and
Gaussian with variancesσ2

wb(k) and σ2
vb(k) that are time-

varying in general. The Kalman filter state prediction and
update equations for the system are given by

State prediction: f̂ b
k|k−1 = f̂ b

k−1 (6)

Covariance prediction:pbk|k−1 = pbk−1 + σ2
wb(k) (7)

Kalman gain: Kb
k =

pb
k|k−1

pb
k|k−1 + σ2

vb(k)
(8)

Innovation: rbk = gbk − f̂ b
k|k−1 (9)

State update:f̂ b
k = f̂ b

k|k−1 +Kb
kr

b
k

= Kb
kg

b
k + (1−Kb

k)f̂
b
k−1 (10)

Covariance update:pbk = (1 −Kb
k)p

b
k|k−1. (11)

There is a direct correspondence between (1) and (10), where
the Kalman gainKb

k in (10) may be associated with the coef-
ficient ξbk in (1); hence, with the Kalman filtering formulation
we obtainξbk ≡ Kb

k.

The Kalman filter balances the relative contributions to
appearance learning from the reference and observed data
based on the estimated variancesσ2

wb(k) and σ2
vb(k). When

σ2
wb(k) ≫ σ2

vb(k), for example, we haveKb
k ≈ 1 implying that

the observation will be weighted much more heavily than the
historical reference data. Under the linearity and Gaussianity
assumptions applied here, the state estimates (6) and (10) are
optimal in the minimum mean squared error sense.

However, computing the Kalman gains (8) requires knowl-
edge ofσ2

wb(k) and σ2
vb(k), both of which are usually un-

known in practice. This leads to the adaptive Kalman filter
(AKF), which seeks to estimate the unknown noise variances
on the fly. A brief overview of AKF methods was given
in [41] and more recent surveys appear in [45], [46]. In [41],
these techniques were broadly divided into four categories:
Bayesian, maximum likelihood (ML), correlation, and covari-
ance matching methods. The Bayesian method requires the
evaluation of several difficult integrals and the ML method
relies on equations that involve partial derivatives thereby
making them both computationally expensive. The correlation

and covariance matching methods relate certain propertiesof
the filter residues with the unknown noise processes using
linear equations, which allows for easy representation and
computations using simple matrix operations. For these rea-
sons, in the following we focus on two different AKF-based
appearance learning algorithms that rely on the covariance
matching and correlation approaches.

C. AKF: Covariance Matching (AKFcov)

Covariance matching techniques [41], [47] are based on the
relationship that exists between the process and measurement
noise variances and the autocorrelation of the innovations
process (9). Since the innovations are observable, their auto-
correlation can be estimated by an empirical sample variance
under suitable ergodicity assumptions. Thus, if one of the two
variancesσ2

wb(k) andσ2
vb(k) is known, then the other one can

be estimated by matching the empirically calculated innova-
tions autocorrelation to its theoretical value. Here, we adopt
the specific technique used in [2], [30], [40] whereσ2

vb(k) is
known andσ2

wb(k) is obtained by covariance matching.
It follows easily from (4)-(11) that the autocorrelation of

the innovations process is given by [48, Section V.B]

E[rbkr
b
j ] = [pbk−1 + σ2

vb(k) + σ2
wb(k − 1)]δ(k − j), (12)

where δ(·) is the Kronecker delta. Withσ2
vb(k) known and

pbk−1 given by (11), an obvious empirical approach for solving
σ2
wb(k − 1) from (12) is to approximateE[(rbk)

2] by com-
puting the sample variance of (9) over the lastLcov frames
yk−Lcov+1, . . . ,yk. However, because the process noise could
be time varying in general, there is a delicate tradeoff between
choosingLcov large enough to obtain statistically significant
estimates while simultaneously choosingLcov small enough to
track nonstationary changes inσ2

wb(k).
In appearance learning for visual target tracking, this prob-

lem has been addressed previously by assuming identical
statistics across variables in order to increase the samplesize
to larger thanLcov while still sampling from only theLcov

most recent frames. In [30], it is assumed thatσ2
vb(k) is

independent of bothb andk and thatσ2
wb(k) is independent

of b, so that allNb bins of the histogram in each frame share
identical noise statistics. The innovations sample variance may
then be computed across bins as well as over time. The
same assumptions onσ2

vb(k) are made for the template-based
appearance model of [40], whereb indexes pixels in the
template rather than bins in the histogram. By assuming a
common valueσ2

wb(k) for all template pixels in the current
frame, the innovations sample variance can be averaged across
both pixels and time. A similar strategy was employed in [2]
with the principal difference thatσ2

vb(k) was assumed time
varying and estimated by an auxiliary algorithm independent
of the covariance matching. Similar covariance matching was
used to estimate the scale matrix in [25].

To formulate this class of covariance matching algorithms
in our present setup, we assume thatσ2

vb(k) is independent of
both k andb and thatσ2

wb(k) is independent ofb (as in [30],
[40]). Let B be the set of nonzero histogram bins and estimate
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E[(rbk)
2] with the sample variance

Ĉr(k) =
1

|B|Lcov

Lcov−1∑

i=0

∑

b∈B

(rbk−i)
2. (13)

Under these assumptionspbk−1 is independent ofb. Thus, we
arbitrarily choosep1k−1 and use (13) in (12) to obtain the
approximate solution

σ2
wb(k − 1) ≈ Ĉr(k)− σ2

vb(k)− p1k−1. (14)

As in [30], [40], the initialization atk = 1 is given by

σ2
vb(k) =

1
2 Ĉr(1) ∀ b, k; pb0 = 1

2 Ĉr(1) ∀ b, (15)

which implies σ2
wb(0) = 0. We refer to this algorithm as

AKFcov and use it in the following as a baseline for com-
parison with theAKFals technique given in the next section.

D. AKF: Autocovariance-Based Least Squares (AKFals)

The ideal expression (12) for the innovations autocorrelation
holds when there are no modeling errors and the filter gainsKb

k

in (8) are optimal. However, if the process and measurement
noise variances are unknown then the gains will be suboptimal
and the innovations process will generally exhibit a nontrivial
correlation structure. The main idea of autocovariance based
methods is to exploit any observed nonzero correlations at
lags other than zero to obtain solutions for the unknown
noise variances and/or the optimal gains. Pioneering work in
this area was given by Mehra in [41], [49] where the resid-
ual autocorrelation was used for adaptive Kalman filtering.
Mehra’s method involves a three-step iterative process where
a Lyapunov-type equation must be solved at every time step.
Under the assumption that the process and measurement noises
are wide sense stationary (WSS), Carew and Bélanger [50]
developed an improved algorithm that estimates the optimal
Kalman gains directly using one matrix inversion and several
matrix multiplications, eliminating the need to estimate the
process and measurement noise variances explicitly and avoid-
ing the requirement to iteratively solve the Lyapunov equation
associated with Mehra’s method. Neethling and Young [51]
introduced a related weighted least squares technique that
improves the statistical efficiency of the methods in [41],
[49], [50] and incorporates a side constraint to guarantee
positive semi-definite (PSD) estimates for the unknown noise
variances.

Recently, Odelson,et al., developed a new Autocovariance
Least Squares (ALS) method capable of providing PSD esti-
mates for both the process and measurement noise variances
simultaneously [42], [43]. In addition, the ALS variance
estimates are more stable than those delivered by Mehra’s
method and converge asymptotically to the optimal values with
increasing sample size. However, the proof of convergence
given in [42], [52] depends explicitly on assumptions that the
system is time invariant and that the process and measurement
noises are WSS (extension to a time varying system with
WSS noises was given in [53]). The ALS algorithm in [42] is
primarily meant for identifying the system noise properties in
an offline learning process under WSS assumptions. First, the

filter innovations are obtained from the observations usinga
suboptimal Kalman gain over an extended period of time. Then
the autocovariance structure of these innovations is used to
reliably estimate the noise variances. Once the noise variances
are known, the optimal Kalman gain can be determined and
applied for filtering during run time using the standard Kalman
filtering equations (6)-(11).

For appearance learning, our interest in this paper is pri-
marily in real-time, online scenarios where, for the first
time, we consider application of the ALS method under the
much weaker assumption that the noise variancesσ2

wb(k) and
σ2
vb(k) are only block stationary. In order to extend the ALS

method to this case, we consider the evolution of the target
appearance to be a piecewise stationary process with non-
stationary transitions. The piecewise stationarity assumption
can be justified by the high frame rate of the imaging
sensor compared to the rate at which the target appearance
changes. Such assumptions are common,e.g., in the context
of audio and video compression [54]–[60]. The nonstationary
characteristics ofσ2

wb(k) and σ2
vb(k) directly correlate with

the rate at which the target appearance and sensor noise are
changing. The piecewise stationary formulation allows us to
apply the ALS algorithm to each stationary block individually
and thereby allows us to adapt to the varying nature of the
target appearance histogram over time. In effect, we adapt the
filter gainξbk at the end of each stationary block depending on
the observed variation trend in that block. This raises the issue
of determining the block boundaries. Most existing methods
that determine the block intervals requirea priori knowledge
of the observations; since this is not the case in our real-time
application, we consider equal length blocks. We study the
effect of block size by performing experiments using the ALS
method on a simulated nonstationary system in Section II-E.

In this section, we extend the ALS method for application
to a piecewise stationary process in the context of histogram-
based appearance learning, which we refer to asAKFals

in this paper. As before, the state model is given by (4)
and (5). We assume thatwb

k andvbk are mutually uncorrelated
and that σ2

wb(k) and σ2
vb(k) depend onb and k and are

piecewise constant. With this setup, the noise statistics are
generally different for each bin of the histogram and there
is a separate coefficientξbk for eachb ∈ [1, Nb]. The size of
each piecewise stationary block is assumed to beNd frames.
We also define a block indexp, where thepth block contains
framesY (p) = {yk|k ∈ K(p)} with

K(p) = {k|(p− 1)Nd + 1 ≤ k ≤ pNd}. (16)

Using this framework, we update the estimated noise variances
of the appearance histogram corresponding to each bin at the
end of every block. In effect, we are adapting the filter gain
(learning rate) for the current block based on the observed
variations in the preceding block.

We now briefly present the least squares formulation to
determine the system noise variances for a histogram bin. For
the remainder of the section, we drop the bin indexb for
brevity. We assume that the asymptotic Kalman gainKp−1

estimated from the previous block is available. GivenKp−1,
the state estimates in (10) for all frames inK(p) are given by
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f̂k = f̂k|k−1 +Kp−1rk. The error in the predicted state (6) is
defined byεk = fk − f̂k|k−1. Then, for all framesk ∈ K(p),
this prediction error along with the innovation (9) can be
formulated together in a state model according to [42], [43]

εk+1 =

ap︷ ︸︸ ︷
(1−Kp−1) εk +

gp︷ ︸︸ ︷[
1 −Kp−1

]
wp︷ ︸︸ ︷[
wk

vk

]
,(17)

rk = εk + vk. (18)

The ALS method aims to observe the filter innovations and
exploit any observed nonzero correlations at different lags to
obtain solutions for the unknown noise variances and/or the
optimal gains. The autocorrelation of the innovations in the
pth block at any lagj is given by

Cj(p) = E[rkrk+j ]; 0 ≤ j < Lals, (19)

where k, k + j ∈ K(p) and Lals < Nd is the order of
the autocorrelation lags we consider in formulating the ALS
problem. We assumeE[ε0] = 0 and cov(ε0) = π0 and define

Qp = E[wpwp
T ] =

[
σ2
w(pNd) 0

0 σ2
v(pNd)

]
, (20)

χp = E[wpvk] =

[
0

σ2
v(p)

]
(21)

for k ∈ K(p). Note in (21) that althoughE[wpvk] contains
the time indexk, this expectation is constant overK(p) due
to the piecewise stationarity assumption.

In the interest of clarity and to illustrate the form of the
relevant relations, we assumeLals = 3 in the following; gen-
eralization to otherLals is straightforward. The least squares
estimation problem is formulated in terms of an autocovariance
matrix Rp(Lals) that, forLals = 3 andk, k+1, k+2 ∈ K(p),
is given by

Rp(3) = E




(rk)
2 rkrk+1 rkrk+2

rkrk+1 (rk+1)
2 rk+1rk+2

rkrk+2 rk+1rk+2 (rk+2)
2


 . (22)

The individual elements ofRp(3) are functions of
π0, ap,gp,Qp andχp. Let “vec” be the vectorization operator
that transforms a matrix into a vector by stacking the columns
upon one another. The vectorization ofRp(3) is given by

vec[Rp(3)] = (θp ⊗ θp)π0

+ Γp ⊗ Γpvec[I3]vec[gp Qp gp
T ]

+ (Ψp ⊕Ψp + I3)vec[I3]σ
2
v(p), (23)

where In denotes then × n identity matrix, ⊗ denotes
the Kronecker product,⊕ denotes Kronecker sum, and the
matricesθp,Γp andΨp are given by

θp =




1
ap
a2p


 ;Γp =




0 0 0
1 0 0
ap 1 0


 ; Ψp = −Kp−1ΓpI3.

(24)

Using the Lyapunov equation to eliminate theπ0 term in
(23), one obtains

Rp(3)︷ ︸︸ ︷
vec[Rp(3)] =

Ap︷ ︸︸ ︷[
dp | dpK

2
p−1 + (Ψp ⊕Ψp + I9)vec(I3)

]
xp︷ ︸︸ ︷[

σ2
w(p)
σ2
v(p)

]
,

(25)

whereKp−1 is scalar,Rp(3) is 9×1, Ap is 9×2, xp is 2×1,
anddp is a 9× 1 vector defined by

dp = (θp ⊗ θp)(1− a2p)
−1 + (Γp ⊗ Γp)vec[I3]. (26)

Rp(3) may also be represented in terms of the autocorrelation
terms defined in (19) according to

Rp(3) = vec




C0(p) C1(p) C2(p)
C1(p) C0(p) C1(p)
C2(p) C1(p) C0(p)


 . (27)

Provided that the innovations process is reasonably locally
ergodic, the quantitiesCj(p) in (27) may be estimated by

Ĉj(p) =
1

Nd − j

pNd−j∑

i=(p−1)Nd+1

riri+j . (28)

We define an estimated vectorized correlation matrixR̂p(3)
by replacing the theoretical correlationsCj(p) in (27) with the
empirical estimatesĈj(p) given by (28). From this definition
and (25), we write

Apxp = R̂p(3). (29)

The expression (29) forms the core of the ALS method:
it relates the observed correlations contained inR̂p(3) and
defined in (28) to the desired variancesσ2

w(p) and σ2
v(p)

contained inxp. Also note thatAp is dependent only on the
asymptotic Kalman gainKp−1 from the previous block. Thus,
the least squares problem for the unknown noise variances
σ2
w(p) andσ2

v(p) can be expressed as

Φp = min
σ2
w(p),σ2

v(p)

∥∥∥∥Ap

[
σ2
w(p)
σ2
v(p)

]
− R̂p(3)

∥∥∥∥
2

(30)

subject toσ2
w(p), σ

2
v(p) ≥ 0. The positive semi-definite re-

quirements onσ2
w(p) andσ2

v(p) are enforced by appending a
logarithmic barrier function to (30), resulting in

Φp = min
σ2
w(p),σ2

v(p)

∥∥∥∥Ap

[
σ2
w(p)
σ2
v(p)

]
− R̂p(3)

∥∥∥∥
2

− µ log[σ2
w(p)σ

2
v(p)], (31)

where µ is the barrier parameter. The least squares prob-
lem (31) has been shown to be convex and can be solved
using a Newton recursion [42]. Pseudo-code to implement this
AKFals algorithm for a single bin of the histogram is given
in Table I.
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TABLE I
PSEUDO-CODE TO IMPLEMENTAKFals FOR A SINGLE BIN OF THE

APPEARANCE HISTOGRAM DURING THEpTH TIME BLOCK .

For k = (p− 1)Nd + 1 to pNd

1. Predict bin valuêfk|k−1 = f̂k−1.
2. Acquire observationgk based on tracker output.
3. Compute innovationrk = gk − f̂k|k−1.

4. Update bin valuêfk = f̂k|k−1 +Kp−1rk.
End
5. Find R̂p(Lals) from Ĉj(p) for 0 ≤ j ≤ Lals− 1 using (28)
6. DetermineAp using (25) to set up the ALS problem (29).
7. Perform the optimization in (31) to obtainσ2

v(p) andσ2

w(p).
8. Compute asymptotic Kalman gainKp from the estimated

noise variances for use in the next block.

E. Numerical simulations

Having extended the ALS method to the piecewise station-
ary case, we perform two numerical experiments on simulated
data. The first one compares the noise variance estimation
capability of AKFcov and AKFals on a system with WSS noise
characteristics. The second examines the performance of the
proposed piecewise stationary ALS method against piecewise
stationary and more general nonstationary system dynamics.

1) Comparison betweenAKFals and AKFcov: The ob-
jective of this experiment is to estimate the unknown noise
covariance matrices from simulated data using AKFcov and
AKFals. Consider a system of the form

xk = Axk−1 +wk−1, (32)

yk = Cxk + vk, (33)

wherewk andvk are zero mean, iid Gaussian noise processes
with fixed covariancesQ andR, respectively. Let

A =




0.1 0 0.1

0 0.2 0

0 0 0.3


 , C =




1 −0.1 0.2

−0.2 1 0

0 −0.4 1


 ,

Q =




0.5 0 0

0 0.75 0

0 0 0.25


 , R =




0.5 0 0

0 0.25 0

0 0 0.75


 .

During the estimation process, the diagonal elements of the
estimates ofQ and R were initialized with random values
uniformly distributed between zero and one. The asymptotic
filter gain for the initialized noise covariances was then com-
puted. This gain was used for filtering against 5000 data points
to obtain innovations that were used, along with the initial
estimates ofQ andR, by the AKFcov and AKFals methods
to estimate the unknown noise covariances. Results from
repeating the simulation 200 times are shown in Fig. 3, where
each point corresponds to the estimate from a single trial. It
is observed that AKFals produces estimates that are PSD and
more precise than those delivered by AKFcov. The estimates
produced by AKFcov seem to depend on the initial values of the
unknowns. Since AKFcov assumes that at least one of the noise
covariances is knowna priori, an erroneous initial value can
greatly distort the estimation. Further, there is no guarantee
that the estimates (14) are PSD, as seen by the occasional
negative estimates of the AKFcov method in Fig. 3. Unlike
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Fig. 3. Diagonal elements of the noise covariance matricesQ and R as
estimated by AKFcov and AKFals for WSS system dynamics.

AKFcov, AKFals (1) estimates both process and observation
noise parameters simultaneously, (2) formulates a least squares
problem based on multiple constraints obtained by considering
the autocorrelation of the innovations at different lags, and (3)
enforces PSD constraints on the estimates. The use of multiple
constraints in the least squares solution greatly diminishes the
effect of erroneous initial values.

2) Piecewise treatment of non-stationary systems by
AKFals: Here, we examine the performance of AKFals and its
inherent block stationarity assumptions against the linear state
model (32), (33) for the case of nonstationary noise processes
wk−1 and vk with diagonal covariance matrix entries that
exhibit jump transitions and linear ramps. Let

A =




0.9 0 0.7

0 0.95 0

0 0 0.7


 ,C =




1 −0.1 0.2

−0.2 1 0

0 −0.4 1


 ,

and letwk andvk be zero mean, iid Gaussian noise processes
with time varying diagonal covariance matricesQ and R

having main diagonal entries given by the dotted (blue) lines
in Fig. 4. As indicated in the figure, the noise covariances are
block stationary during the first portion of each simulationand
increase or decrease linearly with small-scale additive noise
during the second portion. The transition times between these
characteristics for all six diagonal covariance matrix entries
are mutually independent.

The objective is to estimate the six unknown covariances
using the AKFals algorithm developed in Section II-D. In
the absence of anya priori knowledge about the transition
times between piecewise stationary and linear characteristics
in the noise variances, we set the block lengthNd in the
AKFals algorithm to a constant. ChoosingNd small results in
a paucity of data points being available to perform statistically
significant least squares estimation, whereas choosingNd large
limits the ability of the algorithm to adapt to the nonstationary
changes. The experiment is designed to study the performance
of AKFals as a function of the chosen block sizeNd.

The estimates of the diagonal elements ofQ and R are
initialized with random values distributed uniformly between
zero and one. The asymptotic Kalman gain corresponding
to this initialization is used for filtering over the first block
of length Nd to obtain innovations. These innovations are
then used to formulate the least squares problem (31), the
solution of which yields esimates for the six unknown noise
covariances and an asymptotic Kalman gainK1. In an offline
application, this Kalman gain could be used to re-process
the first block. For a real-time implementation, however, we
instead use the asymptotic gainK1 obtained from the first
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Fig. 4. Simulation of AKFals against nonstationary noise statistics for three
different block sizes. The dotted (blue) lines give the truevalues of the
main diagonal entries of the process noise covariance matrix Q (left column)
and measurement noise covariance matrixR (right column). The AKFals
covariance estimates are shown as solid (red) lines for (a)Nd = 15, (b)
Nd = 45, and (c)Nd = 135.

block to process the data in the second block. This approach is
effective for achieving real-time performance provided that the
jump transitions are not too large and the ramp characteristics
are not too steep. The procedure is repeated recursively with
the gainKp−1 being used to process the data in blockY (p)
and generate innovations.

Since the number of constraints in the least squares problem
should be larger than the number of unknowns (six in this
case), we set the number of autocorrelation lags consideredby
the AKFals algorithm toLals = 10. We performed simulations
against the covariances shown in Fig. 4 with block sizes
Nd = 15, 45, and135, where 100 trials with different random
initializations were run for each block size. The average
estimated covariance values for the three different block sizes
are shown as solid (red) lines in Fig.4(a), (b), and (c). It
is shown that a small block size (Nd = 15) affords the
opportunity to adapt quickly to abrupt nonstationary changes
in the dynamics, but the estimation errors are generally large
due to limited observations in each block. With the largest
block size (Nd = 135), the algorithm is slower in adapting
to nonstationary changes, especially those that occur in the
middle of a block, but the estimation errors are generally
much smaller than with the small block size. Additionally, as
the block size increases, the median error decreases and the
probability of a large estimation error diminishes. Overall, we
find that AKFals can cope reasonably well with both the jump
and ramp nonstationarities depending on the block size. These
results show that the block-based ALS method that makes a
piecewise stationary assumption can estimate the system noise
covariances without manual filter tuning.

F. Dual foreground-background appearance model

We present a target model that involves the local statistics
of both the target and its surrounding background, as shown
in Fig. 5. The use of background for tracking was discussed
previously in [35]–[38]. In these methods, target trackingis
performed on an intermediate classification image called a
confidence map [35], a likelihood image [36], or a weighted
image [37] where each pixel is assigned a probability of
belonging to background or foreground. Here we have a differ-
ent point of view using background for target modeling. Our
target model is motivated by the “hit-and-miss” morphological
transform that uses both foreground and background for object
detection. In practice, the background information is found
to be of great utility in localizing the target and determining
its size. Specifically, the proposed target model involves four
histograms to represent local statistics.

x
ks2

y
ks2

x
ks

y
ks

),( kk yx

Kernel placed on
Foreground area

)( kF XN

Image plane

Background area  

)( kB XN

Fig. 5. Foreground regionNF (xk) with overlapped kernel and background
areaNB(xk) defined based onxk = [xk, yk, s

x
k
, s

y
k
].

Let xk=[xk, yk, s
x
k, s

y
k] be the state to be estimated during

target tracking, where(xk, yk) and (sxk, s
y
k) are the position

(top-left corner) and size of the target area in pixels. As shown
in Fig.5, the target appearance, denoted byG(xk), is com-
posed of four histograms: the foreground/background intensity
gA(xk)/gB(xk) and foreground/background local standard
deviation (stdev)gC(xk)/gD(xk), which are extracted from
yk by using the kernel-based method in [14], [15], [61]. Given
xk, the candidate region is characterized byG(xk) defined by

G(xk) = {gA(xk),gB(xk),gC(xk),gD(xk)}. (34)

A reference target model learned from previous frames is also
available that is composed of four histograms,i.e., Fk−1 =
{fA,k−1, fB,k−1, fC,k−1, fD,k−1}. This reference model is up-
dated online and used to evaluate any given candidate area in
framek represented byG(xk) as

D(G(xk),Fk−1) =
∑

z∈Z

vz · d(gz(xk), fz,k−1), (35)

whereZ = {A,B,C,D} andd is defined in (3);vz is used to
adjust the significance of the four histograms. Here, all four
histograms are given equal importance. We develop a particle
filter-based target tracking algorithm that uses this appearance
model in conjunction with AKF-based appearance learning
given in Table I as well as two dynamic models, one each
for the position and size. The detailed tracking algorithm can
be found in [15].
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TABLE II
L IST OF SEQUENCES USED IN EXPERIMENTS. TOP: AMCOM DATASET

AND BOTTOM: SENSIACDATASET

Frame Size
Sequences Starting Ending Length Starting Ending

frame frame size size
LW-15-NS 21 270 250 5 x 8 16 x 16
LW-17-01 1 350 350 5 x 8 16 x 29
LW-21-15 236 635 400 3 x 4 10 x 10
LW-14-15 1 225 225 4 x 5 23 x 19
LW-22-08 51 300 250 5 x 8 17 x 24
LW-20-18 121 420 300 4 x 7 10 x 17
LW-18-17 1 190 190 5 x 9 11 x 25
LW-19-06 41 260 220 3 x 4 6 x 11
MW-14-10 1 450 450 6 x 11 12 x 28
LW-20-04 11 360 350 3 x 4 12 x 15

1925-0001 350 549 200 12 x 42 12 x 40
1925-0002 0 399 400 14 x 22 12 x 34
1925-0006 499 698 200 14 x 24 14 x 42
1925-0009 150 549 400 18 x 54 18 x 32
1925-0012 0 199 200 16 x 46 18 x 38
1927-0001 100 499 400 10 x 22 8 x 30
1927-0002 0 399 400 10 x 20 10 x 22
1927-0005 0 499 500 12 x 26 12 x 36
1927-0009 100 499 300 14 x 38 14 x 22
1927-0011 0 499 500 12 x 32 12 x 34

TABLE III
DESCRIPTION AND VALUE OF THE EXPERIMENTAL PARAMETERS

Variables Description AMCOM SENSIAC

N
(1)
b

bin number of the intensity histogram 32 32

N
(2)
b

bin number of the stdev histogram 16 16
Lcov number of frames used for AKFcov in (13) 3 10
Nd block size in frames 7 7
Lals number of autocorrelation lags 5 2
Np number of particles used for tracking 200 100

III. E XPERIMENTAL RESULTS

We tested the three histogram learning techniques along
with the tracking algorithm presented in Section II against10
sequences in each of the AMCOM and SENSIAC datasets.
The In order to represent the target appearance with a rea-
sonable number of histogram bins, we performed contrast
enhancement on the images from the SENSIAC dataset and
down-sampled them to 8 bits. Further, the foreground intensity
histogram for the SENSIAC dataset only includes pixels
greater than 100 to maintain a good histogram structure.
The metadata associated with both datasets provides ground
truth for the target position, size and type, which are used
to evaluate performance of the three appearance learning
algorithms, HS,AKFcov andAKFals. The sequences selected
for experiments from both datasets are enumerated in Table
II. These sequences exemplify many of the important typical
challenges of practical IR sequences, including poor target
visibility, strong egomotion, small targets, significant pose
variations and size variations, dust clouds, strong clutter and
background noise,etc.

A. Experimental setup

Three appearance learning algorithms, namelyHS [33],
[44], AKFcov [30] and the proposedAKFals, are integrated
with the same tracking algorithm for a fair comparison. All
of them share the same linear histogram filtering form defined

in (1). HS determinesξk according to histogram similarity,
while AKFcov and AKFals use the Kalman gain. Detailed
parameterizations of the three algorithms are listed in Table
III. In practice, AKF-based appearance learning algorithms
were applied only to the two intensity histograms (fA andfB).
Because the dynamics of the stdev histograms do not have a
well-defined structure, the stdev histograms (fC andfD) in all
cases were updated using theHS method. We also compare the
performance of an alternative target representation usingthe
covariance descriptor [62] that also supports online appearance
updates. In addition to the tracking errors, we adopt an overlap
metric proposed in [63] to quantify the degree of overlap
between the track gate and the actual target area. LetA and
B represent the track gate and the ground-truth bounding box
respectively; then the overlap ratioζ is defined as

ζ =
#(A ∩B)× 2

#(A) + #(B)
, (36)

where# is the number of pixels.

B. Experimental Analysis

The three algorithms (50 Monte Carlo runs each) were
evaluated on 20 IR sequences from the AMCOM and SEN-
SIAC datasets and compared numerically in terms of their
appearance learning performance (Fig. 6), the overlap metric
ζ (Fig.7) and the tracking error (Fig. 8 and Table V).

1) Appearance learning:Fig. 6 shows the histogram learn-
ing results for six AMCOM sequences, where it can be
observed that the results ofAKFals closely match the ground
truth. Closer examination reveals thatHS andAKFcov result
in histograms that slowly deviate or “drift” from the ground
truth. This is clearly evident in Fig.6(c), where the intensity
variations in the latter part of the sequence (around frame 300)
are not captured byHS andAKFcov. Therefore, the tracker
includes a large portion of the background in the track gate as
seen in frames 320, 360 of the third sequence in Fig. 8 (a).

2) Overlap metric: Improvements in appearance learning
against three AMCOM sequences are further demonstrated
by the overlap metric in Fig. 7(a),(b), which compareζals,
ζcov and ζHS pairwise. For example, the improvement of
AKFals over AKFcov or HS is demonstrated by observing
that most data points are above the diagonal lines. Comparable
results for AKFals and AKFcov against sequence LW-22-
08 are also shown by the similar appearance learning per-
formance in Fig.6(e), where the histogram-based appearance
model lacks strong modes and has widespread and small bin
values. Average values ofζ corresponding to the different
algorithms against the two datasets are given in Table IV.
AKFals has the largest values, indicating its superior target
tracking performance compared to the other two algorithms.

3) Tracking error: Table V provides quantitative track-
ing performance results against the AMCOM and SENSIAC
datasets. In most cases,AKFals achieves the smallest errors
in terms of both position and size. TheHS approach loses the
target track in sequencesLW-20-18 (6 runs) and LW-19-06
(2 runs), as indicated by the large errors.AKFcov also loses the
target tracks in sequenceLW-20-18 (1 run) due to the high
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Fig. 6. Comparison of appearance learning for six AMCOM sequences using
three methods: (a) LW-15-NS (b) LW-17-01 (c) LW-21-15 (d) LW-14-15 and
(e) LW-22-08 and (f) MW-14-10.
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Fig. 7. Pairwise overlap comparisonζALS vs. ζCOV (top) andζALS vs.
ζHS (bottom) forLW-17-01 (a), LW-21-15 (b) andLW-22-08 (c).

similarity between foreground and background. More visual
comparisons are shown in Fig. 8(a). We see thatAKFals offers
the best position and size estimation except in the AMCOM
sequenceLW-22-08, whereAKFcov is slightly better due
to the lack of well defined structure in the histogram-based
appearance, as shown in Fig. 6(e). We observe similar results
against the SENSIAC data as shown in Fig. 8(b), where the
AKFals tracker outperforms the other two algorithms in most
cases (except for1927-0011), and can effectively adapt to
varying poses and sizes for long sequences (200-500 frames).
The performance ofAKFals slightly deteriorates against the
SENSAIC sequence1927-0011, especially towards the end,
due to the presence of a dust cloud that greatly affects the
appearance learning process due to occlusion of the target.

TABLE IV
OVERLAP METRIC VALUES OF THE THREE TRACKING ALGORITHMS.

Sequences HS AKFcov AKFals

LW-15-NS 0.669 0.707 0.714
LW-17-01 0.547 0.596 0.720
LW-21-15 0.601 0.578 0.620
LW-14-15 0.676 0.682 0.708
LW-22-08 0.751 0.770 0.758
LW-20-18 0.689 0.753 0.758
LW-18-17 0.704 0.702 0.703
LW-19-06 0.670 0.685 0.713
MW-14-10 0.802 0.797 0.799
LW-20-04 0.715 0.711 0.720

AMCOM Average 0.682 0.698 0.721
1927-0001 0.776 0.777 0.799
1927-0002 0.727 0.813 0.845
1927-0005 0.750 0.751 0.787
1927-0009 0.816 0.849 0.855
1927-0011 0.858 0.829 0.852
1925-0001 0.866 0.836 0.872
1925-0002 0.797 0.790 0.824
1925-0006 0.875 0.879 0.886
1925-0009 0.801 0.843 0.860
1925-0012 0.943 0.943 0.946

SENSIAC Average 0.821 0.831 0.852

C. Tracking performance of covariance descriptor

We also tested the covariance descriptor for IR tracking.
The covariance descriptor was found to be robust and effective
for object tracking in optical images. It was first proposed
in [62] for object detection with significant advantages than
histogram-based appearance models, and extended to tracking
by augmenting with manifold learning-based model update
[64], [65]. In IR tracking, the covariance descriptor involves
local intensity, stdev, gradient, orientation and Laplacian infor-
mation of the target area. Like the other three histogram-based
appearance learning algorithms, this descriptor was combined
with the particle filter-based tracking algorithm [15]. Tracking
results obtained using the covariance descriptor are shown
in Fig. 9, where no learning was involved. We observe that
the covariance tracker is able to maintain reasonable track
lock against the target inLW-17-01, but fails to track the
dim target in LW-15-NS. In both sequences, the tracker
encountered difficulty in estimating the target size. The small
target size, weak texture, and absence of color significantly
reduced the effectiveness of the covariance descriptor for
tracking small targets in IR imagery.

Frame 1 Frame 100 Frame 190 Frame 230 Frame 250

Frame 1 Frame 65 Frame 220 Frame 271 Frame 350

Fig. 9. Tracking results for two AMCOM sequences using the covariance
tracker. Top:LW-15-NS and Bottom:LW-17-01.
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Frame 50 Frame 150 Frame 200 Frame 250

4.7162 in.

Frame 45 Frame 125 Frame 190 Frame 225

Frame 68 Frame 220 Frame 320 Frame 400

Frame 150 Frame 220 Frame 271 Frame 350

(a) Results on five AMCOM sequences.

Frame 65 Frame 150 Frame 230 Frame 250 Frame 50 Frame 180 Frame 325 Frame 395

Frame 105 Frame 140 Frame 350 Frame 400

Frame 80 Frame 160 Frame 375 Frame 400

(b) Results on five SENSIAC sequences.

Frame 65 Frame 145 Frame 330 Frame 480

Frame 100 Frame 250 Frame 335 Frame 400

Fig. 8. Tracking results against five AMCOM sequences (a) (from top to bottom:LW-15-NS, LW-17-01, LW-21-15, LW-14-15 andLW-22-08) and
five SENSIAC sequences (b) (1925-0009, 1927-0001, 1927-0002, 1927-0011 and1925-0002). The top row of each image shows the observed
frame and the bottom row depicts the track gates corresponding to the Ground truth (top-left),HS (top-right),AKFcov (bottom-left),AKFals (bottom-right).

D. Further Discussion

TheHS method is usually encumbered by the drifting prob-
lem during incremental learning.AKFcov, which assumes the
same noise statistics for all histogram bins and estimates only
the process noise without considering PSD conditions, results
in a suboptimal Kalman gain. Its performance is marginally
better than that ofHS. AKFals, which estimates both pro-
cess and observation noises with PSD conditions for each
histogram bin, is able to follow the modes and variations of the
histogram during tracking and supports effective appearance
learning. However, when the histogram lacks strong modes

and has widespread and small bin values, such as in the two
AMCOM sequencesLW-22-08 and MW-14-10, or when
the histogram is not well-structured due to background clutter
(as in SENSAIC sequence1927-0011), all three methods
are comparable. This is mainly because the poor structure
of the histogram evolution may invalidate the Kalman filter
assumptions, whileHS remains effective by incorporating the
most recent observation for appearance learning when the
histogram is poorly defined. This observation justifies the use
of HS for learning the stdev histograms, which are normally
characterized by weak structure.
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TABLE V
MEAN ERROR OF THE STATE VARIABLES AVERAGED OVER THE LENGTH OF THE SEQUENCE FROM50 MONTE CARLO RUNS USING THREE DIFFERENT

ALGORITHMS FOR THEAMCOM (THE FIRST10 SEQUENCES) AND SENSIAC (THE SECOND10 SEQUENCES) DATASETS.

Algorithms HS AKFcov AKFals

Tracking errors x y sx sy x y sx sy x y sx sy

LW-15-NS 1.019 1.817 1.906 2.732 0.860 1.511 1.644 2.396 0.801 1.461 1.423 2.339
LW-17-01 2.406 3.415 2.104 3.016 2.145 3.005 2.101 3.163 1.213 2.110 1.376 3.033
LW-21-15 0.970 1.653 2.624 2.941 1.135 1.812 2.799 3.113 0.893 1.300 2.786 2.575
LW-14-15 0.889 0.815 3.160 2.137 0.932 0.787 2.981 2.157 1.099 0.801 2.660 1.787
LW-22-08 1.167 0.868 1.684 2.049 1.202 0.843 1.070 2.232 1.200 0.839 1.363 2.175
LW-20-18 3.230 1.831 1.657 1.953 0.901 1.095 1.307 1.766 0.599 1.084 1.439 1.754
LW-18-17 1.269 1.722 0.733 2.949 1.303 1.838 0.859 2.611 1.425 1.679 1.087 2.252
LW-19-06 1.977 1.545 1.566 1.544 0.797 0.764 1.681 1.454 0.694 0.709 1.536 1.279
MW-14-10 0.628 0.789 1.648 1.691 0.756 0.806 1.638 1.789 0.775 0.778 1.629 1.607
LW-20-04 0.702 0.954 0.940 1.528 0.697 0.937 1.071 1.614 0.688 0.907 1.006 1.357

AMCOM Average 1.426 1.541 1.802 2.254 1.073 1.340 1.715 2.230 0.939 1.167 1.630 2.016

1927-0001 0.504 1.162 1.965 5.830 0.629 0.902 1.915 5.258 0.473 0.853 1.901 4.443
1927-0002 1.835 2.276 0.001 6.024 0.897 2.147 0.000 5.571 0.528 2.139 0.000 5.580
1927-0005 2.335 1.325 0.000 4.728 2.188 2.092 0.000 4.864 1.928 1.622 0.000 3.694
1927-0009 1.686 1.556 0.089 2.721 1.421 1.317 0.000 1.979 1.344 1.289 0.003 1.898
1927-0011 0.514 2.384 0.004 4.969 1.065 2.163 0.018 4.484 0.702 2.425 0.000 4.129
1925-0001 0.848 2.116 0.000 2.639 1.204 1.890 0.000 3.669 0.794 1.621 0.000 3.733
1925-0002 0.859 3.057 1.750 3.958 0.521 3.780 1.750 3.197 0.526 2.614 1.750 2.998
1925-0006 0.572 3.359 0.000 1.053 0.700 2.629 0.000 1.589 0.616 2.618 0.000 1.449
1925-0009 1.376 5.177 0.039 5.021 1.337 2.355 0.000 5.427 1.121 2.044 0.000 5.210
1925-0012 0.379 0.781 0.070 2.459 0.385 0.834 0.070 2.312 0.385 0.822 0.070 2.119

SENSIAC Average 1.090 2.319 0.392 3.940 1.035 2.011 0.375 3.835 0.842 1.805 0.372 3.525

IV. CONCLUSION

We have presented a new IR target tracking algorithm
that achieves state-of-the-art performance against extremely
challenging infrared imagery. To the best of our knowledge,
this is the first work reporting both near sub-pixel tracking
accuracy and low size estimation error (1-2 pixels) against
the challenging AMCOM IR closure sequences and the newly
released SENSIAC MWIR sequences. The proposed approach
encapsulates several recent innovations in target tracking as
well as Kalman filtering in a joint tracking and learning
framework. Specifically, the dual foreground-background tar-
get model is shown to be effective for enhancing the tracker
sensitivity and robustness. Moreover, the newAKFals appear-
ance learning method outperforms two existing histogram-
based appearance learning techniques,viz., HS andAKFcov,
as well as the recent covariance tracker that is often used
against optical imagery.
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