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Abstract—Targets of interest in video acquired from imaging
infrared sensors often exhibit profound appearance variaibns
due to a variety of factors including complex target maneuves,
ego-moation of the sensor platform, background clutteretc., mak-
ing it difficult to maintain a reliable detection process andtrack
lock over extended time periods. Two key issues in overcongn
this problem are how to represent the target and how to learnts
appearance online. In this work, we adopt a recent appearare
model that estimates the pixel intensity histograms as wells the
distribution of local standard deviations in both the foreground
and background regions for robust target representation. Apear-
ance learning is then cast as an adaptive Kalman filtering (Alc)
problem where the process and measurement noise variancesa
both unknown. We formulate this problem using both covariarce
matching and, for the first time in a visual tracking application,
the recent autocovariance least-squares (ALS) method. Albugh
convergence of the ALS algorithm is guaranteed only for the ase
of globally wide sense stationary (WSS) process and measunent
noises, we demonstrate for the first time that the technique

can often be applied with great effectiveness under the much

weaker assumption of piecewise stationarity. The performace
advantages of the ALS method relative to classical covariare
matching are illustrated by means of simulated stationary ad
nonstationary systems. Against real data, our results showhat
the ALS-based algorithm outperforms covariance matching a
well as traditional histogram similarity-based methods, @hieving
sub-pixel tracking accuracy against the well-known AMCOM
closure sequences and the recent SENSIAC ATR dataset.
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Fig. 1. Nonstationary target signature evolution in AMCOMVIR run
rngl8_17. The lead vehicle is barely visible. The second vehicle & th
target of interest. (a) Frame 24. (b) Frame 165. (c)-(d)etlpsviews of the
second target in frames 24 and 165, respectively.

The imagery acquired by such sensors under actual field
conditions is typically characterized by strong structuckut-
ter, poor SNR, low target-to-clutter ratios, and strong-ego
motion. Particularly for a highly maneuverable targetsthi
implies that the target and background signatures obseted
the sensor focal plane array (FPA) may exhibit profound non-
stationary variations over relatively short time scaleaking
it difficult to maintain both a reliable detection processian

Index Terms-Appearance learning, histogram-based appearrobust track lock over longer time scales — phenomena that

ance model, infrared tracking, adaptive Kalman filter

I. INTRODUCTION

have been referred to variously as the “drifting problem[lih
[2], the “template update problem” in [3]-[6], and a “stale
template condition” in [7]. These challenges are exemgplifie

We consider the problem of tracking maneuvering groursy the well-known AMCOM closure sequenég8]-[15] as
targets in infrared (IR) imagery acquired from airborne angell as the newly released SENSIAC ATR datasedne
ground-based platforms, where the targets of interest amgtance of this kind of nonstationary target signaturdigian

often noncooperative. Such targets frequently exhibitgem

occurs in AMCOM LWIR sequencengl8_ 17. Here, an

unexpected maneuvers that can be both difficult to model abMy/IR sensor is situated on an airborne platform that closes o
difficult to track given noisy measurements from a passiwepair of maneuvering ground vehicles. Frames 24 and 165 are
sensor. In this paper, we will be thinking primarily in termshown in Fig. 1(a) and (b). The target of interest is the sdcon

of a sensor that operates in the 3 midwave IR (MWIR)

vehicle. A closeup view of this target in frame 24 is given in

or 8-12 um longwave IR (LWIR) bands, both of which haveFig. 1(c). A closeup view from frame 165 is given in Fig. 1(d).

been used in production IR systems for a long time.
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While the second vehicle exhibits a strong signature, thd le
vehicle is much dimmer and is in fact barely visible amid the
surrounding clutter, demonstrating that brightness at@msot

be used as the sole basis for reliable detection and tracking
Rather, more sophisticated techniques are generally nejui
for representing the target appearance and for adapting to

1Available from the Johns Hopkins University Center for IimegScience
(http://cis.jhu.edu) and elsewhere.

2Available from the Military Sensing Information Analysise@ter (https:
Ilwww.sensiac.org).



(e.g, learning) complex appearance changes that occur opeoposed in [34] for updating the reference histogram which
time. The choice of a particular target representationnoftéreats the observed histogram as a realization of a generati

depends on the problem at hand and there exist severaligarmodel that is a piecewise linear combination of severalspair

strategies for each type of representation. In the remainaé histograms computed from representative key appeasance
of this section we consider the general problem and thefthe target. This approach is suitable when the object®to b
introduce the specific aspects that will be our focus for theacked share substantial similaritg.g, in certain face and

rest of the paper. head tracking problems) or when there exists a satisfaetory
priori means for estimating a meaningful set of key appearance
A. Target representation and appearance learning histograms.

Target representations may be broadly categorized as peFra'e‘n extension of the simple histogram-based appearance

. - . . arning strategies that has been used to combat the driftin
metric, where a statistical model is typically assumed tha ; L o
- roblem involves maintaining explicit appearance modets f
captures the key characteristics of the target appearance | .
i — oth the target and the surrounding background. Background
a way that facilitates estimation of the model parameter

continuously online [16], or non-parametric, where theyéar iMormation was explicitly incorporated in [35]-[39] to pee

. . S . resent the target in terms of features capable of enhancing
appearance is characterized by empirically derived featur o
) g . ackground discrimination performance. In [14], we pragmbs
that can be updated online during tracking [17], [18]. Suc o
) . a dual foreground-background appearance model comprising
features may include kernel-based windows [19]-[21], nop- : . ) . o
. . ) our histograms that characterize the pixel intensity rdist
parametric or semiparametric contours [22], template§, [2

. o . ution and the local distribution of the sample stdev over
shape descriptors [19], or local statistics [20], [23] uttihg, both the target and the surrounding backgrcf)und The local
e.g, intensity histograms and their moments. '

Significant efforts have been directed towards developir?td.ev st_at]st!c_ amplifies S|gnature§ of small and dim target
ile minimizing the effect of uniform background clutter.

methods for online appearance learning [1], [3], [16], 124 his appearance model will be used by all of the target

[25]. For both parametric and non-parametric approaches, Eracking algorithms considered in this paper. We also found

design of an effective learning strategy is strongly codpite that explicit appearance modeling of background immeljiate

the c_h0|ce of features. Dr!ft correction strategies f0|’|.l]EE.[[E 8round the target tends to improve the estimation of theetarg
tracking were proposed in [3], [26]. A more sophisticate e . )
agnification — a problem that is often under treated in part

model combining stable, wandering, and outlier componen Te to the absence of any universal robust and learnablet tar
in a Gaussian mixture model (GMM) was proposed in [16 y 9

where the model was updated via an expectation maximizatior?Olel [23]

(EM) algorithm. GMM-based appearance learning was also ) o ) )

applied in [27], where a mean-shift algorithm was used fe- Adaptive Kalman filtering for histogram learning

update the parameters online. These methods rely on eteboraAs an illustrative example, time traces of the normalized
parametric models and are effective for tracking extendgdkel intensity histograms for the target and local backigic
targets with large spatial signatures. However, for targdh AMCOM LWIR sequencea ngl7_01 are given in Fig. 2
such as those shown in Figs. 1 and 2, there may not &leng with several raw video frames. In the early part of the
enough pixels on the target to achieve robust and stafigticasequence the target is dim and is barely distinguishabha fro

significant parameter estimation. the background. There is considerable overlap between the
target and background histograms throughout, as is tyfocal
B. Histogram-based appearance learning sequences acquired under practical field conditions. Axdteur

Histograms of the pixel intensities have been widely usehdstogram estimation is critical in such cases, since the ac

: cumulation of small errors can corrupt the target model and
and were adopted in the appearance models of several

Te- ,
cent mean-shift trackers [17], [28]-[30]. Histograms o€ thuf:f|mately cause the track filter to lock onto backgroundetr

local standard deviation (stdev) were also used for meﬁh-sﬁmugedzl?: f?rlllé Itrgrrr)]ro(\)/;(il Q\Liﬁ%:;mofigns;gpe\:?s ﬁg?&eﬁr?]b
tracking of IR targets in [23]. The popularity of histogram- 9 P 9

: .- oY - an adaptive Kalman filtering (AKF) framework in [30]. In [2],
based features results at least in part from their simplici . : .
. ; L ._[40], the AKF measurement noise variance was estimated
and efficiency, as well as their scale and rotation invagan

properties [17], [23], [31]. For histogram-based targairee rom the first frame and was assumed stationary, while the

. L . process noise variance was estimated online using coearian
sentations, appearance leamning is generally accomplisiie matching [41]. A robust Kalman filter was developed for

iteratively updating a reference histogram [30], [32], ][33 g A
Typically, the new reference histogram at each iteration tlgmplate based appearance learning in [25], where thegsoc

’ . S . . noise was assumed known and covariance matching was used

given by a linear weighting of the previous reference hisiog . : ) .
) - to estimate the innovations variance.

and the most recent observation, where the weighting may
be based on an appropriate measure of histogram similarity. o
While such techniques are often effective for adapting tif¢ Original Contributions
appearance model when the target has a large spatial extenity this paper, we present a new histogram-based appearance
they can be susceptible to drifting problems, particularlgarning algorithm where intensity histograms for both the
when applied to smaller targets. Alternatively, a method waarget and background are updated in each frame by a bank of



gL = {g,l;}bzl _____ ~, be the observed normalized histogram of
the object computed from the frame,, Wherer)\i1 g =1
and the histogram is discretized 1§, bins. Similarly, let
fi = {f*}o=1.....n, be the reference histogram, which provides
an idealized model of the object appearance at time

The objective of histogram learning is to estimate the
present appearance modfl by incorporating the current
observatiorg;, into the previous appearance modlgl;. This
is typically formulated as a time-varying linear filter

Bin# fro =6, g +(1—&) fr1, 1)

Fig. 2. Nonstationary evolution of target foreground/trakind in AMCOM  where 1 is a vector with all entries equal to one and “

sequence ngl7_01. Five raw IR frames are shown above time plots of th

target histogram (left) and the local background histog(eght). ‘T’epresepts the Hadamard (Or SChur) product. The V.ECtor
& = {& }v=1,... N, controls the balance between the previous
reference modefk;_; and the new observatiog;, where

, o ] o 0< 5,2 < 1 is the time dependent filter coefficient for thh
AKF’s. For the first time in an appearance learning applaati histogram bin. Accurate tuning @ is the key to effective
the unknown process and measurement noise variances aﬁfﬁearance learning.

estimated simultaneously using the recently developed-aut |, this section we discuss three different learning techesq
covariance least-squares (ALS) method [42], [43]. In Orq%‘iat share the form (1) and differ only in hogy, is com-
to provide robustness, to accommodate strong ego-motigfiseq. The first is the traditional histogram similarity eds

and to provide flexibility in dealing with dynamic target 8iz method where all bins are updated with the same coefficient
estimation, we adopt a particle filter-based tracker whbeee t/ b _ b =1,...,N,). We shall refer to this method as HS.

state vector gives the target position and magnification aﬁﬁer briefly reviewing the basic Kalman filter, we turn our

the likelihood function depends on the adaptive appearanggantion to two AKF methods that use different approaches
model. The proposed algorithm is able to estimate the targg estimating the process and measurement noise variances
position in challenging IR imagery with an average error 6fpe first, which we will calAKF.,,, uses covariance match-
less than 1.2 and 2 pixels respectively against the AMCOMg \here the same coefficient is applied to all bins. The
and SENSIAC datasets, achieving sub-pixel accuracy in mag¥-ond. which we refer to aSKF,., uses the recent ALS

cases. Estimation of the target magnification, which is NOGchnique [42], [43] and maintains a separate coefficignt
mally under-treated in infrared tracking, is achieved vath ¢4, a5ch histogram bin.

average error of two to four pixels for both the AMCOM and
SENSIAC sequences. We believe these results are among the . L
best reported against the AMCOM sequences and among t .§4|stogram Similarity Method (HS)
best and earliest reported against the SENSIAC data. [N the widely used HS method, the coefficient vecgar
The main contributions of this paper include applicatiol (1) is updated based on histogram similarity [33], [44]. A
of the ALS covariance estimation method in visual targdYe entries of¢; share a common value given by the metric
tracking, adapj[ation of the ALS method to block stationar)_/ & =1—h(f 1,8, )
system dynamics, development of a robust appearancergarni
algorithm based on a quad of dual foreground-backgroundiereh is a normalized histogram similarity measure such as
histograms, and integration of these techniques to achieae the Bhattacharyya coefficient [17]. In practice, howevee, w
sub-pixel tracking accuracy against the AMCOM and SENind that the histogram intersection defined by [44]

Frame 1 Frame 50 Frame 100 Frame 275 Frame 325
Foreground Histogram Background Histogram

Frame #
10 Bin# 10

SIAC sequences. The new appearance learning and tracking Ny
techniques introduced here are distinct from those givgR]in h(fi_1,8k) = Z min(f{_,,g%) (3)
[23], [30] in the use of a particle filter as opposed to the mean i=1

shift algorithm and from those in [2], [25], [40] in the usejs more useful for quantifying histogram similarity in IR
of histogram-based appearance learning. The experimentsphagery. With (3), if the observed and reference histograms
Section 1l demonstrate that the new ALS-based histogragpe nearly identical them(f,_1,g;) ~ 1 and &, is small,
learning outperforms traditional histogram similarity §H jmplying that very little information from the observation
based update methods [32], [33] and the previous AFKyi|| be incorporated into the learning process at time step

based method in [30] where the covariance matching (COY) Alternatively, if the two histograms are almost mutually
technique was used to estimate unknown noise parametergxclusive thenh(f,_1,gx) ~ 0 and & ~ 1, implying that

the new reference histogram will be heavily dependent on the
Il. HISTOGRAM-BASED APPEARANCEL EARNING observation and will largely discard the historical infation
Let yr be a sequence of video frames acquired from @ntained inf,_,. Thus, the observation is weighted strongly
passive imaging sensor at discrete time instants N. For when there is a sudden change in the object appearance.
simplicity, we assume that there is a single object of irtgreNote that the similarity metric (2), (3) depends on al},
which could be,e.g, a target or a patch of background. Lehistogram bins and is scalar-valued, implying that a common



coefficient &, is applied to all bins in the HS method. Asand covariance matching methods relate certain propesties
with many dynamic appearance learning strategies, the Ht filter residues with the unknown noise processes using
method can potentially over adapt in the presence of stroligear equations, which allows for easy representation and
measurement noise and/or rapidly evolving target sigeaturcomputations using simple matrix operations. For these rea
causing track loss due to the target appearance model becsons, in the following we focus on two different AKF-based
ing corrupted with background information. Explicit oetli appearance learning algorithms that rely on the covariance
rejection algorithms were implemented in [30], [40] to m#tte matching and correlation approaches.

this problem.

C. AKF: Covariance Matching (A
B. Kalman Filtering g (AK&)

To reformulate appearance learning as a Kalman filtering
problem, we model corresponding birf§ and g° from the r
reference and observed histograms in state space accdmding

Covariance matching techniques [41], [47] are based on the
lationship that exists between the process and measnteme
oise variances and the autocorrelation of the innovations
rocess (9). Since the innovations are observable, th&x au
o = o+, (4) correlation can be estimated by an empirical sample vagianc
b b b under suitable ergodicity assumptions. Thus, if one of W t
g = Jit vk ®) : 5 2 0
variancesr;, (k) ando?, (k) is known, then the other one can
where w} and v} are mutually uncorrelated process an@e estimated by matching the empirically calculated inrova
measurement noises, both assumed zero-mean, white, #8®8s autocorrelation to its theoretical value. Here, wepd
Gaussian with variances?, (k) and o2, (k) that are time- the specific technique used in [2], [30], [40] wherg, (k) is
varying in general. The Kalman filter state prediction anghown andgib(k) is obtained by covariance matching.

update equations for the system are given by It follows easily from (4)-(11) that the autocorrelation of
State prediction:ﬁk"kfl _ .]/%71 6) the innovations process is given by [48, Section V.B]
Covariance prediction:p},_; = p_y +ou,(k)  (7) Blrri] = [ph_y + o5 (k) + oy (k= D)ok — j),  (12)
b
Kalman gain: K} = — pklk—12 8) where_&(-) is the Kronecker delta. _V_Vithrfb(k) known and
Prjk—1 T oo (k) p%_, given by (11), an obvious empirical approach for solving
Innovation: % — g% — f]gwq @) afub_(k — 1) from (12) is to approximate®[(r?)?] by com-
puting the sample variance of (9) over the ldst, frames

State update: f} = ffj,_, + Kir} Yh—Leovi1s - - - » Y- HOwever, because the process noise could
=Kbgb +(1— K;g)ffj,l (10) betime varying in general, there is a delicate tradeoff betw
choosing Lo, large enough to obtain statistically significant
estimates while simultaneously choosibg, small enough to
There is a direct correspondence between (1) and (10), whégek nonstationary changes arf,, (k).
the Kalman gaink? in (10) may be associated with the coef- In appearance learning for visual target tracking, thisopro
ficient£? in (1); hence, with the Kalman filtering formulationlem has been addressed previously by assuming identical
we obtainé} = KP. statistics across variables in order to increase the sasigge
The Kalman filter balances the relative contributions tt® larger thanLg,, while still sampling from only theLgoy,
appearance learning from the reference and observed datst recent frames. In [30], it is assumed the} (k) is
based on the estimated varianegs, (k) and 2,(k). When independent of botlh and % and thato2, (k) is independent
o2, (k) > o2, (k), for example, we hav&® ~ 1 implying that of b, so that allN; bins of the histogram in each frame share
the observation will be weighted much more heavily than thdentical noise statistics. The innovations sample vagamay
historical reference data. Under the linearity and Gaungyia then be computed across bins as well as over time. The
assumptions applied here, the state estimates (6) and (@0)same assumptions orf, (k) are made for the template-based
optimal in the minimum mean squared error sense. appearance model of [40], whete indexes pixels in the
However, computing the Kalman gains (8) requires knowlemplate rather than bins in the histogram. By assuming a
edge ofo2, (k) and o2, (k), both of which are usually un- common values2, (k) for all template pixels in the current
known in practice. This leads to the adaptive Kalman filtdrame, the innovations sample variance can be averagedsacro
(AKF), which seeks to estimate the unknown noise variancbeth pixels and time. A similar strategy was employed in [2]
on the fly. A brief overview of AKF methods was givenwith the principal difference that?2, (k) was assumed time
in [41] and more recent surveys appear in [45], [46]. In [41};arying and estimated by an auxiliary algorithm independen
these techniques were broadly divided into four categoried the covariance matching. Similar covariance matching wa
Bayesian, maximum likelihood (ML), correlation, and cdvar used to estimate the scale matrix in [25].
ance matching methods. The Bayesian method requires th&o formulate this class of covariance matching algorithms
evaluation of several difficult integrals and the ML methoth our present setup, we assume thAf(k) is independent of
relies on equations that involve partial derivatives thgre both k andb and thato? (k) is independent ob (as in [30],
making them both computationally expensive. The cormahati [40]). Let B be the set of nonzero histogram bins and estimate

Covariance updatep] = (1 — K)p};_;- (11)



E[(r%)?] with the sample variance filter innovations are obtained from the observations using
Lo suboptimal Kalman gain over an extended period of time. Then
A 1 N b2 the autocovariance structure of these innovations is used t
(k) = ——— _)°. 13 . : : : . .
*) |B| Lcov Z Z(T’“ i) (13) reliably estimate the noise variances. Once the noisencet
_ o are known, the optimal Kalman gain can be determined and
Under these assumptiop$ _, is independent ob. Thus, we applied for filtering during run time using the standard Katm
arbitrarily choosep;._, and use (13) in (12) to obtain thefiltering equations (6)-(11).
approximate solution For appearance learning, our interest in this paper is pri-
9 T 2 1 marily in real-time, online scenarios where, for the first
Tup(k = 1) = Cr(k) = o0y (k) = pr-s. (14) time, we consider application of the ALS method under the
As in [30], [40], the initialization att = 1 is given by much weaker assumption that the noise varian¢ggk) and
) A b 1A o2, (k) are only block stationary. In order to extend the ALS
ow(k) =3C(1) V bk py=3Cr(1) VD, (15)  method to this case, we consider the evolution of the target
which implies o2, (0) = 0. We refer to this algorithm as @Ppearance to be a piecewise stationary process with non-

wb

AKF., and use it in the following as a baseline for comstationary transitions. The piecewise stationarity aggion

parison with theAKF,, technique given in the next section.c8n be justified by the high frame rate of the imaging
sensor compared to the rate at which the target appearance

] changes. Such assumptions are comnag, in the context

D. AKF: Autocovariance-Based Least Squares (AgF of audio and video compression [54]-[60]. The nonstatignar

The ideal expression (12) for the innovations autocoriatat characteristics ob2, (k) and o2, (k) directly correlate with
holds when there are no modeling errors and the filter giiins the rate at which the target appearance and sensor noise are
in (8) are optimal. However, if the process and measuremetitanging. The piecewise stationary formulation allows ws t
noise variances are unknown then the gains will be suboptinagply the ALS algorithm to each stationary block individyal
and the innovations process will generally exhibit a nemdli and thereby allows us to adapt to the varying nature of the
correlation structure. The main idea of autocovariancedbagarget appearance histogram over time. In effect, we adiapt t
methods is to exploit any observed nonzero correlations fiter gain£? at the end of each stationary block depending on
lags other than zero to obtain solutions for the unknowthe observed variation trend in that block. This raises skae
noise variances and/or the optimal gains. Pioneering work of determining the block boundaries. Most existing methods
this area was given by Mehra in [41], [49] where the residhat determine the block intervals requaepriori knowledge
ual autocorrelation was used for adaptive Kalman filteringf the observations; since this is not the case in our rez-ti
Mehra’s method involves a three-step iterative processevhapplication, we consider equal length blocks. We study the
a Lyapunov-type equation must be solved at every time stegffect of block size by performing experiments using the ALS
Under the assumption that the process and measuremenrs naisethod on a simulated nonstationary system in Section II-E.
are wide sense stationary (WSS), Carew and Bélanger [50]n this section, we extend the ALS method for application
developed an improved algorithm that estimates the optintala piecewise stationary process in the context of histogra
Kalman gains directly using one matrix inversion and sdverdased appearance learning, which we refer toAasF s
matrix multiplications, eliminating the need to estimake t in this paper. As before, the state model is given by (4)
process and measurement noise variances explicitly and-avand (5). We assume that, andv? are mutually uncorrelated
ing the requirement to iteratively solve the Lyapunov efumt and thato?,(k) and o (k) depend onb and k and are
associated with Mehra’'s method. Neethling and Young [5bjecewise constant. With this setup, the noise statisties a
introduced a related weighted least squares technique thanerally different for each bin of the histogram and there
improves the statistical efficiency of the methods in [41]s a separate coefficiegf for eachb € [1, N,]. The size of
[49], [50] and incorporates a side constraint to guaranteach piecewise stationary block is assumed tdVherames.
positive semi-definite (PSD) estimates for the unknowneoi¥Ve also define a block index where thepth block contains
variances. framesY (p) = {yx|k € K(p)} with

Recently, Odelsoret al., developed a new Autocovariance
Least Squ);res (ALS) method cagable of providing PSD esti- K(p) = {kl(p = 1)Na +1 < k < pNa}. (16)
mates for both the process and measurement noise variandsisg this framework, we update the estimated noise vagmnc
simultaneously [42], [43]. In addition, the ALS varianceof the appearance histogram corresponding to each bin at the
estimates are more stable than those delivered by Mehrerel of every block. In effect, we are adapting the filter gain
method and converge asymptotically to the optimal valuéis wi(learning rate) for the current block based on the observed
increasing sample size. However, the proof of convergeneariations in the preceding block.
given in [42], [52] depends explicitly on assumptions thet We now briefly present the least squares formulation to
system is time invariant and that the process and measutend®termine the system noise variances for a histogram bin. Fo
noises are WSS (extension to a time varying system withe remainder of the section, we drop the bin indexor
WSS noises was given in [53]). The ALS algorithm in [42] isrevity. We assume that the asymptotic Kalman gAin_;
primarily meant for identifying the system noise propestie estimated from the previous block is available. Giv€p_1,
an offline learning process under WSS assumptions. First, the state estimates in (10) for all frameskitp) are given by

i=0 beB



fk = fk\k_l + K,—17. The error in the predicted state (6) is Using the Lyapunov equation to eliminate thg term in
defined bysy = fi — fyx_1. Then, for all frames: € K(p), (23), one obtains

this prediction error along with the innovation (9) can be 72,3)

formulated together in a state model according to [42], [43]—~——

_ vedR,(3)] =
@, g, —_— o ’_fL\
oo = -R)ar TT =0T fan TaT g @ w v | 750 |
Ty = €k + V. (18) U 2

The ALS method aims to observe the filter innovations arhere K, ; is scalar,Zz,(3) is 9 x 1, @7, is 9 x 2, x, is 2 x 1,
exploit any observed nonzero correlations at differens lag andd,, is a9 x 1 vector defined by
obtain solutions for the unknown noise variances and/or the o1
optimal gains. The autocorrelation of the innovations ie th = (6 ©@6,)(1 —a,)"" + (T, @ Tp)vedIs].  (26)

pth block at any lag; is given by Z#,(3) may also be represented in terms of the autocorrelation

terms defined in (19) according to

€i(p) = Elreresj);  0<j < Las, (19)
. . ¢o(p) “¢i(p) ©2(p)
where k,k + 7 € K(p) and Lys < Ny is the order of %,(3) =vec| €(p) Golp) Glp) |. 27)
the autocorrelation lags we consider in formulating the ALS G(p) Gp) Golp)

problem. We assumé&/[sy] = 0 and co\ey) = mp and define
Provided that the innovations process is reasonably lpcall

Q, = BEWw,w,7= [ o2 (gNd) 02(](?)Nd) } . (20) ergodic, the quantitie®’;(p) in (27) may be estimated by
_ - 0 R 1 pNa—j
Xp — Elwpur] = o2(p) (21) ¢j(p) = Ni—j Z TiTitj- (28)

i=(p—1)Ng+1
for k € K(p). Note in (21) that althouglE[w,v;] contains

the time indexk, this expectation is constant ovEi(p) due by replacing the theoretical correlatior$(p) in (27) with the

to the piecewise stationarity assumption. o . ~ . . o
In the interest of clarity and to illustrate the form of theemplrlcal estimates; (p) given by (28). From this definition

relevant relations, we assunigis = 3 in the following; gen- and (25), we write
era_hzat!on to otherL_a.S is stralghtforward. The least squares A%, = @p@)' (29)
estimation problem is formulated in terms of an autocovenga

matrix R, (Lais) that, for Lays = 3 andk, k + 1,k +2 € K(p), The expression (29) forms the core of the ALS method:

We define an estimated vectorized correlation ma@(i&)

is given by it relates the observed correlations containedZip(3) and
) defined in (28) to the desired variances (p) and o2(p)
(%) TkTktl  TkTk+2 contained inx,. Also note thate, is dependent only on the
Ry(3) = E | 7ri41 (Th1) TRkt (22)  asymptotic Kalman gaiii(,_; from the previous block. Thus,
TETh+2  TheiThi2  (The2) the least squares problem for the unknown noise variances

2 2
The individual elements ofR,(3) are functions of o(p) ando,(p) can be expressed as

2 N

o, { o (P) } — RBy(3)

wo,ap,gp,ﬁp andy,. Let “vec” be the vectorization operator
that transforms a matrix into a vector by stacking the colsmn ¢, = o2 (p)
upon one another. The vectorizationRf,(3) is given by v

2
(30)

min
o2 (p),02(p)

subject too? (p),o2(p) > 0. The positive semi-definite re-

’ v

vedR,(3)] = (0, ®6p)mo quirements orv2 (p) ando?(p) are enforced by appending a
+ T, ® Tyvedls)vedg, Q, ng] logarithmic barrier function to (30), resulting in
+ (¥, © T, + Iy)vedLs]o2(p), (23) ) e
¢, = min Ay [ Glf(p) ] — % (3)
where I,, denotes then x n identity matrix, ® denotes o (p).o(p) o, (p)
the Kronecker productp denotes Kronecker sum, and the — ploglo? (p)aZ(p)],  (31)

matrices@,,I', and ¥,, are given by . )
where 1 is the barrier parameter. The least squares prob-

1 0 0 0 lem (31) has been shown to be convex and can be solved
6,=|a |;Ty,=| 1 0 0]|,; ¥,=-K, I',I;. usingaNewton recursion[42]. Pseudo-code to implemest thi
af) a 1 0 AKF,js algorithm for a single bin of the histogram is given

(24) in Table I.



TABLE |
PSEuUDO-CODE TO IMPLEMENTAKF .5 FOR A SINGLE BIN OF THE
APPEARANCE HISTOGRAM DURING THEpTH TIME BLOCK. e

Fork=(p—1)Ng+ 110 pNg
1. Predict bin valuefk‘k,l = fk,l. o Ry Ry
2. Acquire observatio, based on tracker output.

3. Compute innovatiomy, = g — fk‘k,l.
4. Update bin valug?k = fk‘k,l + Kp—_17k.

End

5. FindﬂAﬁp(Lms) from ‘@(p) for 0 < j < Lgs— 1 using (28)

675' getfrminti% Uf_ing (%_5) to sgtl”i’ th%&'ﬁ? problzm2(29). AKF o, AKFas (1) estimates both process and observation

8 Cg}%m o aes;mp F')?;'tff I?a:: nlqnar(1 ggmi ? rom t’f(]i) ea;:i m(;}]ég). noise parameters simul_taneously, (_2) formu_lates a Ieals_lr_eq

noise variances for use in the next block. problem based on multiple constraints obtained by conisiger
the autocorrelation of the innovations at different lags] &3)
enforces PSD constraints on the estimates. The use of teultip
E. Numerical simulations constraints in the least squares solution greatly dimesshe

Having extended the ALS method to the piecewise statioﬁtfeCt qf erroneous initial values. .
) Piecewise treatment of non-stationary systems by

ary case, we perform two numerical experiments on simulat . )
y P P F.s: Here, we examine the performance of AiRand its

data. The first one compares the noise variance estimat . . ; i .
inherent block stationarity assumptions against the tisegte

capability of AKFR,,, and AKF,s on a system with WSS noise . .
characteristics. 'F?]Ve secondagxamines the performanceeof %Ode' (32), (33) for the case of nonstationary noise praxmss
r—1 and v, with diagonal covariance matrix entries that

proposed piecewise stationary ALS method against pieeew?g hibit i A it i Let
stationary and more general nonstationary system dynamicesx oit jump transitions and finear ramps. L€

Fig. 3. Diagonal elements of the noise covariance matri@eand R as
estimated by AKEov and AKF,s for WSS system dynamics.

1) Comparison betweedKF,s and AKF.,: The ob- 09 0 07 1 —01 02
jective of this experiment is to estimate the unknown noise A = | 0 095 0 |,C=| —-02 1 o |,
covariance matrices from simulated data using gdFand 0 0 07 0 -04 1

AKF 4. Consider a system of the form - ) )
and letw; andv;, be zero mean, iid Gaussian noise processes

T = Axp_1+ w1, (32) with time varying diagonal covariance matric€ and R
Yy, = Czp+ vy, (33) having main diagonal entries given by the dotted (blue)sline
. _ ) in Fig. 4. As indicated in the figure, the noise covariances ar
W_here_wk and”’? are zero mean, iid Ga‘ﬂss'a” NOISE ProCesshy ek stationary during the first portion of each simulataord
with fixed covariance€) and R, respectively. Let increase or decrease linearly with small-scale additiviseno

01 0 0.1 1 —0.1 0.2 during the second portion. The transition times betweesehe
A=| 0 02 o0 |, C=| -02 1 0 |, characteristics for all six diagonal covariance matrixriest
0 0 03 0 —-04 1 are mutually independent.
The objective is to estimate the six unknown covariances
0.5 0 0 050 0 using the AKFys algorithm developed in Section II-D. In
Q= 0 075 0 ’ R = 0 025 0 the absence of ang priori knowledge about the transition
0 0 025 0 0 075

times between piecewise stationary and linear charattsris
During the estimation process, the diagonal elements of timethe noise variances, we set the block length in the
estimates ofQ and R were initialized with random values AKF s algorithm to a constant. Choosing; small results in
uniformly distributed between zero and one. The asymptoticpaucity of data points being available to perform statdiy
filter gain for the initialized noise covariances was themeo significant least squares estimation, whereas chodgjnlgrge
puted. This gain was used for filtering against 5000 datatpoifimits the ability of the algorithm to adapt to the nonstatoy

to obtain innovations that were used, along with the initi@hanges. The experiment is designed to study the perfoenanc
estimates ofQ and R, by the AKR,, and AKF,s methods of AKF4s as a function of the chosen block si2g;.

to estimate the unknown noise covariances. Results fromThe estimates of the diagonal elements@fand R are
repeating the simulation 200 times are shown in Fig. 3, wherdtialized with random values distributed uniformly beten
each point corresponds to the estimate from a single ttial.zZero and one. The asymptotic Kalman gain corresponding
is observed that AKfs produces estimates that are PSD anh this initialization is used for filtering over the first lglo
more precise than those delivered by AKF The estimates of length N; to obtain innovations. These innovations are
produced by AKEo, seem to depend on the initial values of théhen used to formulate the least squares problem (31), the
unknowns. Since AKf, assumes that at least one of the noissolution of which yields esimates for the six unknown noise
covariances is knowa priori, an erroneous initial value cancovariances and an asymptotic Kalman g&in In an offline
greatly distort the estimation. Further, there is no gu®n application, this Kalman gain could be used to re-process
that the estimates (14) are PSD, as seen by the occasidhalfirst block. For a real-time implementation, however, we
negative estimates of the AK§ method in Fig. 3. Unlike instead use the asymptotic gai; obtained from the first



F. Dual foreground-background appearance model

We present a target model that involves the local statistics
of both the target and its surrounding background, as shown
in Fig. 5. The use of background for tracking was discussed
previously in [35]-[38]. In these methods, target trackiag
performed on an intermediate classification image called a
confidence map [35], a likelihood image [36], or a weighted
image [37] where each pixel is assigned a probability of
belonging to background or foreground. Here we have a differ
ent point of view using background for target modeling. Our
target model is motivated by the “hit-and-miss” morphotadi
transform that uses both foreground and background forcobje
detection. In practice, the background information is fbun
to be of great utility in localizing the target and determini
its size. Specifically, the proposed target model invohas f
histograms to represent local statistics.

5k 10k 15k 20k 25k 5k 10k 15k 20k 25k
Time Time
—» Background area

NB(Xk)

Kernel placed on
Foreground area

Ne (X)

Fig. 4. Simulation of AKF5 against nonstationary noise statistics for three
different block sizes. The dotted (blue) lines give the tuaues of the
main diagonal entries of the process noise covariance xm@trfleft column)
and measurement noise covariance maRix(right column). The AKREg
covariance estimates are shown as solid (red) lines forNi@)= 15, (b)
Ny = 45, and (c) N4 = 135.

—» Image plane

Fig. 5. Foregrognd regioV g (xj) with overlapped kernel and background
block to process the data in the second block. This appraacfi®aNs (xx) defined based ory = [, yx, si, sil.
effective for achieving real-time performance provideatttine
jump transitions are not too large gnd the ramp chara_otenst. Let x,=[x, yx. 57, 5] be the state to be estimated during
are not too steep. The procedure is repeated recursively V\fﬁrget tracking, wherézy, ) and (sf, s!) are the position

the gain,_, being used to process the data in bldCKp) (15 left corner) and size of the target area in pixels. Asvgh
and generate innovations. in Fig.5, the target appearance, denotedx;), is com-
Since the number of constraints in the least squares PmblEB‘sed of four histograms: the foreground/background sitgn
should be larger than the number of unknowns (six in ﬂ:EA(Xk)/gB(Xk) and foreground/background local standard
case), we set the number of autocorrelation lags considsredqevyiation (stdev)gc (x)/gp(xx), which are extracted from
the AKFys algorithm to Lais = 10. We performed simulations ., hy using the kernel-based method in [14], [15], [61]. Given

against the covariances shown i_n Fig_. 4 _With block sizg&, the candidate region is characterized®yx;,) defined by
Ny = 15, 45, and135, where 100 trials with different random

initializations were run for each block size. The average G(xi) = {ga(xk),g5(Xt),8c(xk),gp(Xk)} (34)

estimated covariance values for the three different blaoéss ] )

are shown as solid (red) lines in Fig.4(a), (b), and (c). A rgference target model learned fron_1 previous frames @ als
is shown that a small block sizeNi = 15) affords the available that is composed of fou_r histogrames,, Fk,l_ =
opportunity to adapt quickly to abrupt nonstationary cremg{fa.x—1,f5x-1,f0x—1, fp x-1}. This reference model is up-
in the dynamics, but the estimation errors are generalgelardatecj online and used to evaluate any given candidate area in
due to limited observations in each block. With the largefgmek represented byx(x;) as

block size (Vg = 135), the algorithm is slower in adapting

to nonstationary changes, especially those that occureén th D(G (k) Fi—1) = Z vz~ d(gs(xk), £z 5-1), (35)
middle of a block, but the estimation errors are generally €7
much smaller than with the small block size. Additionallg, awhereZ = {A, B, C, D} andd is defined in (3)w, is used to
the block size increases, the median error decreases andatthest the significance of the four histograms. Here, alf fou
probability of a large estimation error diminishes. Ovenak  histograms are given equal importance. We develop a particl
find that AKFR,s can cope reasonably well with both the jumgilter-based target tracking algorithm that uses this apgreze
and ramp nonstationarities depending on the block sizes&henodel in conjunction with AKF-based appearance learning
results show that the block-based ALS method that makegigen in Table | as well as two dynamic models, one each
piecewise stationary assumption can estimate the systesa néor the position and size. The detailed tracking algoritran c
covariances without manual filter tuning. be found in [15].



TABLE 1l . . . . C .
LIST OF SEQUENCES USED IN EXPERIMENT OP: AMCOM pataser 1N (1). HS determines,, according to histogram similarity,

AND BOTTOM: SENSIACDATASET while AKF.,, and AKF,; use the Kalman gain. Detailed
parameterizations of the three algorithms are listed inlefab
_ Frame —Size lll. In practice, AKF-based appearance learning algorghm
Sequences | Starting | £nding | Length | Stating | Ending were applied only to the two intensity histogranfis @ndf).
W 15-NS 21 270 250 5x8 | 16x16 Because the dynamics of the stdev histograms do not have a
LW 17-01 1 350 350 | 5x8 | 16x29 _defi i ;
LW 21 15 236 g 200 3xa | 10x10 well-defined structure, t_he stdev histograrfis &ndfp) in all
LW 14- 15 1 225 225 4x5 | 23x19 cases were updated using tH8 method. We also compare the
LW 22-08 51 300 250 5x8 17 x 24 i 7 3
LW 20. 18 i 420 200 av7 | l0xiz perfor.mance of an alternative target representgtlon utsing
LW 18- 17 1 190 190 5x9 | 11x25 covariance descriptor [62] that also supports online afrez
LW 19- 06 41 260 220 3x4 6x11 i+ H
VW 14 10 1 250 250 | ex11 | 1208 updgtes. In addmo_n to the tracking errors, we adopt anlaper
LW 20- 04 11 360 350 3x4 | 12x15 metric proposed in [63] to quantify the degree of overlap
iggg 888; Sgo ggg igg ﬁ X 4212 ig X 4313 between the track gate and the actual target areaAlLahd
1925-0006 | 499 698 200 | 12x24 | 19 x40 B represent the track gate and th_e. ground-truth bounding box
1925-0009 | 150 549 400 | 18x54 | 18x 32 respectively; then the overlap rat{ois defined as
1925- 0012 0 199 200 16 x 46 | 18 x 38
1927-0001 | 100 499 400 | 10x22 | 8x30
1927- 0002 0 399 400 | 10x20 | 10x 22 ¢ = #(LB)“, (36)
1927- 0005 0 499 500 | 12x26 | 12x36 #(A) + #(B)
1927- 0009 100 499 300 14 x 38 | 14 x 22
1927- 0011 0 499 500 12 x32 | 12 x 34 Where# is the number of pixe|s_
TABLE Il . | vsi
DESCRIPTION AND VALUE OF THE EXPERIMENTAL PARAMETERS B. Experimental Analysis
The three algorithms (50 Monte Carlo runs each) were
A _ evaluated on 20 IR sequences from the AMCOM and SEN-
Variables | Description _ AMCOM | SENSIAC | gIAC datasets and compared numerically in terms of their
Ny bin number of the intensity histogram 32 32 | . f Fi 6). th lapi t
N | bin number of the stdev histogram 16 16 appearance learning per ormance_( ig. 6), the overlapienetr
Lcov | number of frames used for Aoy in (13) 3 10 ¢ (Fig.7) and the tracking error (Fig. 8 and Table V).
Ny block size in frames 7 7 . . .
Lays | number of autocorrelation lags 5 2 . 1) Appearancellearnlngﬁg. 6 shows the h|stogr§m learn-
Np number of particles used for tracking 200 100 ing results for six AMCOM sequences, where it can be

observed that the results &fKF ), closely match the ground
truth. Closer examination reveals tHaf and AKF,,, result
l1l. EXPERIMENTAL RESULTS in histograms that slowly deviate or “drift” from the ground

We tested the three histogram learning techniques alotrrlgrth' This is clearly evident in Fig.6(c), where the intiys
. . ; . ) . iations in the latter part of the sequence (around frad® 3
with the tracking algorithm presented in Section Il agaitt vetiat ! P au (arou

. are not captured b¥lS and AKF..,. Therefore, the tracker
sequences in each of the AMCOM and SENSIAC .dataseﬁsfcludes a large portion of the background in the track gate a
The In order to represent the target appearance with a r

bl b ¢ hist bi ¢ q ‘ &8en in frames 320, 360 of the third sequence in Fig. 8 (a).
sonable numper ot histogram bins, we periormed contras ) Overlap metric: Improvements in appearance learning

enhancement on the images from the SENSIAC dataset .
down-sampled them to 8 bits. Further, the foreground irilllyensaarb ;rr]\:t JC(;?'Z pAm(S[ﬁ)cMi nsi?; egc(:ae)s(t?)rewfﬁirctpecr: O‘:ﬁ;&?;wawd
histogram for the SENSIAC dataset only includes pixelb and Cyg pairwise. For .exam’ple’ the improveme;,t of

greater than 100 to maintain a good histogram structu 1. Over AKF.., or HS is demonstrated by observing

The metadata associated with both datasets provides gro gjtfmost data points are above the diagonal lines. Comigarab
truth for the target position, size and type, which are use |

sults for AKF,s and AKF.,, against sequence LW-22-
to evaluate performance of the three appearance learn

. are also shown by the similar appearance learning per-
algonthm_s, HSAKFeoy andAKF ;. The sequences sel_ecte rmance in Fig.6(e), where the histogram-based appearanc
for experiments from both datasets are enumerated in Ta

L Th lif fthe i tant tvoi Gdel lacks strong modes and has widespread and small bin
- | NESe sequences exempllly many of the important typicgl, o Average values af corresponding to the different

C.h"?‘”_?”ges of practical I.R sequences, includ_ing poor targa‘ﬁgorithms against the two datasets are given in Table IV.
V'S'.b"!ty' strong_egomqtpn, small targets, significanbsp AKF,s has the largest values, indicating its superior target
variations and slze variations, dust clouds, strong aftte tracking performance compared to the other two algorithms.
background noisestc 3) Tracking error: Table V provides quantitative track-
. ing performance results against the AMCOM and SENSIAC
A. Experimental setup datasets. In most caseS8KF,;s achieves the smallest errors
Three appearance learning algorithms, namily [33], in terms of both position and size. THES approach loses the
[44], AKF.,, [30] and the proposedKF ., are integrated target track in sequencéd¥ 20- 18 (6 runs) and LW-19-06
with the same tracking algorithm for a fair comparison. Al{2 runs), as indicated by the large errck&F .., also loses the
of them share the same linear histogram filtering form defin¢arget tracks in sequenda&N 20- 18 (1 run) due to the high



10

Histogram learnt Histogram learnt Histogram learnt TABLE IV

Original histogram ! X X
¢ 9 using HS o using AKFeoy 0 using AKFas OVERLAP METRIC VALUES OF THE THREE TRACKING ALGORITHMS

250
1 200)

Sequences HS AKFcov | AKF,
LW 15- NS 0.669 0.707 0.714
LW 17-01 0.547 0.596 0.720
LW 21-15 0.601 0.578 0.620
LW 14- 15 0.676 0.682 0.708
LW 22-08 0.751 0.770 0.758
LW 20- 18 0.689 0.753 0.758
LW 18- 17 0.704 0.702 0.703
LW 19- 06 0.670 0.685 0.713
MW 14- 10 0.802 0.797 0.799
LW 20- 04 0.715 0.711 0.720

AMCOM Average | 0.682 0.698 0.721

1927-0001 0.776 0.777 0.799
1927-0002 0.727 0.813 0.845
1927- 0005 0.750 0.751 0.787
1927- 0009 0.816 0.849 0.855
1927- 0011 0.858 0.829 0.852
1925- 0001 0.866 0.836 0.872
1925- 0002 0.797 0.790 0.824
1925- 0006 0.875 0.879 0.886
1925- 0009 0.801 0.843 0.860
1925-0012 0.943 0.943 0.946
SENSIAC Average| 0.821 0.831 0.852

C. Tracking performance of covariance descriptor

Fig. 6. Comparison of appearance learning for six AMCOM seges using  \We also tested the covariance descriptor for IR tracking.
t(gefv\'fzeg_‘ggSé;n(g)(f'ivﬁ\l,\?_ﬂig’_) LW-17-01 () LW-21-15 (d) M-15 and - g covariance descriptor was found to be robust and eftecti
for object tracking in optical images. It was first proposed
in [62] for object detection with significant advantagesnha
histogram-based appearance models, and extended tonacki
by augmenting with manifold learning-based model update
[64], [65]. In IR tracking, the covariance descriptor inves
local intensity, stdev, gradient, orientation and Ladadnfor-
mation of the target area. Like the other three histograsetha
appearance learning algorithms, this descriptor was coeabi
with the particle filter-based tracking algorithm [15]. Tking
results obtained using the covariance descriptor are shown
in Fig. 9, where no learning was involved. We observe that

04 06

bus : the covariance tracker is able to maintain reasonable track
(@ Lot (L2115 () Lw-22:08 lock against the target ihW 17- 01, but fails to track the
dim target in LW 15- NS. In both sequences, the tracker

Fig. 7. Pairwise overlap comparis@y s Vs. (cov (top) andCars Vs. . . . ; ;
Crs (bottom) forLW 17- 01 (@), LW 21- 15 (b) andLW 22- 08 (c). encountered difficulty in estimating the target size. Thalsm

target size, weak texture, and absence of color signifigantl
reduced the effectiveness of the covariance descriptor for

tracking small targets in IR imagery.
similarity between foreground and background. More visual

comparisons are shown in Fig. 8(a). We see thisf,; offers
the best position and size estimation except in the AMCO
sequencd W 22- 08, where AKF,, is slightly better due
to the lack of well defined structure in the histogram-base . 5 :
appearance, as shown in Fig 6(8) We observe similar sesult Frame 1 Frame 100 Frame 190 FrameZéO " Frame250
against the SENSIAC data as shown in Fig. 8(b), where tI . -
AKF,s tracker outperforms the other two algorithms in mos
cases (except fot927-0011), and can effectively adapt to
varying poses and sizes for long sequences (200-500 fram
The performance oAKF,s slightly deteriorates against the  Frame1 Frame 65 Frame220 Frame 271
SENSAIC sequenc&927- 0011, especially towards the end,

due to the presence of a dust cloud that greatly affects @%ker
appearance learning process due to occlusion of the target.

Frame350

Tracking results for twvo AMCOM sequences using theadance
Top:LW 15- NS and Bottom:LW 17- 01.
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Frame 105 Frame 140

Frame 68 Frame 220 Frame 320 Frame 400

Frame 190 Frame 225

-

Frae 50 Frame 150 Frame 200 Frame 250 Frame 100 Frame 250 Frame 335 Frame 400

(a) Results on five AMCOM sequences. (b) Results on five SENSIAC sequences.

Fig. 8. Tracking results against five AMCOM sequences (&@nfftop to bottomLiW 15- NS, LW 17- 01, LW 21- 15, LW 14- 15 andLW 22- 08) and
five SENSIAC sequences (b} $25- 0009, 1927- 0001, 1927- 0002, 1927- 0011 and 1925- 0002). The top row of each image shows the observed
frame and the bottom row depicts the track gates correspgrtdithe Ground truth (top-leftilS (top-right), AKFco. (bottom-left), AKF ;5 (bottom-right).

D. Further Discussion and has widespread and small bin values, such as in the two
The HS method is usually encumbered by the drifting protﬁMC,OM sequ.encesl_W 22- 08 and M¥ 14- 10, or when
lem during incremental leamnind KF ..., which assumes thethe hlstogram is not well-structured due to backgroundetut
same noise statistics for all histogram bins and estimatls o(@S I SENSAIC sequenck927- 0011), all three methods
the process noise without considering PSD conditions Jteest?'® comparable. This is mainly because the poor structure
in a suboptimal Kalman gain. Its performance is marginal the hl_stogram_ evolutlon_may mv:_;llldate.the Kalmgn filter
better than that ofS. AKF,,., which estimates both pro- ssumptions, whilélS remains effective by mcorp_oratmg the
cess and observation noises with PSD conditions for ed@pSt recent observation for appearance learning when the
histogram bin, is able to follow the modes and variationsdef t histogram is pqorly defined. Th's observatlon justifies the u
histogram during tracking and supports effective appe:marpf HS for'learmng the stdev histograms, which are normally
learning. However, when the histogram lacks strong modgRaracterized by weak structure.



TABLE V
MEAN ERROR OF THE STATE VARIABLES AVERAGED OVER THE LENGTH OFHE SEQUENCE FROM60 MONTE CARLO RUNS USING THREE DIFFERENT
ALGORITHMS FOR THEAMCOM (THE FIRST10 SEQUENCEY AND SENSIAC (THE SECOND10 SEQUENCES DATASETS.

12

Algorithms HS AKFcov AKF .5
Tracking errors T y s” sY T y s” sY T y s” sY
LW 15- NS 1.019 | 1.817 | 1.906 | 2.732 || 0.860 | 1.511 | 1.644 | 2.396 || 0.801 | 1.461 | 1.423 | 2.339
LW17-01 2.406 | 3.415 | 2.104 | 3.016 || 2.145 | 3.005 | 2.101 | 3.163 || 1.213 | 2.110 | 1.376 | 3.033
LW 21- 15 0970 | 1.653 | 2.624 | 2941 || 1.135 | 1.812 | 2.799 | 3.113 || 0.893 | 1.300 | 2.786 | 2.575
LW 14- 15 0.889 | 0.815 | 3.160 | 2.137 || 0.932 | 0.787 | 2.981 | 2.157 || 1.099 | 0.801 | 2.660 | 1.787
LW 22-08 1.167 | 0.868 | 1.684 | 2.049 1.202 | 0.843 | 1.070 | 2.232 1.200 | 0.839 | 1.363 | 2.175
LW 20- 18 3.230 | 1.831 | 1.657 | 1.953 0.901 | 1.095 | 1.307 | 1.766 0.599 | 1.084 | 1.439 | 1.754
LW 18-17 1.269 | 1.722 | 0.733 | 2.949 1.303 | 1.838 | 0.859 | 2.611 1.425 | 1.679 | 1.087 | 2.252
LW 19- 06 1977 | 1545 1566 | 1.544 || 0.797 | 0.764 | 1.681 | 1.454 || 0.694 | 0.709 | 1.536 | 1.279
MN 14- 10 0.628 | 0.789 | 1.648 | 1.691 || 0.756 | 0.806 | 1.638 | 1.789 || 0.775 | 0.778 | 1.629 | 1.607
LW 20- 04 0.702 | 0.954 | 0.940 | 1.528 || 0.697 | 0.937 | 1.071 | 1.614 || 0.688 | 0.907 | 1.006 | 1.357
AMCOM Average || 1.426 | 1.541 | 1.802 | 2.254 || 1.073 | 1.340 | 1.715[ 2.230 || 0.939 | 1.167 | 1.630 | 2.016
1927- 0001 0504 | 1.162 | 1.965] 5.830 || 0.629 | 0.902 | 1.915] 5.258 [ 0.473 [ 0.853 [ 1.901 [ 4.443
1927- 0002 1.835 [ 2.276 | 0.001 | 6.024 || 0.897 | 2.147 | 0.000 | 5,571 || 0.528 | 2.139 | 0.000 | 5.580
1927- 0005 2.335 | 1.325 | 0.000 | 4.728 || 2.188 | 2.092 | 0.000 | 4.864 || 1.928 | 1.622 | 0.000 | 3.694
1927-0009 1.686 | 1.556 | 0.089 | 2.721 1.421 | 1.317 | 0.000 | 1.979 1.344 | 1.289 | 0.003 | 1.898
1927-0011 0.514 | 2.384 | 0.004 | 4.969 1.065 | 2.163 | 0.018 | 4.484 0.702 | 2.425 | 0.000 | 4.129
1925- 0001 0.848 | 2.116 | 0.000 | 2.639 1.204 | 1.890 | 0.000 | 3.669 0.794 | 1.621 | 0.000 | 3.733
1925- 0002 0.859 | 3.057 | 1.750 | 3.958 || 0.521 | 3.780 | 1.750 | 3.197 || 0.526 | 2.614 | 1.750 | 2.998
1925- 0006 0.572 | 3.359 | 0.000 | 1.053 || 0.700 | 2.629 | 0.000 | 1.589 || 0.616 | 2.618 | 0.000 | 1.449
1925- 0009 1.376 | 5.177 | 0.039 | 5.021 || 1.337 | 2.355 | 0.000 | 5.427 || 1.121 | 2.044 | 0.000 | 5.210
1925- 0012 0.379 | 0.781 | 0.070 | 2.459 || 0.385 | 0.834 | 0.070 [ 2.312 || 0.385 | 0.822 | 0.070 [ 2.119
SENSIAC Average || 1.090 | 2.319 | 0.392 | 3.940 1.035 | 2.011 | 0.375 | 3.835 0.842 | 1.805 | 0.372 | 3.525

IV. CONCLUSION

(8]

We have presented a new IR target tracking algorithm

that achieves state-of-the-art performance against raeise

El

challenging infrared imagery. To the best of our knowledge,

this is the first work reporting both near sub-pixel trackin

accuracy and low size estimation error (1-2 pixels) against

J. Khan and M. Alam, “Efficient target detection in clugd FLIR
imagery,” in Optical Pattern Recog. XYker. Proc. SPIE, D. Casasent
and T.-H. Chao, Eds., vol. 5816, 2005, pp. 39-53.

S. Yi and L. Zhang, “A novel multiple tracking system forAM plat-
forms,” in ISR Systems and Applications, Ifler. Proc. SPIE, D. Henry,
Ed., vol. 6209, 2006, 8 pp.

A. Dawoud, M. Alam, A. Bal, and C. Loo, “Decision fusiongarithm
for target tracking in infrared imageryOptical Eng, vol. 44, pp.

the challenging AMCOM IR closure sequences and the newly
released SENSIAC MWIR sequences. The proposed appro&dh

026 401-1-8, Feb. 2005.
A. Yilmaz, O. Javed, and M. Shah, “Object tracking: Asy,” ACM

encapsulates several recent innovations in target trgckn [12]
well as Kalman filtering in a joint tracking and learning

framework. Specifically, the dual foreground-backgrouad t

get model is shown to be effective for enhancing the tracker
sensitivity and robustness. Moreover, the nelF ;s appear- [13]
ance learning method outperforms two existing histogram-

based appearance learning techniquwes, HS and AKF .y,

as well as the recent covariance tracker that is often us[Qq

against optical imagery.
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