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Abstract

Virtually all techniques for computing AM-FM models
involve jointly localized filterbanks and nonlinear approxi-
mations that preclude the possibility of perfect reconstruc-
tion. Although perfect reconstruction models have begun to
emerge, they are currently of limited practical interest be-
cause of their large complexity. Thus, it is of interest to
obtain approximate reconstructions from the analysis-only
models because these provide insight into the accuracy of
the AM and FM functions. However, the only existing 2-D
reconstruction algorithm suffers from severe blocking arti-
facts that limit its usefulness in this regard. In this paper we
present a new reconstruction algorithm that makes full use
of all available phase reconstruction boundary conditions
in a multipath interpolative scheme to eliminate the block-
ing artifacts, thereby dramatically improving the utility of
the approximate reconstructions.

1. Introduction

AM-FM models represent images directly in terms of
spatially and spectrally localized amplitude and frequency
modulations consistent with certain processes known to oc-
cur in the early stages of biological vision systems. Since
their utility in performing texture segmentation was first
demonstrated in [1, 2], these models have been used in a
variety of texture analysis applications [6], where perfor-
mance has generally been improved by utilizing explicitly
computed modulations as opposed to features such as Gabor
filter response magnitudes and their simple moments, which
may be interpreted as coarsely approximating the true mod-
ulations. Here, we restrict our attention to complex valued
models of the form

t(x) =
K∑

k=1

tk(x) =
K∑

k=1

ak(x) exp[jϕk(x)] (1)

where the image t(x) is considered as a sum of AM-
FM components; real valued images may be analyzed
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against (1) using the complex extension described in [5, 6].
For each component tk, the FM function∇ϕk characterizes
the local texture orientation and granularity, while the AM
function ak captures the local texture contrast. Collectively,
these functions provide a rich, powerful modulation domain
description of the image useful for constructing potent, bi-
ologically motivated feature vectors.

Practical algorithms for estimating ak and ∇ϕk in (1)
were given in [5, 8]. Algorithms of this type suffer from
two main limitations. First, due to their nonlinearity, they
cannot be applied directly to a sum of components as in (1).
Thus, it is necessary to isolate the components tk on a spa-
tially local basis prior to demodulation. Linear filterbanks
are almost always used for this purpose. Second, all algo-
rithms of this type are based on approximations that break
down when applied to a signal that is not locally narrow-
band. The general strategy that has emerged for working
within these limitations is to first process the image with a
multiband filterbank to isolate narrowband components, and
then estimate the AM and FM functions of each component
by demodulating the filterbank channel responses.

The filters must possess a high degree of spatio-spectral
localization; otherwise, locally narrowband components
will not generally be obtained and the estimated AM and
FM functions will be characterized by large approximation
errors. Hence, Gabor and related filters have been popular.
However, good joint localization and finite support simulta-
neously in space and frequency are conflicting design goals.
Thus, these filters can provide neither orthogonality nor
perfect reconstruction. Nevertheless, such AM-FM mod-
els have proven valuable in analysis-only applications such
as segmentation. New techniques for computing perfect re-
construction AM-FM models have emerged recently [6,10],
but require an order of magnitude more components tk than
their analysis-only counterparts. Thus analysis-only models
are important in practice, where approximate AM-FM im-
age reconstructions are of interest because they provide an
indication of how well the approximations in the demodu-
lation algorithms are holding up.

Reconstruction of the phase ϕk from samples of the esti-
mated frequency field ∇ϕk is a difficult, ill-posed inverse
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problem. Approximate 1-D reconstruction was demon-
strated in [3, 7]. In 2-D, the only previous algorithm is
the unsophisticated approach given in [4, 5], which recon-
structs the phase independently on regularly sized blocks in
order to limit error propagation. The reconstruction process
is re-initialized at the upper left corner of each block us-
ing a phase boundary condition that is saved as part of the
AM-FM model. As should be expected, this tends to in-
troduce strong blocking artifacts that limit the usefulness of
the reconstructions for assessing the quality of the estimated
modulations. Moreover, the information available in nearby
boundary conditions from adjacent blocks goes underuti-
lized. In this paper, we present a new 2-D phase algorithm
that provides smooth, seamless reconstruction across block
boundaries by fully utilizing all available boundary condi-
tions in a multipath interpolative reconstruction scheme.

2. Phase Reconstruction

Let x = [x y]T ∈ Z2, e1 = [1 0]T , and e2 = [0 1]T . Let
t(x) : Z2 → C and assume that a K-component AM-FM
model {ak(x),∇ϕk(x)}k∈[1,K] has been obtained. More-
over, assume that estimates φp of the phase ϕk of each com-
ponent have been saved as side information on a BC × BC
pixel sublattice, where typically 2 ≤ BC ≤ 64.

Often, the filterbank channels have conjugate symmetric
impulse responses gk and hence real-valued frequency re-
sponses Gk; the quasi-eigenfunction approximation of [5]
then implies that the channel response yk is approximately

yk(x)= t(x) ∗ gk(x)≈ tk(x) ∗ gk(x)≈Gk[∇ϕk(x)]tk(x),
(2)

where tk is the component in (1) that dominates yk in a
neighborhood about the pixel x. Thus, on the sublattice,
phase boundary conditions φp for tk may be set equal to the
channel phase arg yk, which approximates ϕk.

Reconstruction of the image according to (1) is straight-
forward once the phases are obtained for all K components.
Hence, the central problem we consider is that of recon-
structing ϕk given the phase boundary counditions and the
estimated frequency field ∇ϕk. The situation is depicted in
Fig. 1, where circles denote pixel sites and BC = 3. Phase
reconstruction is carried out independently on BC × BC
blocks to limit error propagation, and four adjacent blocks
are shown. The gray circles denote sublattice sites where
boundary conditions {ϕp(x)}p∈[1,4] have been saved.

With the previous algorithm of [4, 5], phase reconstruc-
tion on Block-1 is initialized to φ1 in the upper left cor-
ner. Horizontal frequency estimates eT

1∇ϕk are accumu-
lated to reconstruct ϕk on the first row of the block, while
vertical frequencies eT

2∇ϕk are accumulated to reconstruct
the first column. On the interior of the block, the hor-
izontal and vertical estimates are averaged according to

Figure 1. Four adjacent phase reconstruction
blocks and their associated phase boundary
conditions φ1 through φ4.

Figure 2. Coordinate system for calculating
the phase estimates ϕ1(x) through ϕ4(x).

ϕk(x) = 1
2{[ϕk(x − e1) + eT

1∇ϕk(x− e1)] + [ϕk(x −
e2) + eT

2∇ϕk(x− e2)]}. The advantages of this approach
are that it is simple and does not require phase unwrapping
of the boundary conditions. The disadvantages are that it
fails to utilize the information in φ2, φ3, and φ4 and that it
produces severe blocking artifacts.

3. The New Algorithm

We present a new phase algorithm that utilizes all
four boundary conditions {φp}p∈[1,4] to reconstruct ϕk on
Block-1. This improves the quality of the reconstruction
and virtually eliminates the blocking artifacts. However,
because multiple boundary conditions are used within each
block, phase unwrapping of the boundary conditions is re-
quired. We perform unwrapping on a full resolution phase
image using the algorithm of [9]. The unwrapped phase is
sampled on the sublattice to obtain the conditions φp, which
are saved as part of the computed AM-FM model.

For each pixel x, four phase estimates {ϕp(x)}p∈[1,4]
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are obtained by accumulating frequency estimates ∇ϕk(x)
along a path connecting φp to the pixel site x, where
‖φp → ϕ(x)‖ denotes the path length. These four estimates
are then interpolated using weights inversely proportional to
the path length according to

ϕk(x) =

∑4
p=1 ‖φp → ϕ(x)‖−1

ϕp(x)∑4
p=1 ‖φp → ϕ(x)‖−1 . (3)

Calculations for ϕp are given below with reference to the
coordinates shown in Fig. 2.
Calculation for ϕ1(x): Along the top row of Block-1, ϕ1

is obtained by accumulation according to

ϕ1(x, y0) = φ1 +
x−1∑

m=x0

eT
1∇ϕk(m, y0). (4)

Likewise, along the first column of Block-1, we have

ϕ1(x0, y) = φ1 +
y−1∑

m=y0

eT
2∇ϕk(x0,m). (5)

At the remaining pixels of the block, we take

ϕ1(x, y) =
1
2

(
ϕ1(x0, y) +

x−1∑
m=x0

eT
1∇ϕk(m, y)

+ ϕ1(x, y0) +
y−1∑

m=y0

eT
2∇ϕk(x, m)

)
. (6)

Calculation for ϕ2(x): We take

ϕ2(x, y0) = φ2 −
xBC−1∑
m=x

eT
1∇ϕ(m, yBC) (7)

along the first row of Block-1. Along the first column, we
take

ϕ2(xBC , y) = φ2 +
y−1∑

m=y0

eT
2∇ϕ(xBC ,m). (8)

At the remaining interior pixels of Block-1 not located in
the first column, ϕ2(x) is then calculated according to

ϕ2(x, y) =
1
2

(
ϕ2(xBC , y)−

xBC−1∑
m=x

eT
1∇ϕk(m, y)

+ ϕ2(x, y0) +
y−1∑

m=y0

eT
2∇ϕk(x, m)

)
. (9)

Finally, as shown in the top two parts of Fig. 3, on the first
column of Block-1 ϕ2(x) is given by

ϕ2(x0, y) =
1
2

(
ϕ2(xBC , y)−

xBC−1∑
m=x0

eT
1∇ϕk(m, y)

+ ϕ2(x0 + 1, y0) + ∆y

)
, (10)

Figure 3. Phase reconstruction paths for (10)
(top) and (14) (bottom).

where ∆y =
∑y−1

m=y0
eT
2∇ϕ(x0 + 1,m)− eT

1∇ϕ(x0, y).
Calculation for ϕ3(x): Along the first column of Block-1,
the estimate ϕ3(x) is given by

ϕ3(x0, y) = φ3 −
yBC−1∑
m=y

eT
2∇ϕk(x0,m), (11)

while along the top row of Block-3 it is given by

ϕ3(x, yBC) = φ3 +
x−1∑

m=x0

eT
1∇ϕk(m, yBC). (12)

For interior pixels not on the first row of Block-1, we take

ϕ3(x, y) =
1
2

(
ϕ3(x0, y) +

x−1∑
m=x0

eT
1∇ϕk(m, y)

+ ϕ3(x, yBC)−
yBC−1∑
m=y

eT
2∇ϕk(x, m)

)
. (13)

The bottom two parts of Fig. 3 depict the paths used for the
ϕ3(x) calculation on the first row of Block-1, which is

ϕ3(x, y0) =
1
2

(
ϕ3(x, yBC)−

yBC−1∑
m=y0

eT
2∇ϕk(x, m)

+ ϕ3(x0, y0 + 1) + ∆x

)
, (14)

where ∆x =
∑x−1

m=x0
eT
1∇ϕ(m, y0 + 1)− eT

2∇ϕ(x, y0).

Calculation for ϕ4(x): Along the top row of Block-3 and
the first column of Block-2, ϕ4(x) is given, respectively, by

ϕ4(x, yBC) = φ4 −
xBC−1∑
m=x

eT
1∇ϕ(m, yBC) (15)
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Figure 4. Phase reconstruction paths for (18)
(top) and (19) (bottom).

and

ϕ4(xBC , y) = φ4 −
yBC−1∑
m=y

eT
2∇ϕ(xBC ,m). (16)

For the remainder of the pixels that are in neither the first
row nor the first column of Block-1, we take

ϕ4(x, y) =
1
2

(
ϕ4(x, yBC)−

yBC−1∑
m=y

eT
2∇ϕk(x,m)

− ϕ4(xBC , y)−
xBC−1∑
m=x

eT
1∇ϕk(m, y)

)
. (17)

Paths for the ϕ4(x) calculation along the first row and
column of Block-1 are shown in the upper two and
lower two parts of Fig. 4, respectively. With δx =∑xBC−1

m=y eT
1∇ϕk(m, y0 + 1) − eT

2∇ϕk(x, y0) and δy =∑yBC−1
m=y eT

2∇ϕ(x0 + 1,m)− eT
1∇ϕk(x0, y), we take

ϕ4(x, y0) =
1
2

(
ϕ4(x, yBC)−

yBC−1∑
m=y0

eT
2∇ϕk(x,m)

+ ϕ4(xBC , y0 + 1)− δx

)
, (18)

ϕ4(x0, y) =
1
2

(
ϕ4(xBC , y)−

xBC−1∑
m=x0

eT
1∇ϕk(m, y)

+ ϕ4(x0 + 1, yBC)− δy

)
. (19)

4. Results and Discussion

Examples of approximate AM-FM reconstructions ob-
tained using the only previously existing algorithm [5] are

given in Fig. 5(a)-(c) and (g)-(i) for reconstruction block
sizes BC = 64, 32, and 16, where significant blocking arti-
facts are readily apparent. Corresponding results obtained
using the new algorithm given in this paper are shown in
Fig. 5(d)-(f) and (j)-(l). It is clear that the new algorithm
provides smooth and seamless reconstruction across block
boundaries and has succeeded in eliminating virtually all of
the artifacts, thereby dramatically improving both the visual
quality of the reconstructions and their usefulness in assess-
ing the accuracy of the estimated AM and FM functions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Approximate AM-FM image reconstructions obtained with the only previous algorithm (a)-
(c) and (g)-(i), which show severe blocking artifacts, and with the new proposed algorithm (d)-(f) and
(j)-(l), where the blocking artifacts have been virtually eliminated. Sublattice reconstruction block
sizes for these examples are 642, 322, and 162.
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