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Abstract

For the first time, we present a multicomponent perfect
reconstruction AM-FM image model that is fully consistent
with human visual perception. We design a separable per-
fect reconstruction wavelet filterbank based on the discrete
Coiflet and implement it in a maximally decimated parallel
structure characterized by excellent joint space-frequency
localization. Using the zeros in the channel response mag-
nitudes, we further decompose each channel into a sum of
highly localized, non-separable orientation selective sub-
channels. We fit the responses of these sub-channels with
nonlinear spline models and apply error-free continuous
demodulation algorithms to obtain a new perfect recon-
struction AM-FM model. This is significant because the
new model could be used as the basis for a new theory of
modulation domain image processing.

1. Introduction

AM-FM models provide a modulation domain image
characterization that has proven useful in a variety of appli-
cations including jointly localized analysis, texture segmen-
tation and classification, edge detection and image enhance-
ment, 3-D shape from texture, texture-based stereopsis, fin-
gerprint classification, content-based retrieval, and regener-
ation of occluded and damaged textures [9]. For a complex-
valued image t(x), possibly obtained from a real image us-
ing the multidimensional Hilbert transform described in [8],
the K-component AM-FM image model is given by

t(x) =
K∑

m=1

ym(x) =
K∑

m=1

am(x) exp[jϕm(x)]. (1)

Manifest in each AM-FM component ym(x) in (1) is
a frequency modulation (FM) function ∇ϕm(x) describ-
ing the local texture orientation and granularity and an
amplitude modulation (AM) function am(x) describing
the local texture contrast. The collection of functions
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{am(x),∇ϕm(x)}m∈[1,K] defines the modulation domain
image representation, which has been estimated previously
using both continuous and discrete algorithms [7, 11].

Because of the nonlinearity of the model (1), all previous
discrete AM-FM demodulation algorithms have been based
on approximations that are generally accurate when applied
to image components ym(x) that are locally coherent in the
sense of being sufficiently smooth over sufficiently small
neighborhoods (a notion made precise in [7, 12, 13]). How-
ever, existing discrete algorithms are prone to large approx-
imation errors when the components are not locally coher-
ent. Hence, the success of the whole approach depends on
having a filterbank that will decompose the image t(x) into
a sum of locally coherent components as indicated in (1).
As shown in [1, 7], this implies that the filters must possess
a high degree of joint localization in space and frequency.
Gabor filters have often been used for this reason.

What we are really after is a computational framework
capable of supporting a general theory for: 1) representing
images in the modulation domain according to (1), 2) per-
forming signal processing in the modulation domain, and 3)
reconstructing the processed images via (1). There are two
reasons that existing demodulation algorithms cannot pro-
vide this framework. First, a filterbank with good joint lo-
calization is needed to obtain locally coherent components
that will minimize the approximation errors occurring dur-
ing demodulation. However, this generally precludes the
possibility of the filterbank being a perfect reconstruction
(PR) system; hence, PR would not be possible even if there
were no demodulation errors. Second, even when Gabor
filters — which are the limiting case of maximal joint lo-
calization but cannot provide PR — are applied to a practi-
cal image, there will generally be a small number of pixels
where one or more of the components ym(x) fail to be lo-
cally coherent and large-scale demodulation errors result.
Sophisticated post processing must be applied on a case by
case basis when this occurs, a fact which has severely lim-
ited widespread acceptance of the approach.

What is needed is: 1) a PR filterbank (PRF) that yields
locally coherent components reflecting the visually signifi-
cant structure in the image and 2) an error-free demodula-
tion algorithm delivering AM, FM, and PM (phase modula-
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tion) estimates consistent with each other as well as with the
pixel values in the original image. The first PR AM-FM im-
age model was given recently in [9]. However, that model
failed to provide FM functions in good agreement with hu-
man visual perception because all filterbank channels were
not sufficiently localized and the demodulation algorithms
were inconsistent in a sense we discuss in Section 3.

Here, we present a new PR AM-FM image model ex-
hibiting superior agreement with human visual perception.
We implement a separable 2-D Coiflet PRF in a maximally
decimated parallel structure having excellent joint localiza-
tion as described in [18]. Making use of zeros in the re-
sponse magnitudes, we decompose each channel into a sum
of highly localized, non-separable but orientation selective
sub-channels. We then apply a new, high-quality 2-D un-
wrapping algorithm to the phase of each channel. The un-
wrapped phases are fit with splines which are differentiated
analytically to obtain the phase gradient fields. Finally, the
AM functions are obtained using the error-free discrete al-
gorithm given in [7].

2. Perfect Reconstruction Filterbank

Gabor or similar filters have typically been used in com-
puting multicomponent AM-FM models having demonstra-
ble utility in image analysis applications, but which cannot
generally provide the high-quality image reconstructions
needed for synthesis applications. Nevertheless, approx-
imate multicomponent AM-FM reconstructions were ob-
tained in [7,10]. In this paper, we employ a PRF that is sim-
ilar to the one described in [19] but which uses a six-point
Coiflet mother wavelet because of its superior joint localiza-
tion. We start with a standard dyadic four-level 1-D wavelet
transform. The Noble identities are then used to construct
an equivalent maximally decimated parallel system com-
prising a bank of analysis filters, intermediate down- and
up-samplers, and a bank of synthesis filters.

The 1-D analysis and synthesis filterbanks can be applied
to the image rows and columns to implement a separable 2-
D PRF system. However, as illustrated in Figs. 1(a) and 2(a)
— which show magnitude frequency responses for two of
the separable 2-D channels — there are two reasons that
this will not produce a decomposition (1) of the image into
locally coherent AM-FM components that capture the vi-
sually significant nonstationary structure. First, separable
filters are inherently incapable of providing orientation se-
lectivity. Second, an undesirable side effect of the Noble
identities is that up-sampling of the analysis and synthesis
quadrature mirror filters tends to introduce significant side-
lobes. Thus, the components delivered by filters of this type
generally fail to be locally coherent and visually meaningful
because they contain a wide range of magnitude frequencies
and a full spectrum of orientations.

Our solution to this problem is based on the loci of zeros
and the symmetry of the lobes that appear in the magnitude
responses of Figs. 1(a) and 2(a). In fact, all separable PRF
channels of this type exhibit regular patterns of zeros that
can be used to partition the lobes into conjugate symmet-
ric pairs. Each such pair constitutes a non-separable sub-
channel that is orientation selective and highly Gabor-like
in its joint localization. Thus, e.g., we decompose each of
the separable channels in Figs. 1(a) and 2(a) into 32 non-
separable but orientation selective sub-channels. Two such
sub-channels are shown in Fig. 1(b) and 2(b). The locally
coherent AM-FM components that result when these two
sub-channels are applied to the familiar images of Figs. 1(c)
and 2(c) are given in Figs. 1(d) and 2(d), respectively. Im-
plicit in this approach is the fact that the multicomponent
model (1) is applied between the analysis and synthesis fil-
terbanks, so that each channel of the analysis bank is inter-
preted as one component ym(x) which must be processed
through the corresponding synthesis channel prior to sum-
ming as in (1) to reconstruct the original image.

3. Consistent Demodulation

Given a decomposition of the image into suitable compo-
nents ym(x), the goal is to compute error-free estimates of
the modulating functions am(x) and ∇ϕm(x) from which
the image can be perfectly reconstructed. In the continuous
case where t : Rn → C, these functions are given by [7]

am(x) = |ym(x)| , (2)

∇ϕm(x) = Re

[
∇ym(x)
jym(x)

]
. (3)

The AM algorithm (2) may also be applied directly in the
discrete case. However, because the gradient operator in (3)
is undefined for discrete images, the FM algorithm must be
adapted to the discrete case. Similar to what was done in [4]
where discrete signals were fit with spline models so that
the continuous Teager-Kaiser energy operator could be ap-
plied rigorously to the splines, our approach has been to
fit the sampled locally coherent AM-FM components with
smooth interpolants for which the derivative and integral are
rigorously defined.

The main caveat with this approach is that the phase
samples ϕm(k) are available from the observed component
ym(x) only as principal values in the range (−π, π]. This
principal phase branch exhibits severe discontinuities that
arise solely from branch cuts in the arctan function used to
compute it. The FM functions obtained by directly differen-
tiating the principal phase branch will be dominated by high
instantaneous frequencies that do not correspond to any vi-
sually meaningful structure in the image. While this fact in
no way prevents us from obtaining a mathematically valid
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PR AM-FM model, realizing our goal of a meaningful AM-
FM model that corresponds well to the visually significant
structure in the image absolutely requires multidimensional
phase unwrapping, which has received considerable atten-
tion in the context of SAR interferometry, magnetic reso-
nance imaging, and network flow analysis [2, 5, 6, 15–17].
Nearly all existing phase unwrapping algorithms assume
that the inter-pixel phase differences are bounded by π radi-
ans, and many methods have been proposed to identify and
accommodate phase aliased image regions that violate this
assumption [6, 15–17] or to find the phase that minimizes
a given functional norm [2, 5]. Unfortunately, phase alias-
ing is quite common for practical images, and, rather than
assuming a bound on the phase differences, we prefer to
unwrap the phase in a manner that is consistent with visual
perception of the modulated image structure.

To guide the phase unwrapping for a given component
ym(x), we estimate the nonstationary structure by comput-
ing either the phase gradient ∇ϕm(x) or the vector of sec-
ond phase derivatives ∂2ϕm(x). This is done by applying
the tensor product spline framework of Unser et al. [20, 21]
to the component ym(k) and computing either the gradient
in (3) or the second phase derivative vector

∂2ϕm(x) = Re

[
∂2ym(x)
jym(x)

]
− 2∇ϕm(x)

∇am(x)
am(x)

. (4)

It is important to note that the differentials defined by (3)
and (4) are rigorous for any C2 interpolant, although the
resulting estimates ∇ϕ̂m(x) and ∂2ϕ̂m(x) will not gen-
erally be the same as those obtained by analytically dif-
ferentiating an interpolant of the unwrapped phase ϕm(k).
This is due to the use of products and quotients of the in-
terpolants ym(x), ∇ym(x), and ∂2ym(x) in (3) and (4)
and prevents the phase ϕm(x) from being directly calcu-
lated from ∇ϕ̂m(x) or ∂2ϕ̂m(x) by an integration scheme.
Instead, these phase differentials are used to compute the
unwrapped phase samples ψm(k) that minimize the least-
squares error function

ε =
2∑

i=1

∑
k

(
ψm(k) ∗ hn(eT

i k)− eT
i ∂

nϕ̂m(k)
)2

, (5)

where ∂nϕ̂m(k) is the phase differential estimated from (3)
or (4), hn(k) is the corresponding 1-D nth-derivative spline
filter from [20], and ei is the unit vector in the ki direction.

Least-squares phase unwrapping has been previously de-
veloped using finite phase differences under the assumption
that such differences are bounded by π [6, 15–17]; a solu-
tion similar to minimizing (5) with the first phase derivative
was given in [14]. It can be shown that the DFT of the phase
which minimizes (5) is given by

Ψm(k) =
∑2

i=1 Λi(k)H∗
n(eT

i k)∑2
i=1

∣∣Hn(eT
i k)

∣∣2 , (6)

where Λi(k) is the DFT of the phase differential estimate
eT

i ∂
nϕ̂m(k), and Hn(k) is the frequency response of the

nth-derivative spline filter sampled at discrete frequencies.
Using the B-splines described in [20], it can also be shown
that any first derivative spline filterH1(z) will have zeros at
z = ±1 and that any second derivative spline filter H2(z)
will have a zero only at unity. These zeros cause the phase
solution in (6) to be ambiguous (i.e., the denominator is
zero), and it is an oddity of the discrete derivatives that the
phase solution obtained using the second phase differential
∂2ϕ̂m(x) will be unique up to an additive constant because
only the DC coefficient is ambiguous. If the least-squares
unwrapping has no residual error (i.e., ε = 0), this additive
constant may be calculated from knowledge of the principal
phase values; however, this is seldom the case in practice. In
contrast, when using the first phase differential ∂ϕ̂m(x) to
guide the unwrapping, the phase solution will be ambiguous
at frequencies in the set

{
ω ∈ R2 : ω = πM, ∀M ∈ Z2

}
,

and it is not possible to determine the unknown coefficients
without additional constraints.

The first and second phase differentials estimated
from (3) and (4) and the spline derivative filters H1(z) and
H2(z) developed in [20, 21] define two versions of the new
phase unwrapping algorithm presented here. Although the
second derivative version yields a phase solution that has
fewer degrees of freedom, we have observed numerical in-
accuracies in applying (4) to practical AM-FM components.
Specifically, the second term in the equation is unstable at
points with small AM values and where the modulating
functions are not locally coherent. Moreover, the second
term also contains the instantaneous bandwidth ∇am(x)

am(x) ,
which was studied by Cohen [3] and is related to the range
of values assumed by ∇ϕm(x) at a given point x. Numer-
ical excursions in the instantaneous bandwidth or the FM
function ∇ϕm(x) will cause this second term to dominate
the differential ∂2ϕ̂m(x) and cause the least-squares un-
wrapping algorithm to yield a phase that does not agree with
the structure of the image. We are currently studying the ef-
fects of constant-amplitude models for phase unwrapping
because the instantaneous bandwidth is identically zero for
this case; however, it is not yet clear under what conditions
locally coherent AM-FM components can be adequately ap-
proximated by constant-amplitude models on small spatial
neighborhoods. Thus, we employ the first derivative algo-
rithm in the results presented here and note that we have
obtained similar phase unwrapping results using the second
derivative algorithm.

Regardless of which phase unwrapping algorithm is
used, we enforce the congruency of the phase solution with
the known principal values by embedding the principal val-
ues in the scaled phase solution γψm(k) for some large
γ ∈ R. We define the phase modulation by

ϕm(k) = W {ϕm(k)}+ 2πbm(k) ≈ γψm(k), (7)
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where W {ϕm(k)} is the known wrapped phase and the
branch function bm(k) is defined as

bm(k) = round
(
γψm(k)−W {ϕm(k)}

2π

)
. (8)

By taking the spline gradient of (7), we obtain the FM func-
tion ∇ϕm(x), which we can make arbitrarily close to the
least-squares phase gradient by our choice of γ:∣∣∣∣ 1γϕm(x)− ψm(x)

∣∣∣∣ ≤ π

|γ|
. (9)

We choose γ = 300 in practice, ensuring that the bound is
generally less than 1%, but independent of this value, the
phase modulation ϕm(k) can be recovered by integrating
the spline gradient ∇ϕm(x). In this way, we can recon-
struct each component ym(k) = am(k) exp[jϕm(k)] with-
out error.

4. Results and Discussion

Using the approach given in this paper, we have com-
puted PR AM-FM models for a variety of images includ-
ing the Lena and Cameraman images shown in Figs. 1(c)
and 2(c). Computed modulating functions for the AM-FM
image components shown in Figs. 1(d) and 2(d) are given in
Figs. 1(e) and 2(e), respectively. The displays in Figs. 1(f)
and 2(f) show the FM functions scaled by the corresponding
AM functions, from which it is clear that the computed PR
AM-FM models have succeeded in capturing the visually
significant nonstationary structure of each image.

This is significant because it is the first demonstration
of an invertible AM-FM image transform wherein the com-
puted modulating functions fully characterize the visually
important structure of the image. The next step in this
work is to define perceptually meaningful image processing
in terms of mathematical operations applied directly to the
functions am(x) and ∇ϕm(x) in the modulation domain.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Lena example. (a) Frequency response of one of the separable wavelet filterbank channels.
(b) One of the non-separable, orientation selective sub-channels obtained from (a). (c) Original Lena
image. (d) AM-FM image component obtained from filtering image (c) with channel (b). (e) AM and
FM functions computed from (d). (f) FM function scaled by the AM function.

(a) (b) (c)

(d) (e) (f)

Figure 2. Cameraman example. (a) Frequency response of one of the separable wavelet filterbank
channels. (b) One of the non-separable, orientation selective sub-channels obtained from (a).
(c) Original cameraman image. (d) AM-FM image component obtained from filtering image (c) with
channel (b). (e) AM and FM functions computed from (d). (f) FM function scaled by the AM function.
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