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ABSTRACT

For the first time, we present an AM-FM image model that, in ad-
dition to being remarkably consistent with human visual perception,
also provides perfect reconstruction of the image and is thus suit-
able for synthesis as well as analysis applications. We employ a
non-separable coiflet-based wavelet filterbank with channels that are
both orientation selective and jointly localized. The analysis re-
sponses define the AM-FM image components, which we demod-
ulate analytically using a new, high-quality 2-D phase unwrapping
algorithm coupled with a spline-based phase model. The amplitude
and frequency modulations obtained with this approach correspond
remarkably well with human visual perception of the salient image
structures, suggesting that this invertible model could form the basis
for a general theory of image processing in the modulation domain.

Index Terms— Amplitude modulation, frequency modulation,
image reconstruction

1. INTRODUCTION

AM-FM models characterize nonstationary image structure using
amplitude and frequency modulations that generalize the Fourier
representation. These models have proven utility in computer vi-
sion and image analysis applications, including texture segmentation
and classification, 3-D shape from texture, texture-based stereopsis,
fingerprint classification, CBIR, and repair of damaged textures [1].
For a complex-valued image ¢ : R?> — €, which may be associated
with a real-valued image using the multidimensional Hilbert trans-
form [2], the K-component AM-FM model is given by

K
Hx) = > ym(x) = Y am®) explipn(x)], (1)
m=1 m=1

where each y.,, (x) is an AM-FM component with amplitude mod-
ulation a,, (x) and frequency modulation Vi, (x). These modula-
tion functions define the modulation domain image representation,
which has been previously estimated using the continuous and dis-
crete demodulation algorithms of [3,4].

Existing demodulation algorithms are strongly dependent upon
the use of jointly localized analysis filters and on the approxima-
tion of the AM and FM functions from the filter responses. These
approximations are accurate when applied to AM-FM components
ym (X) that are locally coherent in the sense that the AM and FM
functions satisfy certain local smoothness constraints given in [4-6];
however, there can be large scale approximation errors in image re-
gions that do not admit sufficiently smoothly varying modulations.
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Thus, demodulation accuracy depends upon the ability of the filter-
bank to deliver a decomposition (1) wherein the components are lo-
cally coherent. Such filterbanks were studied in [4, 7], where it was
shown that the filters must possess a high degree of localization in
both space and frequency, which strongly suggests the use of Gabor
filters.

We seek a modulation domain image representation that can
both provide perfect reconstruction and be used to synthesize new
images obtained by performing image processing operations in the
modulation domain. This cannot be provided by existing AM-FM
computational paradigms because of inherent approximations in the
demodulation algorithms and because the Gabor filters that are typi-
cally used fail to yield an orthogonal image decomposition. Two sys-
tems are needed to develop a perfect reconstruction AM-FM image
model: a jointly localized perfect reconstruction filterbank which
yields AM-FM components that agree with human visual perception
and a demodulation algorithm that provides amplitude, phase, and
frequency estimates that are consistent with both the nonstationary
image structure and the known pixel values. Orthogonal wavelet de-
compositions are attractive choices for designing perfect reconstruc-
tion filterbanks, and it is natural to choose a continuous phase model
¥m (X) to allow the analytic definition of the frequency modulation
Vm(x); however, a direct implementation of either of these con-
cepts yields AM and FM functions that do not necessarily agree with
image structure because of the multiple resolutions of the wavelet
coefficients and because of the well-known multidimensional phase
wrapping problem.

In this paper, we present a new perfect reconstruction AM-FM
image model which delivers modulation functions consistent with
human visual perception. We isolate AM-FM components using a 2-
D wavelet filterbank based on the six-point coiflet, which we further
decompose into highly localized, orientation selective sub-channels.
This filterbank is implemented in a maximally decimated parallel
structure that exhibits excellent joint localization [8] and retains the
image resolution in each AM-FM component. A new, high-quality
2-D phase unwrapping algorithm is applied to each component to
obtain phase modulations ¢, (x) that are consistent with FM func-
tions V., (x) lying in the space of tensor product cubic splines.

2. PERFECT RECONSTRUCTION FILTERBANK

To decompose an image into AM-FM components with visually sig-
nificant structure, we employ a 2-D wavelet filterbank based on the
six-point coiflet. The design is a modified version of the filterbank
described in [9], which employed the six-point Daubechies wavelet.
For each dimension, a 4-level discrete wavelet transform is defined
with an additional low- and high-pass decomposition applied to each
high-pass output. This ensures that the resulting separable 2-D fil-
ters are defined on symmetric dyadic partitions that densely sam-
ple the frequency plane. The Noble identities are used to construct
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the equivalent, maximally decimated parallel structure consisting
of a bank of analysis filters, intermediate down-samplers and up-
samplers, and a bank of synthesis filters. This structure is attractive
for AM-FM image modeling because it exhibits excellent joint local-
ization properties [8] which generally correspond to locally coherent
AM-FM image components [4,7].

A side-effect of the Noble identities is the up-sampling of the
analysis and synthesis filter impulse responses, which can create sig-
nificant side lobes in their frequency responses. This characteristic
can be seen in the log-magnitude frequency response of the filter-
bank channel depicted in Fig. 1(a). Additionally, non-separable fil-
ters are required to obtain individual texture orientations in the AM-
FM components. To address these issues, we take advantage of the
loci of zeros that occur in the frequency responses to further decom-
pose each channel into a sum of non-separable, highly localized sub-
channels. Fig. 1(b) depicts the log-magnitude frequency response of
one such sub-channel extracted from the separable channel shown in
Fig. 1(a).

Since it is of interest to obtain AM-FM components that embody
the visually significant nonstationary structure present in the image,
we define the AM-FM components ¥, (X) to be the full-resolution
outputs of the analysis filters. The image can then be perfectly re-
constructed by applying the associated down-samplers, up-samplers,
and synthesis filters to the components ¥, (x) and summing the re-
sults. Although this framework does not yield the decomposition
described by (1), such a decomposition is not unique, and thus, the
AM-FM components obtained here will be both valid and represen-
tative of visually significant image structure.

3. CONSISTENT DEMODULATION

Given the AM-FM image components y,,(x), we want to compute
the AM functions a,,, (x) and FM functions V¢, (x). In continuous
space, these may be obtained by [4]

(%) = lym @] @
_ Re Vym (X)
Viml) =R [jym<x>]' @

Although (2) may also be applied directly to discrete images, (3)
cannot due to the gradient operator which is well-defined only in
continuous space. This deficiency may be circumvented by fitting
the samples v, (k) with continuous space interpolants for which the
derivative is well-defined, as was done in [10]. However, in this case,
the phase samples ¢, (k) are only available as principal values in
the range (—, 7], which exhibit substantial and undesirable phase
discontinuities at the branch cuts, leading to FM functions which
correspond to these branch cuts but not to any visually meaningful
structure in the image.

Multidimensional phase unwrapping has been studied exten-
sively in a general sense and in the context of SAR interferometry,
magnetic resonance imaging, and network flow analysis [11-16].
However, nearly all existing phase unwrapping algorithms rely on
the assumption that the inter-pixel differences in the unwrapped
phase ¢, (k) are bounded by 7 radians, and the violation of this con-
straint, which is common for practical images, is referred to as phase
aliasing. Although many methods have been proposed to identify
and accommodate image regions that exhibit phase aliasing [11-14]
or to simply calculate the phase function that minimizes a particular
functional norm [15, 16], our objective is to calculate an unwrapped
phase which admits a gradient field that is consistent with human
visual perception of the image.
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We begin by seeking an unwrapped phase that is in agreement
with continuous phase gradient estimates obtained from the unit-
amplitude model

prm(x) = expjPm(x)], Sy

where 7, (x) is the phase modulation ¢, (x) that has been inter-
polated at ambiguous points where a,,(x) == 0. Using the tensor
product cubic spline framework of Unser ef al. [17] and letting 5?
denote the second derivative operator, the second phase derivative
vector is estimated by

O pm(x) ~ 8 G (x)
~Re [%] “m[(%ﬂ - ®

which is rigorous for any C? phase interpolant. By minimizing the
etror

; (6)

2
=3 |Pum(k) - O Fn (k)
k

we compute the unwrapped phase ., (k) with second derivatives
that are closest to the estimates 52¢,,, (k) in the least-squares sense.
Least-squares phase unwrapping has been previously studied using
the assumption that the phase differences are less than 7 radians [11-
14] and wsing the gradient of a cubic spline phase model [18]. The
second cubic spline derivative is used here to reduce the degrees of
freedom in the solution of [ 18] to an additive constant. The 1-D filter
I(k) used to compute the cubic spline second derivative is defined
by the z-transform [17]

_ 6z—12+6271
T oz44421 7

which can be used to express the error in (6) as

H(z) (N

2

e =33 (vmlk) xhlel k) - eiTagcpAm(k))Q, ®)

i=1 k

where e; is the unit vector in the k; direction.

The least-squares phase solution /., (k) will agree with the es-
timated phase derivatives and, hence, represents the visually signifi-
cant structure of the AM-FM image component; however, it will not
generally be consistent with the known principal phase values of the
original component obtained from the analysis filterbank because the
derivative estimates in (5) fail to lie in the spline space used to model
the signals (4). This problem is overcome by embedding the princi-
pal phase values in a scaled phase function )., (k) for some large
~v € R. Thus, we define the phase modulation by

em (k) = WH{Em(k)} 4 2abm (k) & yibm (k), ©)

where W {»(k)} is the known wrapped phase and the branch
function by, (k) is defined as

bm (k) = round (’W/}m(k) _2‘;[/ {cp_m(k)}> . (10)

Taking the cubic spline gradient of (9), we obtain the FM function
V@ (x), which can be made arbitrarily close to the desired least-
squares phase gradient by the choice of ~y:

‘%wm(ﬂ - m()| < T (11)




In practice, we choose v = 300, which ensures that the bound is
generally less than 1%. However, independent of this value, the con-
sistent phase modulation ¢, (k) can be recovered by integrating the
spline gradient V., (x), thereby enabling perfect reconstruction of
the image component y., (k) = a, (k) exp[jom (k)].

4. EXPERIMENTAL RESULTS

The filterbank and demodulation algorithm described in Sections 2
and 3 were applied to the Lena image depicted in Fig. 1(c). The
log-magnitude frequency response of one of the separable filterbank
channels is shown in Fig. 1(a), and the log-magnitude frequency re-
sponse of one of its non-separable, orientation selective sub-channels
is shown in Fig. 1(b). The AM-FM component obtained from this
sub-channel is shown in Fig. 1(d), where the nonstationary structure
of the hat brim, the mirror frame, and the subject’s reflection in the
mirror are evident. Fig. 1(e) and Fig. 1(f) show the computed AM
and FM functions for this component, where Fig. 1(e) depicts the
FM vectors overlaying the AM intensity. The FM vectors shown in
Fig. 1(f) are scaled by the AM function to accentuate the smooth
variations of the modulation functions across the image structure
captured by this component. The AM and FM functions and the
component itself all exhibit visually significant structure from the
original image. Moreover, these quantities agree with human visual
perception as evidenced by the increased AM in the regions of high
contrast surrounding the hat brim and the mirror frame and by the
orientation of the FM vectors around these structures.

5. CONCLUSION

We have presented a new perfect reconstruction AM-FM image
model that provides amplitude and frequency modulations that are
consistent with human visual perception. This model provides the
first modulation domain image representation that can be used for
a wide variety of image analysis and computer vision applications
as well as to exactly reconstruct the original image from the model.
Thus, this representation provides a long-awaited framework for the
formulation of a general theory of image processing in the modula-
tion domain.
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Fig. 1. Example. (a) Frequency response of one of the separable wavelet filterbank channels. (b) One of the non-separable, orientation

selective sub-channels obtained from (a). (c¢) Original Lena image. (d) AM-FM image component obtained from filtering image (c) with
channel (b). (¢) AM and FM functions computed from (d). (f) FM function scaled by the AM function.
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