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ABSTRACT

The instantaneous amplitude, phase, and frequency (APF)
characterize a nonstationary signal on a fundamental level.
In this paper, we seek to obtain a consistent multidimen-
sional APF where the estimated phase and frequency agree
and where the frequency can be obtained as the gradient of
an analytical phase model. Currently existing multidimen-
sional phase unwrapping algorithms are incapable of pro-
viding this because they erroneously assume bandlimits on
the trajectory of the instantaneous frequency and thus suf-
fer from the “phase aliasing” phenomenon. We present a
new multidimensional phase unwrapping algorithm based
on tensor product splines that does not make this assump-
tion and thereby largely eliminates the deleterious effects of
phase aliasing.

1. INTRODUCTION

The instantaneous amplitude, phase, and frequency (APF)
characterize the nonstationary structure of a signal on a fun-
damental level. For a complex-valued signal t : Rn→C
given by t(x) = a(x) exp[jϕ(x)], the APF a(x), ϕ(x),
and ∇ϕ(x) are uniquely determined up to the branch of the
phase (where it is assumed that a(x) is positive semidef-
inite). For a real signal s(x) = a(x) cos[ϕ(x)], they are
ambiguous and additional constraints must be imposed to
regularize the APF estimation problem. Various techniques
based on differential operators and the analytic signal [1–3],
quadratic demodulators including the Teager-Kaiser opera-
tor [4, 5], and other approaches have been used to estimate
the instantaneous amplitude and instantaneous frequency
(IF) in one and multiple dimensions. In most practical sce-
narios these algorithms are applied to a locally narrowband
signal obtained by filtering or to discrete samples of such
a signal. Since exact general amplitude and frequency al-
gorithms are not known for these cases, approximations
must be applied and the empirical IF field ∇ϕ(x) is gener-
ally nonconservative and characterized by estimation errors.
This is of little concern in many analysis applications where

This work was supported in part by the U.S. Army Research Labora-
tory and the U.S. Army Research Office under grant W911NF-04-1-0221.

such frequency estimates have been used with great success.
However, the approximation errors are almost always prob-
lematic in synthesis applications where one seeks to recon-
struct the signal t(x) or s(x) from the estimated amplitude
and frequency. AM-FM image coding and modulation do-
main signal processing are examples of such applications.

When perfect reconstruction is the goal, it is desirable
to estimate a consistent APF in the sense that the phase ϕ
and frequency ∇ϕ agree almost everywhere, or, in the dis-
crete case, at least agree on the sampling lattice. A dis-
crete approach that we are currently investigating for im-
proving the frequency estimation accuracy involves fitting
tensor product splines to the estimated phase. The splines
provide a piecewise polynomial phase model that can be
differentiated analytically to obtain a consistent APF. The
principal branch of the phase can always be obtained by ap-
plying arctan(·) to the real and imaginary components of
a complex signal or by applying arccos(·) to a real signal
subsequent to dividing out the estimated amplitude. While
this approach provides both a consistent APF and perfect re-
construction, the obtained frequency field ∇ϕ is character-
ized by undesirable high frequencies that do not correspond
to any visually meaningful structure in the signal, but rather
arise solely from branch cuts in the wrapped phase estimate.
This fact limits the usefulness of the approach in analysis
applications. Thus there is a critical need for a high-quality,
multidimensional phase unwrapping algorithm so that the
unwrapped phase can be fit with splines to obtain a consis-
tent, perfect reconstruction APF involving visually mean-
ingful frequencies that correspond to the perceptually sig-
nificant structure of the signal.

However, multidimensional phase unwrapping is a diffi-
cult problem that has been studied extensively as it relates to
a variety of applications where phase information plays an
important role, including SAR interferometry [6] and mag-
netic resonance imaging [7]. In this paper we introduce a
new multidimensional phase unwrapping algorithm based
on tensor product splines. Although the support of the dis-
crete Fourier spectrum of any signal is limited to (−π, π]
rad/sample, this new algorithm achieves an advantage by
realizing that no such limit is in fact applicable to the IF.
As a result, the “phase aliasing” problem typical of existing
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unwrapping techniques is largely eliminated.

2. BACKGROUND

Empirical phase signals obtained via arctan and arccos are
available only as principal values (PV) that contain artificial
discontinuities along the branch cuts. In a variety of applica-
tions, such phase signals are useful only after these artificial
discontinuities have been removed or “unwrapped” by se-
lectively adding integer multiples of 2π. Thus, the problem
is to estimate the unwrapped phase

ϕ(k) = ψ(k) + 2πb(k) (1)

from its principal values ψ(k), where k ∈ Zn and b : Zn →
Z indicates the branch to which each phase sample belongs.

Existing phase unwrapping methods have dealt with
discrete signals by defining the IF as a finite difference
(FD) [7–12]; however, Spagnolini [11] also notes that a dif-
ferentiator could be approximated by an FIR filter or that the
IF could be estimated by maximum likelihood techniques.
The primary disadvantage to using any of these alternative
methods is that they all restrict the IF to the range (−π, π]
rad/sample, which is a theoretical fallacy [13].

The two primary classes of existing phase unwrapping
methods are path integration and least-squares (LS) estima-
tion [8–12]. The former method relies on integration of the
phase gradient field and, as such, is sensitive to noise and
nonconservative field estimates. The latter method, how-
ever, has the ability to reduce the propagation of noise errors
across the reconstructed phase image. Unfortunately, previ-
ous multidimensional LS phase unwrapping algorithms that
define the IF as an FD assume that these differences never
exceed π in magnitude. When this assumption holds, the
FD of the unwrapped phase ϕ(k) is equal to the wrapped
FD computed from the wrapped phase ψ(k), i.e.,

∇FDϕ(k) = W{∇FDψ(k)}. (2)

Here, W{·} is the wrapping operator that maps its argu-
ment to its modulo-2π equivalent value in (−π, π]. Thus,
W{∇FDψ(k)} can simply be accumulated to obtain the
true phase ϕ(k). Alternatively, when the assumption is vio-
lated, (2) holds only up to a multiple of 2π [7], and the phase
gradient field is nonconservative [7,8,10]. This condition is
referred to as phase aliasing, and it can lead to gross errors
in the estimation of the true phase.

3. SPLINE-BASED PHASE UNWRAPPING

To circumvent the notion of phase aliasing, we assume that
the phase lies in the space of tensor product cubic splines,
and using the method of Unser et al. [14–16], the spline pro-
cessing may be efficiently implemented by means of digital

filtering. This assumption allows the phase gradient field
to be computed analytically and poses no constraints on the
values assumed by the inter-pixel phase differences or the
magnitude of the IF. Although other model-based unwrap-
ping algorithms have been proposed (e.g. [17]), they are of-
ten too restrictive to apply to the entire phase signal and
require block processing techniques.

We have investigated both path integration and LS phase
unwrapping methods for this spline framework; however,
only the LS solution is presented here. It is well-known
that this LS solution is equivalent to the solution of Pois-
son’s equation [12], and we impose the mirror-symmetry
and periodic extension conditions also required by the fil-
tering methods proposed in [12, 14–16].

Due to the nature of tensor product splines, the filtering
is separable and, thus, only a 1-D treatment is presented
here. Given the discrete phase signal ϕ(k), the transfer
function for the cubic spline phase derivative u(k) is

U(z)
Φ(z)

=
(

6
z + 4 + z−1

) (
z − z−1

2

)
. (3)

Define the phase average ϕd(k) by the transfer function

Φd(z)
Φ(z)

=
z − z−1

2
(4)

and the estimated phase average ud(k) by

Ud(z)
U(z)

=
z + 4 + z−1

6
. (5)

Thus, we can filter the derivative estimate u(k) to get an
approximation for the phase average as defined in (4).

For a 2-D phase signal with respective horizontal and
vertical gradients u(j, k) and v(j, k), the transfer func-
tions (4) and (5) can be used to write the LS error function

εLS =
∑
j,k

[ϕdu(j, k)− ud(j, k)]
2

+ [ϕdv(j, k)− vd(j, k)]
2
. (6)

Differentiating this error with respect to ϕ(j, k) and setting
the result equal to zero gives the system of equations (7),
where (5) has been used to write the system in terms of
the IF estimates u(j, k) and v(j, k). This system is simi-
lar in form to that derived in [12], and because the same
mirror-symmetry and periodic extension were used, (7) can
be solved using a cosine transform implemented by FFT’s.

In 2-D, there are four FFT coefficients that are unde-
termined and must be estimated to make the LS solution
unique and ensure that each unwrapped phase sample is on
the correct branch. Subsequent to estimating three of the
coefficients, the dc coefficient can be estimated in a manner
similar to that of [7], where the constant is the average of the



(ϕ(j + 2, k)− 2ϕ(j, k) + ϕ(j − 2, k)) + (ϕ(j, k + 2)− 2ϕ(j, k) + ϕ(j, k − 2)) =

1

3
[u(j + 2, k) + 4u(j + 1, k)− 4u(j − 1, k)− u(j − 2, k) + v(j, k + 2) + 4v(j, k + 1)− 4v(j, k − 1)− v(j, k − 2)] (7)

wrapped differences between the unwrapped and wrapped
phase values

ϕdc = avgj,k∈D{W{ψ(j, k)− ϕ(j, k)}}. (8)

However, we propose that this average only be computed
over regions D where the error in the LS solution is below
an empirical threshold. Lastly, due to errors in the IF esti-
mation, the LS solution may not be congruent (modulo-2π)
with the original phase values; the methods of [7] or [17]
may be used to map each phase estimate to its nearest con-
gruent value.

4. EXPERIMENTAL RESULTS

The algorithm proposed in Section 3 was tested using two
synthetic images and one natural image. The spline deriva-
tive (3) was used to estimate the IF. The three original
(wrapped) phase images are shown in Fig. 1(a)-(c). The
proposed algorithm unwraps the phases from Fig. 1(a) and
(b) perfectly, as shown in Fig. 1(d) and (e). However, this
algorithm has more difficulty with the measured phase in
Fig. 1(c): a few fringe lines can still be seen in the un-
wrapped phase of Fig. 1(f). Nevertheless, the IF calculated
by taking the gradient of the unwrapped phase is consistent
almost everywhere. It is interesting to note that some of
the fringe lines (e.g., those in the upper left and right of the
image) are in agreement with the IF estimates and do not in-
dicate an error in the unwrapping. Alternatively, the fringe
lines in the lower right of the image do not agree with the IF
and result from poor IF estimates in that region. It should
be noted that the LS solution will never contain fringe lines.
However, fringe lines are sometimes introduced through es-
timation of the four undetermined FFT coefficients which
disambiguate the Poisson equation solution and also as a
result of forcing the unwrapped and wrapped phases to be
congruent. Different estimates for the four undetermined
coefficients can generally produce different fringe paths.

Existing algorithms refer to the fringe line endpoints as
singular points and note that they result from nonconserva-
tive gradient field estimates caused by phase aliasing. Be-
cause our model precludes the existence of phase aliasing,
there are only two possible explanations for these singular
points: poor IF estimation and poor estimation of the unde-
termined transform coefficients. Specifically, we have ob-
served that the singular points invariably correspond to sam-
ples where the APF becomes ambiguous due to a vanish-
ingly small amplitude. Additionally, while the IF calculated

from the unwrapped phase is in good agreement with pre-
vious estimates, the unwrapping algorithm proposed here
can be improved by using IF estimates that explicitly ac-
count for ambiguous phase at samples where the amplitude
is small.

5. CONCLUSION

We presented a new multidimensional phase unwrapping al-
gorithm based on tensor product splines that, for the first
time, has the potential to deliver a consistent APF estimate.
The assumed spline models are sufficiently general to ap-
ply to entire signal domains and do not restrict the range of
the inter-pixel phase differences or of the instantaneous fre-
quency magnitude. This provides the fundamental frame-
work for new, improved methods of studying phase infor-
mation and has the potential to overcome the limitations in-
herent in currently existing phase unwrapping algorithms.
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