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Abstract—In this paper we combine a new method of mea-
suring infrared target signature evolution with current research
and developmental tracking algorithms. Thermal images are
decomposed by a set of Gabor filters and demodulated to
produce a set of spatiospectrally localized AM-FM functions
corresponding to oriented texture regions from within the origi-
nal image. Critical updates are detected and issued to a particle
filter based tracker, operating only on a modulation domain
target model, by applying an empirically determined threshold
to a new target evolution measurement introduced in this paper.
We achieve results comparable to several other theoretical
tracking algorithms at a significantly reduced computational
cost by eliminating the need to perform parallel tracking in
both the pixel and modulation domains.
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I. INTRODUCTION

We consider the problem of tracking infrared targets im-

mersed in highly structured clutter, where it is common for

targets to appear camouflaged by elements of the background

that are similar in configuration to those that compose

notable features of the target. Under these circumstances, it

is difficult to maintain a representation of the target signature

that is both uncorrupted by the inclusion of erroneous

background features and simultaneously allowed to mature

in correspondence with the often profound evolution of the

target signature. We continue to use the AMCOM library

of infrared closure sequences to evaluate the performance

of tracking algorithms because they are widely known and

provide a large collection of difficult infrared target engage-

ment scenarios. [1]–[4].

Recently, modeling infrared imagery in the modulation

domain has been demonstrably verified as a powerful new

technique for separating complex target and background

structures. Carefully designed filtering and demodulation

processes, where the original image is represented by a

collection of spatiospectrally localized modulationing func-

tions, have been effectively used to discriminate between in-

frared targets and backgrounds [5]–[7]. A previous analysis

of the AMCOM sequences revealed that trackers operating

in the pixel and modulation domains generally diverge
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differently when the targets evolve beyond the ability of the

template to characterize them well. By exploiting the known

differences in the failure modes associated with each tracker

we have achieved high quality, robust tracking results against

a large percentage of the AMCOM sequences [8]–[10].

In this paper we present a new method for measuring

infrared target signature evolution based on a focused anal-

ysis of the texture components isolated in the modulation

domain representation. We employ a biologically motivated

Gabor filterbank to decompose each pixel domain image

acquired by an infrared imaging sensor into multiple ori-

ented narrowband components that are then demodulated to

obtain AM and FM functions on a componentwise basis.

The modulation domain representation of the target signature

is considered in the context of a Bayesian state estimation

problem, where a template based auxiliary particle filter is

formulated to track the evolution of the target signature

over time. Significant variation in the target signature is

detected by thresholding our new target signature evolution

measurement and used to issue template updates to the

tracker.

II. TARGET SIGNATURE REPRESENTATION

Application of AM-FM image models is an established

technique for characterizing locally coherent image structure

in terms of amplitude (AM) and frequency (FM) modulat-

ing functions [11]. Computation of the modulation domain

representation for a real-valued image composed of many

complex multipartite textures is generally performed by

analyzing the image with a filterbank designed to produce lo-

cally coherent filter response images, followed by estimation

of the AM-FM functions for each of the filterbank channels.

We assume that infrared frames fk containing a target of

interest are captured by the focal plane array of an infrared

imaging sensor and delivered to the track processor at time k.

The incoming frames are analyzed by a biologically inspired

M = 18 channel Gabor filterbank similar to those presented

in [12] resulting in 18 filter response images ym, from which

the modulating functions are estimated according to

∇ϕm ≈ Re

[∇(ym + jH[ym])
j(ym + jH[ym])

]
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and

am ≈
∣∣∣∣ym + jH[ym]

Gm[∇ϕm]

∣∣∣∣ ,

where H[·] is the partial Hilbert transform [11].

To represent the state of the target we introduce a joint

motion/appearance target model composed of a six element

target state vector xk and a modulation domain target

signature template T . The target state vector xk is given

by

xk = [xT
1,k xT

2,k]T = [x1,k ẋ1,k δ1,k x2,k ẋ2,k δ2,k], (1)

where x1,k = [x1,k ẋ1,k δ1,k]T and x2,k = [x2,k ẋ2,k δ2,k]T .

In (1) x1,k and x2,k are the horizontal and vertical coordi-

nates of the target centroid measured in pixels, ẋ1,k and

ẋ2,k are the corresponding horizontal and vertical velocities

of the target centroid measured in pixels per frame, and

δ1,k and δ2,k are the width and height of the target in

pixels. The target appearance template T is composed of

18 equally sized rectangular tiles tm extracted from the 18

am images. We define H(·) to be the function that extracts

rectangular tiles of raw pixel values from the 18 am images

at the location and size specified by the state vector xk. The

modulation domain target signature template T is given by

T = {tm, m ∈ [1, M ]} = H(xk, fk),

where m indicates channel number.

The initial target state x0 is obtained from either an

independent detection process or it is manually designated

by a human in the loop. In the examples presented here, the

initial target state x0 is obtained from ground truth data and

used to construct the corresponding initial target signature

template T0 = H(x0, f0).

III. TARGET STATE ESTIMATION

We use an auxiliary particle filter similar to those de-

scribed in [13]–[15] to estimate the target state transition

over time. In contrast to SIR (sample importance resampling)

particle filters, auxiliary particle filters perform an additional

resampling step at each iteration of the filter to eliminate

outlying state estimates. The weights used in the additional

resampling stage are obtained by prematurely propagating

the particles and evaluating their likelihood based on the

current observation. Let vk = [v1,k u1,k 0 v2,k u1,k 0]T ,

v1,k, where v2,k, u1,k and u2,k are uncorrelated zero-mean

Gaussian noise processes and let Δ equal the inter-frame

time.

Let vk = [v1,k u1,k 0 v2,k u1,k 0]T , v1,k, where v2,k,

u1,k and u2,k are uncorrelated zero-mean Gaussian noise

processes and let Δ equal the inter-frame time. The state

transition equation for the target is based on a white noise

acceleration model and ternary magnification model given

by [
x1,k+1

x2,k+1

]
=

[
F 0
0 F

] [
x1,k

x2,k

]
+ vk, (2)

where

F =

⎡
⎣ 1 Δ 0

0 1 0
0 0 (1 + γ)

⎤
⎦ (3)

and

γ =

⎧⎨
⎩

−α, p = 1/3,
0, p = 1/3,
β, p = 1/3.

(4)

In (4) α, 0, and β are the magnification gains with equal

probability p = 1/3.

The measurement equation is given by zk = H(xk +
nk, fk), where nk = [n1,k n2,k], and we assume that

n1,k and n2,k are uncorrelated zero-mean Gaussian noise

processes. A common modulation domain template T =
{tm, m ∈ [1, M ]} is shared by the entire particle pop-

ulation. For each particle xi
k, the likelihood p(xi

k|zk) is

determined by computing the normalized cross correlation

(NCC) between each plane obtained by resizing T according

to the magnification parameters in xi
k and the observed tile

H(xi
k, fk), where i is the particle index. The likelihood of

each particle is determined by averaging the 18 NCC values.

IV. QUANTIFYING TARGET SIGNATURE EVOLUTION

Template based trackers require well planned updates

in order to maintain accurate representations of the target

signature. In the literature this is known as the template

update problem, and many solutions such as updating the

template every frame or updating at fixed intervals have been

proposed [16]. For many practical tracking sequences, up-

dating the template too often or at poorly chosen times will

result in the template becoming corrupted by background

clutter which typically causes the tracker to fail.

Here, we present a powerful new metric to quantify

temporal evolution of target signatures, where subsequent

application of an empirically determined threshold is used to

detect major variations in the target signature and issue crit-

ical template updates. For each frame k we define the output

of the auxiliary particle filter to be the average state vector

x̂k computed with respect to the population x̂i
k. We define

an 18-element correlation vector Ck = NCC[T̂ ,H(x̂k, fk)]
where T̂ is a bicubic resize of the current template T
calculated using the magnification parameters of x̂k.

To characterize acceptable evolution of the target we

maintain a running sum of the per channel correlation

vectors between the previous template update index j and

the current frame k. Evolution of the target signature is

detected by thresholding the NCC between the normal-

ized sum of historical template-to-target correlation vectors∑k−1
l=j Cl/||

∑k−1
l=j Cl|| and the correlation metric from the

current frame Ck.
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Table I
ABSOLUTE ERROR IN TRACKED CENTROID LOCATION (MEASURED IN

PIXELS) AND NUMBER OF TEMPLATE UPDATES PERFORMED.

Sequence Number of Frames Error Number of Updates

rng14 15 135 2.718 4
rng16 18 135 2.194 4
rng18 16 179 3.764 15
rng19 06 165 2.847 16

V. EXPERIMENTAL RESULTS

We performed auxiliary particle filtering on modulation

domain target models using the new template update strategy

against four of the most challenging AMCOM sequences. Ta-

ble I shows the error in the tracked centroid in pixels and the

number of template updates performed during the sequence.

The first column in Fig. (1) shows the track gate specified

by x̂k at the times when template updates were performed.

The second and third columns show pixel domain tiles that

correspond to the target signature template being used by the

tracker and the current target signature from the perspective

of the tracking algorithm, respectively. The fourth column

of Fig. (1) is the squared error between the current template

(column 2) and the tracked target (column 3), computed

for the sake of highlighting the visible structural differences

between the template and the target. Although the tracking

algorithm processes 18 plane modulation domain imagery,

we have chosen to display pixel domain targets and images

to save space.

In this paper we have introduced powerful new target rep-

resentation and analysis techniques for quantifying infrared

target signature evolution over time. Computation of AM-

FM image models for multiple spatiospectrally localized

subband images derived by analysis of infrared imagery

produces a collection of AM-FM features that correspond

well to the oriented texture regions within the pixel domain

image acquired by the infrared sensor. A Comparison be-

tween current and historical template-to-target correlation

structures is used to identify and issue meaningful updates

to the track processor resulting in excellent tracking perfor-

mance on several challenging AMCOM sequences.
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Figure 1. Selected frames from AMCOM sequences rng16 18 (rows 1-3 correspond to frames 140, 151 and 179) and rng14 15 (rows 4-6 correspond
to frames 140, 147 and 177), depicting the tracked target (column 1), the current template used by the tracker (column 2), the current target from the
perspective of the tracker (column 3) and the squared error measured between the template and the current target (column 4).
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