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Abstract—For the first time, modulation domain filters are
proposed for removing beat type noises in video corrupted by
unwanted external signals during the transmission process. We
demonstrate the effectiveness of our proposed algorithm on
picture carrier beat type noise observed in a real-world situation
involving the transmission of critical video signals obtained
from a traffic monitoring system. We compare and contrast our
results with a traditional linear time invariant (LTI) notch filter.
The technique can be generalized for removal of a variety of
fixed pattern noises characteristic of many infrared and other
non-visible wavelength electro-optical detectors. In addition, we
provide a theoretical comparison of modulation and frequency
domain image representation strategies in the context of digital
image filtering.

Index Terms—AM-FM image models, AM-FM image filters,
modulation domain signal processing, multicomponent models

I. INTRODUCTION

Fourier image representations characterize image structure

in terms of complex sinusoidal functions with constant am-

plitude and frequency components; thus they do not provide

intuitive descriptions for nonstationary visual textures. Nonsta-

tionary textural image features are better characterized in terms

of instantaneously varying quantities such as instantaneous
amplitude and instantaneous frequency that are more closely

related to human visual perception and of great research in-

terest [1]–[14]. In contrast to Fourier analysis, AM-FM image

models represent the image directly in terms of instantaneous

amplitude and frequency functions expressed as nonstationary

complex sinusoidal signals.

In the past, the representation of images in terms of AM-

FM functions has resulted in valuable knowledge of the spa-

tially localized amplitudes and frequencies of textural image

features that have been used with great success in a wide

variety of computer vision and analysis applications, including

image segmentation [2], [3], [6], [7], [13]–[16], content based

image retrieval [17], regeneration of occluded and damaged

textures [18], human speech analysis [4], [19], fingerprint

analysis and classification [5], [20], target tracking [11], [12],

estimation of 3-D shape from texture [14], [21], infrared target

tracking [12], and visible target tracking [22]. Recently, AM-

FM models have been used to develop modulation domain im-

age filtering algorithms [10], allowing for filtering techniques

and results which are not possible using the classical Fourier

representation.

Computing the AM-FM functions of an image is an ill

posed problem. There are significant difficulties and several

different approaches have been proposed over the past few

years. For any real-valued image, there exist an infinite num-

ber of AM-FM representations in terms of a single pair of

modulating functions. Moreover, multicomponent models are

generally more desirable and the decomposition of an image

into components is also non-unique. To overcome this problem

we compute a complex extension of the image using the two

dimensional Hilbert transform [2]. Such a complex image

yields unique modulation functions. It is of practical interest to

produce smoothly varying and thus visually meaningful AM-

FM functions. But for real valued images this is not possible

using a single AM-FM function. It is necessary to divide

the image into components so that smoothly varying AM-

FM functions can be obtained. This is called multi-component

AM-FM image modeling. The computation of FM functions

for discrete cases is a difficult one as the gradient is not well-

defined for discrete images. Recently, an algorithm was devel-

oped which gives exact modulating functions in the discrete

case [8], and modulation domain filtering is now possible in

the context of a perfect reconstruction filterbank. Modulation

domain filtering can obtain results that are impossible to obtain

with traditional LTI filters. The concept of modulation domain

filtering has been recently developed and there are many

interesting possibilities that remain largely unexplored.

This paper presents one such unexplored application area:

improving the quality of cable television signals. Television

signals transmitted at the head end of a TV cable system

should be equal to the signals received at the receiving end.

Practically, this is not the case. The signal at the receiving

end is generally degraded due to the intrusion of unwanted

noise signals during transmission. Intermodulation distortion

of carrier signals causes picture carrier beat noise. Picture

carrier beat noise produces diagonal moving bars in the

video signal. This paper uses the concept of AM-FM image

models to process the instantaneous amplitude and frequency

functions and reduce picture carrier beat noise. This is a

new and important potential application of modulation domain

filtering.

II. AM-FM IMAGE MODELS

For a real valued signal, s : R
n → R, where x ∈ R

n, the

AM-FM signal model is given by [13], [23]

s(x) = a(x) cos[ϕ(x)]. (1)
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For a complex valued signal z : R
n → C, the AM-FM signal

model is given by [23]

z(x) = a(x)ejϕ(x), (2)

where a : R
n → [0,∞) is the amplitude modulation function

and ϕ : R
n → R is the phase modulation of the signal. The

frequency modulation function ∇ϕ : R
n → R

n in both cases

is the gradient of the phase modulation.

AM-FM functions represent the signal amplitude and fre-

quency at a fine spatial scale. For example, consider a one-

dimensional speech signal with respect to time. The modu-

lation functions embody the jointly localized structure of the

signal, giving frequency with respect to time. This is unlike

the Fourier transform which interprets the signal in terms of a

collection of constant amplitude and linear phase terms. The

AM-FM functions are often called instantaneous amplitude,

phase and frequency [3], [8].

A. The Analytic Image

Gabor introduced an important complex extension for real

one-dimensional signals in [24]. For a real signal s(t) Gabor’s

analytic signal is given by

z(t) = s(t) + jq(t), (3)

where q(t) is defined by

q(t) = H[s(t)] = s(t) ∗ 1
πt

=
1
π

∫
R

s(τ)
t− τ

dτ, (4)

and H[·] is the 1D Hilbert transform. The integral in (4) is

evaluated as a Cauchy principal value. The signal z(t) is

complex and is referred to as the analytic signal. The analytic

signal obtained in this process has a unique set of modulation

functions. The analytic signal obtained using Hilbert transform

admits some attractive properties. The spectral redundancy in

the real signal is eliminated [25], i.e., the analytic spectrum

Z(Ω) is zero for all negative frequencies, having support only

for the positive frequencies. Thus, it represents the removal of

the redundant frequency content in real-valued signals. Further

properties were also shown by Vakman [26]. It is important

for us to be able to extend the 1D Hilbert transform to 2D

so that it can be used for images. The 2D complex extension

of a real valued image using the partial Hilbert transform is

referred to as the analytic image and is given by [25],

z(x) = s(x) + jq(x), (5)

where q(x) is the partial Hilbert transform.

The partial Hilbert transform can be applied to any multidi-

mensional signal s(x) : R
n → R where x = [x1 x2 . . . xn]T ,

but is defined as having a single direction of action by a unit

vector in the xi direction. It has a standard definition [27]–[29]

which is given by

H[s(x)] =
1
π

∫
R

s(x − ξei)
dξ

ξ
= s(x) ∗ 1

πxT ei

∏
k �=i

δ(xT ek),

(6)

where ei is the unit vector in the xi direction and the integral

in (6) is interpreted as a Cauchy principal value. The analytic

image in (6) carries many of the same properties as the

1D analytic signal. In both the cases, reduction of spectral

redundancy is achieved. The process of computing the discrete

analytic image is analogous to the continuous analytic signal.

The discrete analytic image is of interest here as we are using

a computer to do the computations and is given in [3], [25].

After the analytic image is generated it is possible to obtain

unique amplitude and frequency modulation functions; this is

called demodulation.

B. Demodulation

To decompose the analytic image into locally coherent

components, the steerable pyramid filterbank is used [10]. The

steerable pyramid filterbank is implemented as in [30], [31].

Here the steerable pyramid decomposition is implemented at

five levels and at eight orientations resulting in 40 locally

coherent image components. For computational purposes, each

channel response in the steerable pyramid is computed in

the frequency domain, by pointwise multiplication of DFTS.

With this approach, generation of the multicomponent analytic

image can be folded into the filterbank without additional

overhead [2].

In the demodulation step, the amplitude and frequency

modulating functions ak(x) and ∇ϕk(x) are calculated from

the k component image decomposition. In the continuous case

the modulating functions can be directly computed from the

complex image components sk according to

ak(x) = |sk(x) + jqk(x)| (7)

and

∇ϕk(x) =
∇qk(x)sk(x) − qk(x)∇sk(x)

ak(x)
. (8)

In the discrete case, computation of the amplitude modula-

tion function ak(x) is the same as the continuous case [8]

but the frequency modulation cannot be calculated by (8)

because the gradient is undefined. Instead, we compute the

phase modulation from the solution given in [8]. The gra-

dient image for the discrete case is calculated using tensor

product spline models proposed by Unser et al., [32]–[34]

to interpolate a discrete image and to analytically define its

gradient ∇sk(x) + j∇qk(x). But the phase modulations are

ambiguous at pixels where the amplitude function is zero. For

such pixels, interpolation is performed by averaging the phase

at the neighboring pixels. The obtained phase functions are

consistent with human visual perception and do not suffer

from phase discontinuities in (−π, π] when inverse trigono-

metric functions are combined with the spline-based algorithm

proposed in [8].

We compute the wrapped phase according to [8]

W{·} = arctan
[
qk(x)
sk(x)

]
, (9)

where W{·} is the wrapping operator that maps each phase

value to its modulo-2π congruent value in (−π, π]. The desired
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unwrapped phase can be expressed as [8]

ϕk(x) = W{ϕk(x)} + 2πbk(x) ≈ γψk(x), (10)

where W{ϕk(x)} is the wrapped phase modulation, the

branch function bk(x) is defined as in (11), γψk(x) is the

scaled phase function, γ is a phase constant and ψk(x) is the

estimated phase modulation computed from the spline based

demodulation. The branch function b(x) in (10) is given by

bk(x) = round

(
γψk(x) −W{ϕk(x)}

2π

)
. (11)

Here, γ is equal to 300.

The gradient of the phase modulation gives the frequency

modulation function. The gradient is computed analytically

in the horizontal and vertical directions defined as ∇ϕk(x).
The obtained frequency modulation functions are scaled by

the value of the phase constant γ. Finally, the obtained phase

modulation functions are scaled by the value of γ.

III. EXPERIMENTAL RESULTS

A. Data Acquisition

NTSC Video signals were captured from a live video stream

in a highway surveillance system. The video signal was

preprocessed to convert from the RGB to grayscale feature

space. Lastly, the acquired video was corrupted by combining

the signal with a constant carrier waveform of the same

radio frequency, resulting in picture carrier beat distortions

manifested in the video as scrolling diagonal bars.

B. Modulation domain filtering

A modulation domain picture carrier beat type noise re-

moval filter based on the component amplitude functions

ak(x), frequency magnitudes rk(x) = |∇ϕk(x)| and fre-

quency directions θk(x) = arg∇ϕk(x) is proposed. The filter

is specified by

âk(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ak(x) · 0.9−rk(x)
0.05 , 0.85 < rk(x) < 0.9

0, 0.9 ≤ rk(x) ≤ 1.8
ak(x) · rk(x)−1.8

0.05 , 1.8 ≤ rk(x) ≤ 1.85
0, 0.6 ≤ rk(x) ≤ 0.825,

−π/2 ≤ θk(x) < 0
ak(x), otherwise.

(12)

Fig. 1 shows a comparison the results obtained by ap-

plication of the modulation domain filter proposed in (12)

and a comparable LTI filter designed by manual estimation

of the picture beat noise statistics. Fig.1(a, d and g) depict

three frames of a real-world image sequence obtained from a

stationary traffic camera at I35 and 27th street in Oklahoma

City, Oklahoma that have been corrupted by picture carrier

beat noise. Fig. 1(b, e and h) are the LTI filter results and, (c,

f and i) are the modulation domain filter results. In both cases,

the picture carrier beat noise has been significantly attenuated,

however, the results obtained with the LTI filter contain a

significant number of unwanted ringing artifacts With respect

to the modulation domain filtering results, the only significant

TABLE I
QUANTITATIVE REPRESENTATION OF THE RESULT FRAMES IN TERMS OF

STANDARD ERROR MEASUREMENTS PSNR AND ISNR.

PSNR ISNR

I Î(LTI) Î(R,θ) Î(LTI) Î(R,θ)

For 1 Frame 27.0253 26.7885 29.8198 -0.2367 2.7946
For 20 Frames 26.9929 26.6462 28.7921 -0.3467 1.7992

drawback is the smoothing of sharp edges that can be observed

in Fig. 1(c, f and i).

In Table I a quantitative comparison of the LTI filter and the

modulation domain filter is provided in terms of peak signal

to noise ratio (PSNR) and improvement in signal to noise

ratio (ISNR). In all cases, the performance of the modulation

domain filter are superior to those obtained through LTI

filtering.
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