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ABSTRACT

We develop a novel measure of joint time-frequency local-
ization applicable to equivalence classes of finite-length dis-
crete signals, which are of increasing importance in modern
signal and image processing applications. Like the well-
known Heisenberg-Weyl uncertainty principle that quanti-
fies joint localization for continuous signals, this new mea-
sure is translation invariant and admits an intuitively sat-
isfying interpretation in terms of the statistical variance of
signal energy in time or space and in frequency. The new
measure is used to design a new low-pass wavelet analysis
filter with optimal joint localization. This new filter is then
used to construct a localized separable 2-D discrete wavelet
transform which is demonstrated on several images of gen-
eral interest in practical applications.

1. INTRODUCTION

The Heisenberg-Weyl uncertainty principle (HUP) applied
to continuous signals by Gabor quantified and conceptu-
alized the notion of uncertainty. This principle has been
the cornerstone of the uncertainty measures used in mod-
ern time-frequency analysis. In [1], Gabor defined the HUP
only for functions h : R �!C that are both continuous (h
2 C1) and approach zero in the tails (limt!�1 h(t) = 0).
For such functions, the Heisenberg-Weyl uncertainty rela-
tion states that

�t�f � 1

2
; (1)

where the pulse width �2
t is defined as

�2
t =

R1
�1

(t� hti)2jh(t)j2dtR1
�1

jh(t)j2dt (2)

with the mean in time hti defined by

hti =
R1
�1

tjh(t)j2dtR1
�1

jh(t)j2dt : (3)

Similarly, the band width �2
f is defined as

�2
f =

R1
�1

(f � hfi)2jH(f)j2dfR1
�1

jH(f)j2df ; (4)

where the mean frequency hfi is given by

hfi =
R1
�1

f jH(f)j2dfR1
�1

jH(f)j2df (5)

and where H(f) is the continuous-time Fourier Transform
of h(t).

The HUP (1) quantifies the fact that continuous-time
and continuous-frequency localization cannot be arbitrarily
small simultaneously. Because of the its statistical nature,
this measure is invariant to translations in time and in fre-
quency, which agrees with our intuitive notion that simple
shifting should not change the localization of a signal. Ga-
bor also proved in [1] that the only functions which achieve
equality in (1) are given by

 (t) = e��
2(t�t0)

2

ej(2�f0t+�); (6)

where �; t0; f0; � 2 R. This theory was extended into two
dimensions by Daugman [2]. The functions (6) are now
commonly referred to asGabor elementary functions. Since
they are optimally localized in both time and frequency,
they have been used in numerous signal and image pro-
cessing applications which require time-frequency analysis.
This popularity extends even into the discrete domain where
Gaussian shaped sequences have been created by sampling
and by various forms of approximation.

Whereas the HUP is applicable only to C1 continuous-
time functions that approach zero in the tails, we present
in this paper a novel translation invariant measure of un-
certainty defined on equivalence classes of finite-length
discrete-time sequences. This new measure is strikingly
similar to the continuous time HUP and is distinct from the
discrete uncertainty measures used in [3–6], which defined
frequency uncertainty in terms of the discrete-time Fourier
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transform (DTFT). Moreover, the new measure is particu-
larly significant in view of the fact that many modern appli-
cations are concerned exclusively with finite-length discrete
signals to which the HUP cannot be applied.

Throughout the paper, our interest is in formulating
a real-valued low-pass finite impulse response (FIR) filter
function with optimal joint localization and using it to con-
struct a separable 2-D discrete wavelet transform; we there-
fore restrict our attention to unit `2-norm FIR sequences
h : [0; N � 1] �!R for which N is even and

N�1X
n=0

h2[n] = 1 =
1

N

N�1X
k=0

jH [k]j2; (7)

whereH [k] is the discrete Fourier transform (DFT) of h[n].

2. QUANTIFYING UNCERTAINTY AND
LOCALIZATION

We consider h2[n] to be a probability density function (pdf)
describing the distribution of signal energy in discrete time
and 1

N
jH [k]j2 to be a pdf describing the distribution of sig-

nal energy in discrete frequency. Interpreting n and k as
random variables in [0; N � 1], we define the time variance
of h as

�2n;h =

N�1X
n=0

(n� �)2h2[n]; (8)

where � is the mean time given by � =
PN�1

n=0 nh
2[n].

Since h is assumed real, we compute the band width (vari-
ance in frequency) of h according to

�2!;h =
2

N

N

2X
k=0

k2jH [k]j2: (9)

Since we are using these variances to design a real-
valued scaling function, a well-know property of compactly
supported wavelet scaling functions [7] is the conditionPN�1

n=0 h[n] =
p
2. For signals of even lengths N > 2,

this condition eliminates the Kronecker delta and its dual
the constant sequence from consideration. In addition, the
N
2 term of the DFT of h is equal to zero, i.e H [N2 ] = 0.

To quantify the joint localization of a length-N se-
quence in discrete time and discrete frequency, we use the
product of the variances (8) and (9) to define a new discrete-
discrete uncertainty measure given by

2N;h = �2n;h�
2
!;h: (10)

3. EQUIVALENCE CLASSES OF FINITE
SEQUENCES

Our intuitive expectation is that simple shifting in time
should not alter how concentrated or localized a signal is

in time and in frequency. Therefore we desire a discrete un-
certainty measure that, like the HUP, is translation invariant.
However, the uncertainty measure 2N;h in (10) is clearly not
shift invariant. In precise terms, this means that the state-
ment

h[n] = g[(n�m) mod N ]

does not necessarily imply that, for all m 2 Z,

2N;g = 2N;h:

Here, it is understood that shifting for a finite-length se-
quence is defined to be circular shifting (also known as ro-
tation).

Our approach for making the uncertainty measure (10)
shift invariant is to define it not on sequences, but rather
on equivalence classes of sequences. Let h[n] and g[n] be
two real-valued sequences of length N . Define a relation
between the two sequence as h � g if 9 m 2 Z such
that h[n] = g[(n � m) mod N ]. Simply stated, g is ob-
tained by rotating h to the right by m mod N . It is ob-
vious that this relation is reflexive, symmetric, and tran-
sitive and therefore defines an equivalence relation on the
set S = fh j h is a length N sequenceg. For a sequence
h 2 S we define the equivalence class [h] according to
[h] = fg 2 S j g � hg, which leads to the following
elegant theorem.

Theorem 1 Let h 2 S and g 2 [h]. Then jH [k]j = jG[k]j
8 0 � k � N � 1.

Proof of the theorem follows easily from the “time shift
property” of the DFT, which is commonly available in digi-
tal signal processing (DSP) textbooks.

To obtain a shift invariant uncertainty measure for a se-
quence h 2 S, we define the measure on the equivalence
class [h] according to

2N;[h] = min
g2[h]

2N;g: (11)

Since Theorem 1 establishes that all members of the equiva-
lence class [h] have identical frequency variance, the uncer-
tainty of a length-N sequence h[n] is then defined to be that
of the member g[n] 2 [h] that minimizes the time variance
�2n;g over [h]. Thus, the uncertainty measure 2

N;[h] in (11)
applies to all members of the class [h] and is clearly shift
invariant.

4. SEARCH ALGORITHM

A numerical optimization was implemented to determine
a low-pass scaling function h[n] minimizing the measure
2
N;[h] in (11) forN even. For the cases N = 2 andN = 4,

the Haar scaling function is the only admissible choice for
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h[n]. Note that this is the only known low-pass FIR anal-
ysis filter which possesses linear phase, exact reconstruc-
tion, and orthogonality. Optimizing the phase of H [k] over
a wide variety of fixed magnitude responses, we observed
that the minimum uncertainty filter with respect to the mea-
sure (11) always had a linear phase given by

'[k] =

�
�
N
k for k = 0; 1; : : : ; N2 ;

� �
N
k for k = N

2 + 1; : : : ; N � 1;
(12)

where H [k] = jH [k]je�j'[k]. Note that this coincides with
the spectral phase of the Haar scaling function. Also, linear
phase assures that a wavelet quadrature mirror filter bank
can be cascaded to achieve different resolutions without the
need for phase compensation.

For each evenN > 4, the search was initialized by zero
padding the optimal solution from the lengthN �2 case. In
the interest of computational tractability, the form (12) was
assumed for the phase so that

H [k] =M [k]e�j'[k]: (13)

The magnitude response of (13) satisfies the following con-
ditions:

1. M [0] =
p
2,

2. M
�
N
2

�
= 0,

3. M [k] =M [N � k] for k = 1; 2; : : : ; N2 � 1,

4. M
�
N
2 � 1

�
=

q
N�2
2 �PN�4

2

k=1 M
2 [k].

The numerical procedure used a variational approach to de-
termine an optimal set of frequency samples H [k], k =
1; 2; : : : ; N�42 , minimizing the uncertainty measure (11).

The optimal length N = 6 filter may be interpreted as
a generalization of the Haar function that relaxes the condi-
tions of perfect reconstruction and orthogonality to achieve
improved joint localization. The low-pass analysis filter co-
efficients are given by

h[0] = �0:0308556756313 = h[5]
h[1] = 0:03226648753395 = h[4]
h[2] = 0:70569596928391 = h[3]:

For this filter, the joint uncertainty is

26;[h] = 0:27598499451912:

For N = 8 the search algorithm produced the following
low-pass analysis filter:

h[0] = �0:0131588203123 = h[7]
h[1] = �0:0284383229781 = h[6]
h[2] = 0:04364111877368 = h[5]
h[3] = 0:70506280570341 = h[4]

For this lengthN = 8 filter, the joint uncertainty is

28;[h] = 0:48428024692605:

The results of the search algorithm are summarized in
Table 1, which, for each even filter length N , gives the un-
certainty of the optimal filter, the uncertainty of the zero
padded optimal length N � 2 filter (used to initialize the
numerical optimization), and the uncertainties of the cor-
responding length Haar and Daubechies low-pass analysis
filters. As can be seen from the table, the optimal filters
designed by the procedure described in this section exhibit
significantly better joint localization than the corresponding
length Haar and Daubechies filters for lengths 4 � N � 8.

5. EXPERIMENTAL RESULTS

A jointly localized three-scale separable 2-D wavelet filter-
bank was created using the optimal length-8 low-pass anal-
ysis filter obtained in Section 4. To create the quadrature
mirror filters, the high-pass analysis filter impulse response
was set equal to the low-pass analysis filter time reversed
and modulated by ej�n = �1n. The high-pass and low-
pass synthesis filters were constructed by time reversing the
corresponding analysis filters. Construction of the three-
scale 2-D filterbank followed the method described by Mal-
lat in [8].

Original M � M images I were decomposed and re-
constructed using this jointly localized 2-D wavelet trans-
form. The reconstructed images J were subjectively com-
pared with the originals for visual artifacts such as ringing,
blurring, smearing, and contrast degradation. In addition,
the mean squared error (MSE) was used to quantify the fil-
terbank performance. The MSE was computed according
to

MSE =
1

M2

M�1X
m;n=0

[I(m;n)� J(m;n)]
2
: (14)

Fig. 1(a) shows the well-known original Lena image.
The reconstructedLena image J is given in Fig. 1(b) . When
evaluated at full resolution, no evident degradation in the
reconstructed image is visible. The MSE of the recon-
structed image when compared with the original is 9.94 (out
of 256 possible gray levels). Fig. 1(c) gives the histogram
of the original image in Fig. 1(a), while the histogram of
the reconstructed image is given in Fig. 1(d). While the his-
togram of the reconstructed image is not identical to the that
of the original Lena image, it is evident that the shape of the
histogram has been preserved.
Barbara, another well-known original image, is shown

in Fig. 2(a). The reconstructed image J appears in Fig. 2(b).
The reconstruction does not show any apparent visible
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Fig. 1. Lena image. (a) Original image I. (b) Reconstructed
image J. (c) Histogram of original image I. (d) Histogram
of reconstructed image J.
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Fig. 2. Barbara image. (a) Original image I. (b) Recon-
structed image J. (c) Histogram of original image I. (d)
Histogram of reconstructed image J.
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Fig. 3. WoodWood image. (a) Original image I. (b) Re-
constructed image J. (c) Histogram of original image I. (d)
Histogram of reconstructed image J.

(a) (b)

0 50 100 150 200 250
0

200

400

600

800

1000

1200

(c)
0 50 100 150 200 250

0

200

400

600

800

1000

1200

(d)

Fig. 4. Mammogram image. (a) Original image I. (b) Re-
constructed image J. (c) Histogram of original image I. (d)
Histogram of reconstructed image J.
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Uncertainty

Filter Optimal Optimal Length Length N Dau-
Length LenghtN N � 2 Filter, Haar bech
N Filter Padded Filter ies

2 0.00000 0.0000 0.0000 0.00000
4 0.12500 0.1250 0.1250 0.15180
6 0.27590 0.2917 0.2917 0.39580
8 0.48430 0.4921 0.5214 0.99230

Table 1. Uncertainty measure for even filter lengths 2 �
N � 8. The second column gives the uncertainty 2

N;[h]
for the optimal filter designed by the technique described
in Section 4. The third column gives the uncertainty of the
initial filter for each length N , which was obtained by zero
padding the optimal filter found for lengthN � 2. For com-
parison, the last two columns give uncertainty measures for
the Haar and Daubechies low-pass analysis filters of corre-
sponding length.

degradation at full resolution. The MSE for this exam-
ple is 6.0739. Although the histogram of the original image
shown in Fig. 2(c) differs noticeably from the histogram of
the reconstruction in Fig. 2(d), the peaks of the two his-
tograms are in good correspondence.

The original WoodWood image shown in Fig. 3(a) was
obtained by rotating the central portion of a homogeneous
wood grain textured image. The reconstructed image J

is shown in Fig. 3(b) and exhibits no visible artifacts; the
MSE is 7:3791. Histograms of the original image I and
reconstructed image J are given in Fig. 3(c) and (d), respec-
tively, and appear quite similar.

Finally, the original image Mammogram is shown in
Fig. 4(a). The reconstruction J is given in Fig. 4(b), where
theMSE was 0:5172. Once again, no visible artifacts were
detected upon visual inspection of the full resolution recon-
structed image. While the values of the original and recon-
structed histograms shown in 4(c) and (d), resp., vary sub-
stantially, the bimodal nature of the gray level distribution
is preserved.

6. CONCLUSION

We introduced a novel measure of joint uncertainty applica-
ble to real-valued FIR filters of even finite lengths. This new
uncertainty measure is analogous to the continuous-time
Heisenberg-Weyl uncertainty measure in that it admits an
intuitive interpretation of time and frequency localization as
simple statistical variances and is also invariant under time
translation. The translation invariance property was ob-
tained by defining the measure not on discrete-time signals
themselves, but rather on equivalence classes of discrete-
time signals. Variances in time and frequency were defined
with respect to the natural probability distribution of signal

energy in each domain inherited from the `2-norm of an FIR
filter and its DFT as opposed to the DTFT.

A numerical optimization algorithm was employed to
design low-pass analysis filters with optimal joint localiza-
tion for lengths N = 6 and N = 8. These new filters
exhibited significantly improved joint uncertainty as com-
pared with the Haar and Daubechies filters of correspond-
ing lengths. The optimal length N = 8 filter was used to
construct a jointly localized three-scale 2-D separable dis-
crete wavelet transform that was demonstrated on four im-
ages of general interest in practical applications. Visually,
the reconstructed images were free of artifacts and virtually
indistinguishable from the originals in each case. While this
new wavelet transform sacrificed orthogonality and perfect
reconstruction to obtain optimal joint localization, we ob-
tained an MSE of less than 4% in each case. The main
features of the image histograms were also preserved.
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