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ABSTRACT

We compute AM-FM models for infrared video frames depicting military targets immersed in structured clutter
backgrounds. We show that independent correlation based detection processes can be implemented in the pixel
and modulation domains and used to construct useful online track consistency checks that indicate when the
detection process has been degraded due to nonstationary evolution of the target signature. Throughout the
paper, we use the well-known AMCOM closure sequences as exemplars.
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1. INTRODUCTION

In this paper, we compute AM-FM models for infrared video frames depicting military targets immersed in
structured clutter backgrounds. Throughout the paper, we use the well-known AMCOM closure sequences as
exemplars. We show that independent correlation based detection processes can be implemented in the pixel and
modulation domains and used to construct useful online track consistency checks that indicate when the detection
process has been degraded due to nonstationary evolution of the target signature. The 2-D Fourier transform
S(Ω) =

∫
R2 s(x)e−jΩT x dx and inverse s(x) = (2π)−2 ∫

R2 S(Ω)ejΩT x dΩ provide a means for representing an
image as a sum of sinusoidal components that each has constant amplitude, linear phase, and constant frequency
throughout the entire image domain. With the Fourier representation, nonstationary image structure is created
by constructive and destructive interference between stationary Fourier components. By contrast, AM-FM
image models facilitate the representation of an image in terms of oscillating functions admitting smooth but
nonstationary amplitude and frequency modulations.

2. MODULATION DOMAIN SIGNAL MODEL

While the theory of AM-FM signal modeling1, 2 extends naturally to multiple dimensions, we restrict our attention
here to the case of 2-D images. Let x = [x1 x2]T ∈ R

2 and let s(x) : R
2→R be a real-valued optical image (with

continuous domain). For the moment, assume that s(x) is locally smooth in the sense that it can be well
approximated by a pure sinusoid over any sufficiently small neighborhood. Such images are described as locally
coherent.2, 3 We write

s(x) = a(x) cos[ϕ(x)], (1)

where a(x) : R
2→R

+ is the amplitude modulation (AM) function of s(x) and ∇ϕ(x) is the frequency modulation
(FM) function of s(x). The model (1) is ill-posed in the sense that, for any given s(x), there are uncountably
infinitely many distinct pairs of functions a(x), ϕ(x) that satisfy (1). We are most interested in pairs such that
both the AM and the FM function are locally smooth, the local image contrast is manifest in a(x), and the local
texture orientation and pattern spacing are manifest in ∇ϕ(x).

In contrast to the real case, for any complex-valued image z(x) : R
2→C, we may write

z(x) = s(x) + jq(x) = a(x) exp[jϕ(x)], (2)

q(x) = a(x) sin[ϕ(x)]. (3)
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Unlike (1), the modulating functions a(x) and ∇ϕ(x) in (2) are unique up to sets of (Lebesgue) measure zero.
Indeed, one may verify by direct calculation that, for z(x) in (2), we have

∇ϕ(x) = Re
[∇z(x)

jz(x)

]

, (4)

a(x) = |z(x)|. (5)

Intuitively, the FM algorithm (4) “works” because the function eu is a fixed point (e.g., eigenfunction) of the
derivative operator. Thus, deu = eudu, from which (4) follows immediately. It is also worth noting that the
imaginary component of the quantity ∇z(x)/jz(x) is ∇a(x)/a(x),4 which is a multidimensional extension of the
instantaneous bandwidth as defined by Cohen.5

Because (4) and (5) provide unique solutions for the AM and FM functions of any complex-valued image, we
consider the problem of associating a unique pair of modulating functions to the real-valued image s(x) in (1) as
equivalent to the problem of constructing the complex extension z(x) given by (2); e.g., disambiguation of the
real-valued demodulation problem is equivalent to selecting an imaginary part q(x) to associate with s(x). How
one should best select q(x) depends on the application and the constraints at hand. In the absence of competing
constraints, we have argued1, 2, 6, 7 that there are strong physical motivations for choosing q(x) to be the partial
Hilbert transform of s(x) according to

q(x) = H[s(x)] =
1

πx1
∗ s(x) =

1
π

pv
∫

R

s(x − [ξ 0]T )
dξ

ξ
, (6)

where the asterisk indicates 1-D convolution with respect to x1 and the integral is interpreted as a Cauchy
principal value. With this approach, the complex image z(x) admits many but not all of the attractive properties
of the 1-D analytic signal.8, 9 In particular, it satisfies the following multidimensional extensions of the properties
proposed by Vakman10 as desirable for the 1-D amplitude, phase, and frequency.

1. Continuity: if ŝ(x) = s(x) + δs, where δs is a small variation, then the modulating functions of ŝ(x) are
the same as those of s(x) in the limit as ||δs||→0.

2. Amplitude Homogeneity: if a(x) and ∇ϕ(x) are the modulating functions of s(x) and if c > 0 is a positive
real constant, then the modulating functions of the image cs(x) are given by ca(x) and ∇ϕ(x).

3. Harmonic Correspondence: if Ω ∈ R
2 and s(x) = cos(ΩT x), then a(x) = 1 and ∇ϕ(x) = Ω; e.g.,

q(x) = sin(ΩT x).

Moreover, with q(x) defined as in (6) we have that the first moment of the multidimensional instantaneous
frequency ∇ϕ(x) in (4) with respect to the distribution |z(x)|2/||z(x)||2L2 of signal energy in space precisely
coincides with the first moment of the Fourier frequency with respect to the distribution |Z(Ω)|2/||Z(Ω)||2L2 of
signal energy in the Fourier plane:

∫

R2
∇ϕ(x)|z(x)|2/||z(x)||2L2 dx = (2π)−2

∫

R2
Ω|Z(Ω)|2/||Z(Ω)||2L2 dx. (7)

A mathematically consistent single component model of the form (1) can always be computed for any given
real-valued s(x). However, for most images of practical interest, the single component model (1) will not admit
locally smooth modulating functions that correspond well to visual perception of the image. Therefore, when
the goal is to use the computed modulations for image analysis or modulation domain signal processing, it is
generally necessary to consider the image instead to be a sum of several components of the form (1), wherein
each component has locally smooth AM and FM functions. Thus, we have the real-valued multi-component
model

s(x) =
P∑

p=1

sp(x) =
P∑

p=1

ap(x) cos[ϕp(x)], (8)
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where sp(x) � ap(x) cos[ϕp(x)]. Since the partial Hilbert transform (6) is linear, it may be applied directly to
s(x) to generate imaginary components at once for all P components sp(x) in (8) according to

z(x) = s(x) + jH[s(x)] =
P∑

p=1

zp(x) =
P∑

p=1

ap(x) exp[jϕp(x)]

=
P∑

p=1

sp(x) + jH[sp(x)], (9)

where zp(x) � sp(x) + jqp(x), qp(x) = H[sp(x)], and H[sp(x)] is defined by (6). The multi-component mod-
els (8) and (9) provide great flexibility in the sense that arbitrarily complicated images s(x) can be modeled
as superpositions of locally coherent AM-FM functions. However, in practice they also introduce an additional
level of ill-posedness to the AM-FM modeling problem, since there is no unique solution for how the image s(x)
should be decomposed into components sp(x).

In (9), if we take all the ap(x) constant and all the ϕp(x) linear, then the FM functions ∇ϕp(x) are all constant
and the AM-FM components zp(x) coincide with stationary Fourier components of z(x). Hence if m ∈ Z

2 and
s(m) is a discrete image of finite extent, then at least one discrete multi-component AM-FM representation of the
form (9) exists, since the DFT is in fact a multicomponent AM-FM model where all the modulating functions are
constant. Generally, other multi-component AM-FM models will also exist that are more desirable in the sense
of having fewer components and of admitting AM and FM functions that better correspond to visual perception
of the salient nonstationary image structures. Two main approaches for obtaining the components sp(x) from
the image s(x) have been investigated. First, one can apply some kind of regression or matching pursuits type
of algorithm to iteratively extract components sp(x).11–15 The empirical mode decomposition is an example of
this type of approach. The obtained components can then be demodulated using (4) and (5). While techniques
of the first type show great promise, we will not consider them further in this paper because they are generally
less mature than techniques belonging to the second main approach.

In the second main approach, one applies a multiband filterbank to obtain the components sp(x). The
filterbank channels need to be well localized spatially to faithfully capture the local nonstationary image structure,
but also spectrally well localized to resolve multiple image components that are closely spaced in frequency. For
this reason, the use of Gabor filters, which in the continuous domain case uniquely realize the Heisenberg-Weyl
inequality lower limit on 2-D joint resolution,16 has been popular.2, 3, 17–20 Although the Gabor filters admit
many attractive properties for AM-FM image analysis,1 perfect reconstruction is not among them. Indeed, it is
generally true that, for any filter family, desirable properties such as good joint localization and local coherency
of the impulse and frequency responses are goals that conflict with that of perfect reconstruction. Recently, we
have constructed Gabor-like perfect reconstruction filterbanks and used them to perform signal processing in the
modulation domain.21, 22 Doing this invariably requires sacrificing desirable properties of the filterbank in order
to obtain perfect reconstruction, however. Like many classical problems in computer vision, target tracking is an
“analysis only” application: image analysis is required but image synthesis is not. Thus, a perfect reconstruction
system is not required for the target tracking application and we restrict our attention here to multiband Gabor
filterbanks that provide many desirable properties1, 23 but not perfect reconstruction.

Let gp(x) and Gp(Ω) be the impulse and frequency responses of filterbank channel p. Then the channel
response is given by

yp(x) = z(x) ∗ gp(x) ≈ zp(x) ∗ gp(x) =
∫

R2
ap(u) exp[jϕ(u)]gp(x − u) du. (10)

Unfortunately, (10) does not lead to a closed form solution for the AM function ap and the FM function ∇ϕp.
Therefore, it becomes necessary to estimate the modulating functions ap and ∇ϕp of component sp from the
channel response yp, which is in general different from sp in that a shift and scale has been incurred in passing
the component through the filterbank channel. We have shown that the modulating functions of component sp
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can be reasonably estimated with bounded errors using the approximate demodulation algorithm2

∇ϕp(x) = Re
[∇yp(x)

jyp(x)

]

, (11)

ap(x) =
∣
∣
∣
∣

yp(x)
Gp[∇ϕp(x)]

∣
∣
∣
∣ . (12)

We have also developed discrete versions of (11) and (12) that are applicable to digital images.1, 2

3. DUAL DOMAIN DETECTION AND ONLINE TRACK CONSISTENCY CHECKS

We consider an imaging infrared detector that delivers a sequence of digital video frames sk(m), where k ∈ N

is the temporal index and m = [m1 m2]T ∈ Z
2. We assume that the target location and magnification in the

initial frame are known. This information could come from an independent detection process such as matched
filtering24 against a library of a priori known signatures or from a manual designation of a previously unknown
target type by a “human in the loop.” As a baseline, we consider a normalized correlation tracker operating on
the raw video frames; we refer to this as the pixel domain tracker to differentiate it from the modulation domain
tracker to be introduced later in this section. In the baseline pixel domain system, tracking is accomplished by
computing the normalized correlation function γpix(m, k) between the current target template and the currently
observed frame sk(m).25 A detection is declared at the pixel coordinates of the global peak in the normalized
correlation function, e.g., Cpix(k) = argmaxm γpix(m, k). If the noise and clutter are not too severe, then tracking
can be accomplished by simply taking the detection Cpix(k) as the track centroid. In practical combat scenarios,
however, the target to clutter ratio is likely to be poor at least at times and so it is usually preferable to model the
peak of the correlation function as a noisy measurement to be used as input to a Kalman or particle filter.26–29

Employing a more sophisticated track filter in this way provides an additional advantage in that the required
computational load can be reduced by restricting the calculation of the normalized correlation function to a
neighborhood about the predicted track centroid.

In most scenarios of practical interest, the target signature will exhibit nonstationary evolution with time,
including magnification, rotation, and pose. As the observed target signature evolves, the quality of the cor-
relation based detection process degrades in the sense that the template eventually becomes stale and fails to
correlate well with the actual target; when this occurs, the track may become locked onto clutter features or
may simply fail to detect the correct target location. In either case, track loss typically results. Thus, it is gen-
erally necessary to devise some means for identifying that the detection process has been compromised and for
updating the template when this occurs.30–33 Two straightforward strategies are to update the template every
frame and to update every K frames, where K ∈ Z. However, neither one of these straightforward strategies
will provide satisfactory performance against difficult IR sequences such as the well-known AMCOM closure
sequences.26, 34–36 If the template is updated every frame, it will invariably overadapt with the result that the
tracker will lock onto stationary clutter features. Relatively improved performance can be obtained with the
fixed interval update strategy, but some means must be devised for determining the interval K. With a priori
knowledge, one can choose a K that will result in successful tracking for some AMCOM sequences. However, we
know of no systematic way for determining K.

Our main goal in this paper is to introduce a new dual domain detection process that will facilitate identifi-
cation of a stale template. When the dual domain detector indicates deterioration of the pixel domain detection
process, the target template should be updated. This approach is quite general and could be combined with
a variety of different tracking algorithms. Hence, our attention here is focused on dual domain detection as a
means of track consistency checking rather than on any particular tracking algorithm. We analyze each video
frame sk(m) with an 18-channel Gabor filterbank which is depicted in the 2-D frequency plane in Fig. 1(a).
In practice, we combine the linear translation invariant transform (6) in series with each filterbank channel so
that the complex components (9) and the channel responses (10) can be generated simultaneously with P = 18
pointwise spectral multiplications. Discrete versions of the demodulation algorithms (11) and (12) are applied
to all 18 channel responses yp(m) to estimate the modulating functions ak

p(x) and ∇ϕk
p(m), where superscript

k denotes the time index. We then convert the FM vector fields to polar coordinates by computing for each
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Figure 1. AM-FM image model for a digital video frame sk(m). (a) Frequency response of 18-channel Gabor filterbank.
(b) Modulation domain image planes for the AM and polar FM vectors of all 18 channels.

component the magnitude frequency rk
p (m) = |∇ϕk

p(m)| and orientation θk
p(m) = arg∇ϕk

p(m). This results in a
modulation domain image representation comprising 54 image planes ak

p(m), rk
p(m), and θk

p(m) for 1 ≤ p ≤ 18
as depicted in Fig. 1(b).

The spatial support of the initial pixel domain target template designated in frame s1(m) is used to simultane-
ously extract 54 modulation domain templates from a1

p(m), r1
p(m), and θ1

p(m). For each frame sk(m), normalized
correlation functions are computed in all 54 modulation domain image planes depicted in Fig. 1(b). These 54 nor-
malized correlation functions are then averaged to construct a composite correlation function γmod(m, k) which
we refer to as the modulation domain correlation function. The modulation domain target detection for frame k is
declared at the peak of the modulation domain correlation function according to Cmod(k) = argmaxm γmod(m, k).
Two comments are in order concerning Cmod(k) and γmod(m, k). First, one could alternatively calculate Cmod(k)
by averaging the pixel coordinates of the 54 peaks of the individual modulation domain normalized correlation
functions computed from ak

p(m), rk
p(m), and θk

p(m). We have thoroughly tested this approach against the AM-
COM sequences. The empirical conclusion is that better agreement with the ground truth target centroids is
obtained by averaging the 54 correlation functions first and then computing the maximum Cmod(k) as opposed
to averaging the 54 individual maxima. Second, one could devise consistency checks or quality metrics for the 54
modulation domain image planes and use them to perform an unequally weighted average of the 54 individual
correlation functions. That is an interesting and promising idea that we have yet to investigate.

3.1 Online Track Consistency Checks

The AM-FM measurement shown in Fig. 1(b) provides a transform domain representation of the frame sk(m) that
is distinctly different from the pixel domain representation. In particular, the AM-FM functions provide a rich
description of the local nonstationary texture structure. We have argued previously that targets tend to exhibit
a higher degree of organization or coherency in the modulation domain as compared to backgrounds and clutter
and also that target-background class separability is often enhanced in the modulation domain as compared to
the pixel domain.37, 38 In theory, one could perform tracking using the pixel domain detection Cpix(k) or the
modulation domain detection Cmod(k). Through exhaustive empirical testing against 36 AMCOM sequences for
which ground truth is available we have determined that Cpix(k) and Cmod(k) are both approximately unbiased
detectors. However, the error variance (e.g., spatial imprecision) of Cmod(k) is greater due to the inherent
spreading, i.e., spatial averaging, that occurs as a result of applying the Gabor filters in computing the AM-FM
image model. Based on this empirical evidence, in practice we use only Cpix(k) and not Cmod(k) as input to a
higher level track processor.

However, because the pixel domain and modulation domain representations provide distinctly different de-
scriptions of the true 3-D scene, the pixel domain and modulation domain correlation-based detection processes
tend to fail in substantially different ways. This observation suggests that by quantifying the difference in the
failure modes of Cpix(k) and Cmod(k) one can obtain an indication of when the pixel domain detector has dete-
riorated due to a stale template. Again through an exhaustive study of the AMCOM sequences, we observed
many cases where nonstationary evolution of the target signature causes a failure in Cpix(k) but not in Cmod(k),
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Figure 2. Detection results for rng14 15. (a),(b) Horizontal and vertical errors in Cpix(k) (pixels). (c),(d) Horizontal and
vertical errors in Cmod(k) (pixels). (e) γjoint(m, k); vertical lines indicate template updates. (f) δdual(k).

a failure in Cmod(k) but not in Cpix(k), and also many cases where both detection processes fail simultaneously.
However, it is exceedingly rare that the two detectors fail at the same time with similar failure modes. Thus,
in the difficult AMCOM closure sequences, a stale template condition can be detected about 95% of the time
by online consistency checks based on the divergence of Cpix(k) and Cmod(k). It should be noted in this regard
that a track quality metric based solely on agreement between the observed target location and the predicted
location delivered by a high level track filter does not provide a sufficient indication of when the pixel domain
detection process has been compromised due to a stale template. Indeed, the stale template will often correlate
well with elements of the clutter and background; when this occurs, the track gradually locks onto the clutter
as opposed to the target and this can occur without any substantial disagreement between the predicted and
detected target locations. This occurs because it is the detection process that has been compromised. Clearly,
this problem is exacerbated in cases where the template is dynamic and is permitted to overadapt.

Here, we propose two new online track consistency checks capable of revealing a compromised detec-
tion process. For the first check, we quantify the quality of the detection by the quantity γjoint(m, k) =
|γpix(m, k)γmod(m, k)|, which we refer to as the joint correlation product. As one or both of Cpix(k) and Cmod(k)
begin to fail, the peak value of γjoint(m, k) is reduced. Thus, divergence of the two detection processes can be
revealed by applying a threshold to the maximum of γjoint(m, k). For the second track consistency check, the
quality of the detection process is quantified by the Euclidean distance δdual(k) = ||Cpix(k) − Cmod(k)||�2 , here
referred to as the dual domain distance. For the AMCOM sequences, we generally consider that a stale template
condition exists if δdual(k) > 4 pixels.

3.2 Examples

We performed experiments to study the degradation of the pixel domain and modulation domain detection
processes due to nonstationary target signature evolution for the 36 AMCOM closure sequences shown in the
first column of Table 1. For each sequence, we took the target location and template size from ground truth in
the first frame. We ran the dual domain detection process until a stale template condition was declared due to
an error of more than four pixels with respect to ground truth in one or both of Cpix(k) and Cmod(k). Statistics
were then recorded to characterize the failure modes of Cpix(k) and Cmod(k) as well as the effectiveness of the
two online consistency checks for detecting the stale template condition. The dual domain detection process was
then restarted using ground truth in the frame where the stale template was declared.

For each AMCOM sequence, the third column of Table 1 gives the number of times that the error in Cpix(k)
with respect to ground truth exceeded four pixels but the error in Cmod(k) did not. Similarly, column four gives
the number of times that the error in Cmod(k) exceeded four pixels but the error in Cpix(k) did not. The number
of times that the detection process failed simultaneously in both domains but with different failure modes is
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Table 1. Divergence statistics for pixel and modulation domain detectors for 36 AMCOM sequences.

Sequence Name Number of Frames Divergence Domain Both Domains Effectiveness %

Pixel Modulation Asimilar Similar

rng14 15 281 10 6 0 3 84

rng15 20 171 14 5 0 0 100

rng15 NS 320 12 10 0 6 79

rng16 04 208 5 3 0 2 80

rng16 07 76 3 2 0 1 83

rng16 08 290 4 3 0 1 88

rng16 18 291 24 8 2 8 81

rng17 01 371 1 2 0 0 100

rng17 02 301 12 14 2 0 100

rng17 20 35 4 1 0 0 100

rng18 03 447 57 4 1 5 93

rng18 05 213 23 11 6 9 82

rng18 07 260 42 7 3 0 100

rng18 12 300 75 3 5 3 97

rng18 13 238 41 5 1 0 100

rng18 16 271 16 18 5 2 96

rng18 18 207 26 9 3 2 95

rng19 01 240 20 0 0 0 100

rng19 02 270 29 2 4 0 100

rng19 04 270 20 5 0 2 96

rng19 10 265 1 7 0 0 100

rng19 11 58 1 2 0 0 100

rng19 13 368 9 9 3 0 100

rng19 15 348 7 3 1 0 88

rng19 18 193 4 8 5 0 100

rng19 NS 448 0 6 0 0 100

rng20 04 141 57 12 8 0 100

rng20 08 334 21 20 8 7 100

rng20 17 475 37 6 13 0 100

rng20 18 360 51 14 5 0 100

rng20 20 348 3 2 0 0 96

rng21 04 380 11 3 1 0 100

rng21 15 114 39 1 0 0 100

rng21 17 165 22 12 1 0 100

rng22 06 142 5 77 3 4 100

rng22 08 101 4 11 5 0 100

given in the fifth column, while the number of times that failure occurred in both domains with similar failure
modes is given in the sixth column. The detection process failures in columns three, four, and five can all be
identified in real time by thresholding δdual(k) at four pixels. Only the failures shown in column six of the table
are undetectable by the online consistency checks proposed in this paper. This is reflected in the rightmost
column of Table 1, which gives the percentage of stale template conditions in each sequence that can be detected
by the test δdual(k) > 4.

Detailed data for five sequences that we consider among the most difficult in the AMCOM data set are given
in Figs. 2-6. In each figure, the (a) and (b) parts give the horizontal and vertical errors in the pixel domain
detection Cpix(k) with respect to ground truth, while the horizontal and vertical errors in the modulation domain
detection Cmod(k) with respect to ground truth are given in the (c) and (d) parts. The detection quality metric
γjoint(m, k) is plotted as a function of k in the (e) part of each figure, where vertical lines indicate the frames
where a stale template condition was declared and the detectors were reinitialized from ground truth. Although
the vertical axis drops below zero on the (f) part of Fig. 2 in order to show the vertical bars clearly, it should be
noted that the γjoint(m, k) data are strictly non-negative in all five figures. After each template reinitialization,
γjoint(m, k) shows a clear decreasing trend due to degradation of the detection process because of nonstationary
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Figure 3. Detection results for rng15 NS. (a),(b) Horizontal and vertical errors in Cpix(k) (pixels). (c),(d) Horizontal and
vertical errors in Cmod(k) (pixels). (e) γjoint(m, k); vertical lines indicate template updates. (f) δdual(k).
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Figure 4. Detection results for rng17 01. (a),(b) Horizontal and vertical errors in Cpix(k) (pixels). (c),(d) Horizontal and
vertical errors in Cmod(k) (pixels). (e) γjoint(m, k); vertical lines indicate template updates. (f) δdual(k).

target signature evolution, as expected. Finally, the metric δdual(k) is given in the (f) part of Figs. 2-6. Thus,
the vertical lines in the (e) part of each figure occur where the quantity in the (f) part exceeds four pixels.

Examples of interesting frames where failures occurred in one or both domains are shown in Figs. 7-9, again
for sequences that we consider among the most difficult. In each figure, the black rectangle shows the size of
the pixel domain template and is centered at Cpix(k), while the white rectangle shows the size of the modulation
domain template and is centered at Cmod(k). Frames from the sequence rng14 15 appear in Fig. 7. Fig. 7(a)
shows frame s10(m), where a stale template condition was declared due to an error of greater than four pixels
with respect to ground truth in the pixel domain detector but not in the AM-FM detector. Fig. 7(b) shows
frame 184, where failure occurred in the modulation domain but not in the pixel domain. Finally, Fig. 7(c)
shows frame 279, where both detectors failed simultaneously. Interestingly, the failure mode was the same in
both domains, so that δdual(279) < 4 pixels. Thus, Fig. 7(c) is an example of a stale template condition that
cannot be detected with the online consistency checks proposed in this paper. However, as may be seen from the
figure, this failure is not militarily severe, in the sense that the probability of kill is still high with almost any
conceivable precision guided munitions system. Similar examples are given for the sequence rng19 13 in Fig. 8
and for the sequence rng18 05 in Fig. 9.
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Figure 5. Detection results for rng19 13. (a),(b) Horizontal and vertical errors in Cpix(k) (pixels). (c),(d) Horizontal and
vertical errors in Cmod(k) (pixels). (e) γjoint(m, k); vertical lines indicate template updates. (f) δdual(k).
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Figure 6. Detection results for rng21 17. (a),(b) Horizontal and vertical errors in Cpix(k) (pixels). (c),(d) Horizontal and
vertical errors in Cmod(k) (pixels). (e) γjoint(m, k); vertical lines indicate template updates. (f) δdual(k).

4. CONCLUSION

We reviewed the fundamentals of AM-FM image modeling and proposed two dual domain online consistency
checks for identifying when a stale template condition is compromising the detection process in an infrared target
tracking system. These consistency checks are independent of any particular track filter and hence can be applied
for track quality monitoring with a variety of different tracking systems. To demonstrate the practical utility of
these new consistency checks against a realistic test case, we ran a pixel domain normalized correlation tracker
against the AMCOM sequence rng19 13. We consider this sequence to be one of the most difficult in the data
set because there are multiple targets present in the frame, each target exhibits complicated kinematics, and
there is considerable nonstationary evolution of the target signatures throughout the sequence. The problem was
to track the lead vehicle. As shown by the sample frames in Fig. 10, even this simple track filter is successful
in maintaining track lock throughout this extremely difficult sequence when the online track consistency checks
proposed in this paper are used to initiate template refresh operations.
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(a) (b) (c)

Figure 7. Example detector failures for rng14 15. The pixel domain template is shown in black and the AM-FM template
is shown in white. (a) Failure of Cpix(k) but not Cmod(k) at k = 10. (b) Failure of Cmod(k) but not Cpix(k) at k = 184.
(c) Failure of both Cpix(k) and Cmod(k) at k = 279. In this case the failure mode is the same in both domains, so the
consistency checks proposed here are incapable of detecting this stale template condition. This failure is not serious from
a tactical standpoint, however, since the probability of kill is still high.

(a) (b) (c)

Figure 8. Example detector failures for rng19 13. (a) Failure of Cpix(k) but not Cmod(k) at k = 3. (b) Failure of both
Cpix(k) and Cmod(k) at k = 21; the consistency checks still detect the stale template condition, however, since the failure
modes are different in the two domains. (c) Failure of Cmod(k) but not Cpix(k) at k = 89.

REFERENCES
1. J. P. Havlicek, P. C. Tay, and A. C. Bovik, “AM-FM image models: Fundamental techniques and emerging

trends,” in Handbook of Image and Video Processing, A. C. Bovik, ed., pp. 377–395, Elsevier Academic
Press, Burlington, MA, 2nd ed., 2005.

2. J. P. Havlicek, D. S. Harding, and A. C. Bovik, “Multidimensional quasi-eigenfunction approximations and
multicomponent AM-FM models,” IEEE Trans. Image Proc. 9, pp. 227–242, Feb. 2000.

3. A. C. Bovik, N. Gopal, T. Emmoth, and A. Restrepo, “Localized measurement of emergent image frequencies
by Gabor wavelets,” IEEE Trans. Info. Theory 38, pp. 691–712, Mar. 1992.

4. J. P. Havlicek, D. S. Harding, and A. C. Bovik, “Multicomponent multidimensional signals,” Multidimen-
sional Syst. and Signal Proc. 9, pp. 391–398, Oct 1998.

5. L. Cohen, Time-Frequency Analysis, Prentice Hall, Englewood Cliffs, NJ, 1995.
6. J. P. Havlicek, J. W. Havlicek, and A. C. Bovik, “The analytic image,” in Proc. IEEE Int’l. Conf. Image

Proc., 2, pp. 446–449, (Santa Barbara, CA), Oct. 26-29, 1997.
7. J. P. Havlicek, J. W. Havlicek, N. D. Mamuya, and A. C. Bovik, “Skewed 2D Hilbert transforms and

computed AM-FM models,” in Proc. IEEE Int’l. Conf. Image Proc., pp. 602–606, (Chicago, IL), Oct. 4-7,
1998.

8. D. Gabor, “Theory of communication,” J. Inst. Elect. Eng. London 93(III), pp. 429–457, 1946.
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