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Abstract

Computed AM-FM models represent images in terms of
instantaneous amplitude and frequency modulations. How-
ever, the instantaneous emplitude and frequency of a real-
valued image are ambiguous. We apply the directional 2D
Hilbert transform to compute a complez extension for a real
image. This extension, called the analytic image, admiis
most of the attractive properties of the 1D analytic signal.
However, the analytic image is not unique: for a given real
image, taking the Hilbert transform in the horizontal and
vertical directions yields different complex extensions and
different computed AM-FM models. We show that these
two differing models are essentially equivalent and develop
ezplicit formulations relating them.

1. Introduction

Images are often nonstationary, both as a result of
nonuniform patterns appearing on the physical surfaces be-
ing imaged and as a result of the perspective distortion
that occurs when 3D surfaces are projected onto the 2D fo-
cal plane. The Fourier transform represents an image as a
composition of stationary sinusoidal components that each
have constant amplitude and constant frequency. In the
Fourier representation, nonstationary structure is created
by constructive and destructive interference between the
stationary components. Recently, there has been a growing
interest in AM-FM modeling techniques that represent non-
stationarities directly by considering an image to be a sum
of joint amplitude-frequency modulated AM-FM functions
of the form
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Such models have been used for image analysis [1-3], im-
age enhancement [4, 5], texture processing [6,7], and image
representations [8,9]. In (1), a(z,y) is the AM function,
or instantaneous amplitude of z(z,y), while Vo(z,y) is the
FM function, also known as the instantaneous frequency.

For a complex-valued image component such as (1), the
instantaneous amplitude and frequency are unique. They
may be obtained using the spatially localized nonlinear de-
modulation algorithms (8]

z(z,y) = a(z,y) expljp(z, y)].

a(z,y) = )
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Approximate discrete demodulation algorithms analogous
to (2) and (3) were given in [10]. Together, the modulat-
ing functions a(z,y) and Vy(z,y) are a computed AM-FM
model for z(z,y).

In many image processing applications, however, the im-
ages of interest are real-valued. For a real image component

(4)

the instantaneous amplitude and frequency are ambiguous.
In fact, there are infinitely many pairs of AM and FM func-
tions a(z,y) and V(z, y) that satisfy (4). Adding an imag-
inary part to s(z,y) is equivalent to selecting one particu-
lar pair of modulating functions to associate with s(z,y).
Several methods for defining AM and FM functions directly
from the real values of the signal (4) have been proposed, in-
cluding the mathematical frequency [11,12], the zero cross-
ing and running Fourier frequencies [12], the Teager-Kaiser
energy operator [3,13], and the Model Based Demodulation
Algorithm [14]. Implicitly, each of these methods is equiv~
alent to adding an imaginary part ja(z,y)sin[p(z, y)].

In 1D, there are strong physical reasons for defining
the AM and FM functions of a real signal to be the
instantaneous amplitude and frequency of the associated
complex analytic signal [15-17]. The analytic signal may
be extended into 2D using the directional Hilbert trans-
form [9,18]

s(z,y) = a(z,y) coslp(z, )],
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with action in the z direction. The complex extension

(6)

which we call the analytic image, admits many of the attrac-
tive properties of the 1D analytic signal. Over the Hilbert
space L?(R?), (6) satisfies the frequency moment properties
of Gabor and Ville [15,16] and the amplitude continuity,
homogeneity, and harmonic correspondence conditions of
Vakman [19] (up to a set of Lebesgue measure zero). Fur-
thermore, the Fourier spectrum Z;(u,v) is supported only
in quadrants I and IV of the 2D frequency plane where it
is twice the spectrum of the real image s(z,y).

There is one important property of the 1D analytic sig-
nal that does not extend into multiple dimensions in the
analytic image (6). Because the Hilbert transform (5) has

Zl(x7 y) = S(il),y) +jq1(a7,y),



a direction of action, the analytic image is not unique. In-
deed, we might just as well have chosen the complex exten-
sion z2(z,y) = s(z,y) + jga(x,y) by using the directional
Hilbert transform with action in the y direction:

w(on) =36ls@ ) - [ s@y-0%F.

Note that the two transforms (5) and (7) operate in direc-
tions that are skewed relative to one another. In general,
the extensions z;(z,y) and zz(z,y) are not equal. Thus,
different AM-FM models for the image s(z,y) are obtained
by demodulating z;(z,y) as opposed to z2(z,y). This is in
contrast to the 1D case where the analytic signal associates
unique amplitude and frequency modulating functions with
a real-valued signal.

In this paper, we develop the relationship between the
complex extensions z1(z,y) and z2(z,y). We also develop
the relationships between AM-FM models for s(zx,y) com-
puted using the two extensions. In particular, we show
that either AM-FM model can be obtained from the other.
Thus, despite the fact that the complex extension delivered
by the multidimensional Hilbert transform depends on the
transform’s direction of action, the AM-FM models com-
puted for s(z,y) using the two transforms H}; and ¥, are
essentially equivalent; a one-to-one correspondence exists
between them.

2. Relating the H; and H, Transforms

Let s(z, y) be a real single component image with ¢1(z, y)
and g2(z,y) as defined above. Thus, z1(z,y) = s(z,y) +
jq(z,y) and z2(z, y) = s(z,y) +jg2(z, y). The relationship
between ¢1 and g is
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@(2,y) = *qz,y) = *qi(z,y). (8)
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In the [u v]T frequency plane, let J; be the indica-
tor function of quadrants I and III. Thus, Ji(u,v) is one
if sgnu = sgnv and zero otherwise. Similarly, let Jy;
be the indicator function of quadrants II and IV. Define
the operator T by T's(z,y) = s(z,y) * ;}% Clearly,
¢2(z,y) = Tqi(z,y). Furthermore, we may decompose
s(z,y) according to s(z,y) = si(z,y) + sii(z,y), where
Si(u,v) = J;S(u,v) is supported only in quadrants I and
I1I and Sii(u,v) = J::S(u, v) is supported only in quadrants
I and IV. The images s; and s;; may easily be generated
from s according to s; = [s + T's}/2 and si; = [s — T's]/2.

Now, Ha[si(z,y)] = Hilsi(z,y)] and Halsii(z,y)] =
—9{1[si5(a:,y)], S0

Ha[si(x, )] + Halsu(z, )]
Ha [Si(xy y)] -Hu [sii (.’.I?, y)] .

qZ(z7y)
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Furthermore, q1(z,y) = Hi[si(z, y)] + Hilsii(z, y)]. Hence,
(9) provides an interpretation of the relationship between
the imaginary components of the complex extensions z; and
z2: the term s;; is negated in g5 relative to gi.
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3. Relating the AM-FM Models

In this section, we relate the modulating func-
tions that are associated with s(z,y) by apply-
ing (2) and (3) to z1(z,y) to those that are obtained
by applying the demodulation algorithms to za(z,y).
Let z1(z,y) a1(z,y) expljei(z,y)] and z(z,y)
az2(z,y) explipz(z,y)}. Then

z(e,y) = {si(e,y) +iHilsi(z,v)}}
+ {sii(z,y) + §Ha[sii(z, y)I}
— ai(x’y)ejws(x.zl) +a.‘¢(x,y)ej¢“(z’y>, (10)
where the transform J; associates the modulating func-

tions o; and V; with s; and the modulating functions a;;
and V;; with si;. Similarly,

{si(z,y) + jHe[s:(z,9)]}

+ {si(z, ) + jHa[s::(z, ¥)]}

{s:(z,y) + iH[si(z, )]}

+ {sii(z,y) — Hu[sis(z, )]}
ai(a:,y)ej‘/”(”’y) + ai.-(z,y)eﬁj’l’“(”‘y), (11)

il

z2(z,y)

where the transform . associates the modulating func-
tions a; and Vi); with s; and the modulating functions ai;
and —V1; with s;;.

The modulating functions of z; and z; may be obtained
by applying (2) and (3) directly to (10) and (11). The
results for the amplitude modulation functions a1 (z,y) and
az(z,y) are

a1 = \/a,? + a; + 2aiqi cos(Y; ~ i) (12)

and

as = \/al2 + a?i + 2a; 44 COS(I[)i + "pii)y (13)

where the spatial coordinates have been dropped for
brevity. Let the prime mark denote partial differentiation
with respect to x or with respect to y. Then the compo-
nents of Vi3 and Vo are given by

1
LA
P11 = ai:,. + 2;;1 + 2 cos(thi — i)
’ )
a' Qg o o\ .
< [;::‘p: + E’:_,‘/);i + (a.l — —%) sin{t; — i)
+ (¢} + ¥l;) cos(h; — ¢ii)] (14)
and
. 1
P2 = S S+ 2cos(Ys + Pui)
) -. of  aj\ .
< [t_xl_d)g _ _%1¢;i+ (_.}. — =2 }sin(ei + i)
o Y a; i

+ (i — ;) cos(ehs + ’(/Jiz'):| , (15)



where the spatial coordinates have again been dropped for
brevity. Comparing (12)-(15), it is apparent that the mod-
ulating functions a2 and V2 may be obtained from a; and
V1 by everywhere reversing the sign of ;.

Often, the spectra of narrowband images and bandpass
filtered images are supported only in one pair of quadrants.
In such cases, one of ; and s is zero. In particular,
z1 = z2 if the narrowband spectrum S is supported only
in quadrants I and III, while 23 = 2j if S is supported
only in quadrants II and IV. The differences between the
modulating functions obtained by demodulating 2z, and z»
will generally be greatest for images s which are isotropic.

4. Examples

If the 1D discrete Hilbert transform treated by Cizek [20]
is carefully extended to 2D, then it becomes straightfor-
ward to discretize the transforms H; and H,. It may then
be shown that for a real single component discrete image
s(m,n), the relationships (12)-(15) hold between the mod-
ulating functions obtained by demodulating the discrete
complex extensions z;(m,n) and z2(m,n).

Fig. 1(a) shows the synthetic real-valued image Radial
Charp. Since this image is isotropic, noticeable differences
between the modulating functions computed using the H;
and H, transforms are expected. The Hilbert transforms g,
and g are shown in Fig. 1(b) and (c), respectively, and each
exhibit rippling artifacts orthogonal to the direction of ac-
tion of the transform. The log-magnitude Fourier spectrum
of the discrete complex extension z; is shown in Fig. 1(d),
and has support only in quadrants I and IV of the 2D dis-
crete frequency plane. Similarly, Fig. 1(e) shows the log-
magnitude Fourier spectrum of 2z, which is supported only
in quadrants I and II. The AM functions a1 and a2 obtained
from the analytic images z1 and 22 appear in Fig. 1 (f)
and (g), respectively. Each exhibits ripples that are orthog-
onal to those seen in Fig. 1(b) and (c). The FM functions
V1 and Vo are given in Fig. 1 (h) and (i), respectively.
In the upper right and lower left quadrants of Fig. 1 (i),
the sign of vy is reversed with respect to Fig. 1 (h), as
expected.

Fig. 1 (j) shows the image Tree, which is clearly multi-
component. Since the Hilbert tr.usforms (5) and (7) are
linear, they can be applied directly to such a multicompo-
nent image to generate a complex extension. However, the
nonlinear demodulation algorithms (2) and (3) cannot be
meaningfully applied to a multicomponent image directly
(multicomponent demodulation techniques were discussed
in [8]). Therefore, the dominant component of the Tree
image, as shown in Fig. 1 (k), was extracted using the
dominant component analysis (DCA) technique described
in [21]. Hilbert transforms ¢1 and g2 computed for the dom-
inant component appear in Fig. 1 (1) and (m) respectively.
The dominant component FM functions V1 and Vg are
shown in Fig. 1 (n) and (o), and again exhibit the expected
reversal of sign in 1;; relative to one another.

The image Mandrill appears in Fig. 2 (a). This is also
a multicomponent image, and the dominant component ex-
tracted by DCA is shown in Fig. 1 (b). Fig. 2 (c) and (d)
give the Hilbert transforms g1 and g2, which once again ex-
hibit ripples orthogonal to the direction of action of the
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transform. The AM functions a1 and az are shown in
Fig. 2 (e) and (f). Finally, the FM functions Vi, and
V2 computed using the H; and H: transforms are given
in Fig. 1 (g) and (h).

5. Conclusions

Computed AM-FM models represent an image in terms
of nonstationary instantaneous amplitude and frequency
modulating functions. Many image processing applications
are concerned exclusively with real-valued images, however,
and the instantaneous amplitude and frequency of any real
image are ambiguous. For a real image, the 2D directional
Hilbert transform may be used to construct the analytic
image, which extends many of the attractive properties of
the 1D analytic signal into multiple dimensions. For ex-
ample, the analytic image satisfies the frequency moment
properties of Gabor and Ville, the amplitude continuity, ho-
mogeneity, and harmonic correspondence conditions of Vak-
man, and has a Fourier spectrum that is supported only in
two quadrants of the frequency plane (where it is twice the
spectrum of the real image). There is one important prop-
erty that does not extend, however. The directional Hilbert
transform has a direction of action, and different analytic
images are obtained by taking the transform in different
directions. Thus, the analytic image is not unique. In this
paper, we obtained closed form expressions for the AM and
FM functions obtained using the H. transform in terms of
those obtained using the H; transform. This result is im-
portant because it establishes that non-uniqueness of the
analytic image presents no major obstacle to multidimen-
sional AM-FM modeling. The AM-FM representations ob-
tained by taking the transform in the horizontal and vertical
directions are essentially equivalent, and either representa-
tion may be obtained from the other by a straightforward,
intuitive calculation.
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Figure 1. Examples. (a) Synthetic image Radial Chirp. (b) Hilbert transform ¢, = H:[s]. (¢) Hilbert transform
g2 = Hz[s]. (d) Log-magnitude Fourier spectrum of z;, = s + jgi. (e) Log-magnitude Fourier spectrum of
22 = s+jgq. (f) Instantaneous amplitude function a,. (g) Instantaneous amplitude function a.. (h) Instantaneous
frequency function V¢,. Needle length is proportional to instantaneous period. (i) Instantaneous frequency
function V,. (j) Tree image. (k) Dominant component extracted by DCA. (1) Hilbert transform ¢; = 3;[s].
(m) Hilbert transform g, = %(,[s]. (n) Instantaneous amplitude function a,. (0) Instantaneous amplitude function
az. (p) Instantaneous frequency function V1. (q) Instantaneous frequency function V..
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Figure 2. Mandrill image example. (a) Image. (b) Dominant component extracted by DCA. (c¢) Hilbert transform
@1 = Hi[s]. (d) Hilbert transform ¢, = H3[s]. (e) Instantaneous amplitude function a;. (f) Instantaneous amplitude
function a,. (g) Instantaneous frequency function V¢;. (h) Instantaneous frequency function V.
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