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Abstract

We introduce a mnovel directional multidimensional
Hilbert transform and use it to define the complez-valued
analytic tmage associated with a real-valued image. The
analytic image associates o unique pair of instantaneous
amplitude and frequency functions with an image, and also
admits many of the other important properties of the one-
dimensional analytic signal.

1. Introduction

The one-dimensional analytic signal has been used in
communications engineering, physics, and signal analysis
since it was introduced by Gabor in 1946 [1]. However,
relatively little research has been devoted to extending the
notion of analytic signal to multiple dimensions [2-5]. In
this paper, we use a novel directional multidimensional
Hilbert transform to define a multidimensional analytic
signal which we call the analytic image. Unlike its one-
dimensional counterpart, the analytic image does not gen-
erally satisfy the multidimensional Cauchy-Riemann equa-
tions. However, the analytic image does admit many of the
other attractive properties of the one-dimensional analytic
signal. Consequently, it may be used with great efficacy
in the study of nonstationary, jointly amplitude-frequency
modulated sigals, or AM-FM signals, which have recently
been intensively studied in both one and multiple dimen-
sions [5-8].

Consider a real-valued signal s(x) : R* — R, where
X = [z1 22 ... z4]7. A problem of fundamental impor-
tance in engineering and in the pure and applied sciences
is that of associating with s(x) an instentaneous amplitude
function a(x) : R* — [0,00) and an instantaneous phase
function ¢(x) : R* — R such that s(x) = a(x) cos[p(x)].
The instantaneous frequency of s(x) is then defined by
the vector-valued quantity Vy(x). However, correspond-
ing to any real-valued signal s(x) there are uncountably in-
finitely many pairs of functions a(x),p(x) for which s(x) =
a(x) cos[p(x)].

In contrast, for any complex-valued signal z(x) : R* — C
we may consider that z(x) = a(x)exp[jp(x)], where the
amplitude a(x) and frequency V(x) are unique. Thus, if
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2(x) = s(x) + jq(x), then each choice of g(x) : R* - R
associates a unique amplitude and frequency with s(x).

2. 1D Analytic Signal

Gabor [1] and Ville [9] advocated defining the ampli-
tude and frequency of a one-dimensional real-valued signal
s(z) : R — R in terms of the complex-valued analytic signal
defined by z(z) = s(z) + jq(z), where

1
T JR
is the Hilbert transform of s(z).

‘We now summarize several of the more important prop-
erties of the analytic signal z(z). Clearly, Re[z(z)] = s(z).
The analytic spectrum Z(Q) = F[z(z)] is supported only
on the non-negative half-line, and Z(Q2) = 25(Q) on the
positive half-line. Thus, the spectrum Z(2) corresponds to
a full reduction of the spectral redundancy inherent in the
conjugate symmetric spectrum S(Q}. If w € Cis a complex
variable, then z(w) is holomorphic in the upper half-plane.

Suppose that z(z) = a(z)e’?® is the analytic sig-
nal associated with a real signal s(z) € L*(R), and let
&o = ||2(z)]32 = ||Z(Q)|[32 /2. Then, the first moment of
frequency in z(x) is

i(—7:2—d7'

r—T

a(e) = H[s(@)] = s(a) « — = (1)

- 1 5
Q= -ZW—&)/RQ|Z(Q)| . 2)

One may then show that the first moment of instantaneous
frequency in z(z) is given by [9-11]

@)= /IR ()] =(2)de = T (3)

that is, the first moments of the instantaneous and Fourier
frequencies in z(x) are equal. Although the centroid of
|S(€?)] is zero, our intuition insists that the first moment of
frequency in s(z) should be precisely the value given by (2),
which is the centroid of |S(2)] computed over non-negative
frequencies only.

Now suppose that s(z) = cos(woz). In this case our intu-
ition strongly suggests that the frequency moments should
be ¢(z) = Q = wo, and indeed this is exactly the result
obtained by applying (2) and (3) to z(z).



3. Analytic Image

Let s(x) : R* — R and let e; denote a unit vector in
the z; direction. Let Z = {Q : Q1 = 0}, where ©
[ Q2 ... ©,]%. The n-dimensional directional Hilbert
transform is usually defined by [12]

Horals0)] = - /IR s(x — gen) % ()

3

We refer to the transform (4) as the ordinary Hilbert trans-
form. It is & multiplier transform, and
F{Hora [s(x)]} = —jsgn(Q21)S(2). (3)
Now, S(£2) contains inherent spectral redundancy man-
ifest in pairs of frequency orthants symmetric about the
origin. If s(x) belongs to L*(R™) N L*(R™), then the spec-
trum of the complex-valued image s(x) + jHord [5(x)] is
supported only on mn/2 orthants, where it is twice S(€2).
Unfortunately however, H,-q4 does not lead to a theoret-
ically consistent definition of the analytic image for sig-
nals whose spectra admit unit masses on Z. For example,
Hora [cos(R7x)] # sin(Q7x) when Q2 € 2.
To overcome this problem, we have developed the new
transform given in the following definition.

Definition The adjusted multidimensional Hilbert trans-
form Haq; of a signal s(x) is given by

Howls(0)] = 5~ { Mo (S }. (6)
The spectral multiplier M,q(Q2) is defined by
Magi(€2) = —jsgn,q; 2, (M
where
n i—1
sgn,,; = Z sgn, Q; H (1 — |sgn, Q% ) (8)
i=1 k=1
and where
1, z>0
sgn, r = 0, z=0 9)
-1, z<0.
]

Note that M,4;(€2) differs from the multiplier of H,4 only
on Z, which is a set of Lebesgue measure zero. The following
theorem articulates the relationship between the transforms
Haaj and Hora. The proof is omitted for brevity.

Theorem Let n be finite. Then the following hold.

(@) Hag; is a bounded linear operator on L*(R™). Further-
more, for all s(x) € L2(R™), Haai[s(x)] = Hora[s(x)].

(b) If s(x) admits a Fourier transform representation S(£2)
such that fZ [S(2)| d2 = 0 and if Horq[s(x)] exists,
then Hai{s(x)] = Hora[s(x)].

(c) If s(x) admits a Fourier series representation

s(x) = Z A; cos(Q] x) + B sin(Q; x), (10)

ieN
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where A;,B; € R and where sgn_, €; > 0 for each

adj
i € N, then
Hogi[s(x)] = Z A;sin(Q7x) — B; cos(RFx). (11)
ieN
]

The theorem indicates that H,4; agrees with Horq when
the signal spectrum does not admit unit masses on Z, and
also that H,q; maps all sinusoids in the intuitively expected
way. If the signal spectrum does admit unit masses on Z,
Horg generally fails to exist. It is important to realize that
the Hilbert transform of such a signal does not generally
satisfy the sufficiency conditions of the Fubini theorem, and
that the Fourier transform convolution theorem therefore is
not generally applicable to such Hilbert transforms. Thus,
it is meaningless to speak of defining the transform H,gq;
through a spatial convolution.

For any signal s(x) : R® — R, we define the analytic
image associated with s(x) by z(x) = s(x) + jHaai[s(x)],
provided that H,q4i[s(x)] exists. With this definition,
Re[z(x)] = s(x) and the spectrum Z(2) is supported on
n/2 orthants, where it is twice S(£2). The analytic im-
age z(x) = a(x)exp[jp(x)] associates with s(x) a unique
instantaneous amplitude a(x) and instantaneous frequency
Vo(x). If s(x) € L*(R™) and & = ||2(x){|%2, then

V(x)

It

. /IE | VpblGo e (12)

1 2 -0
O /Rn QZQ)’d2 =10, (13)

where @ is the centroid of |S(§2)| computed over n/2 non-
redundant orthants; this is precisely what our intuition in-
sists that the mean frequency of s(x) should be. Further-
more, for every signal s(x) = cos(£23 x), we have the intu-
itively satisfying result that V(x) = V(x) = Q = Q.

There are two main properties of the one-dimensional
analytic signal that do not extend to the analytic image
z(x) generated by Haq;. First, if w € C*, then the func-
tion z(w) is not holomorphic in general. Second, since
the transform H,q4; is directional, the analytic image is not
unique. Different analytic images are generated by taking
the transform in different directions. Each such analytic im-
age associates different amplitude and frequency functions
with s(x). However, all of these different functions may
be obtained from any one pair through a straightforward
calculation.

4. Examples

We present several discrete examples in this section.
The discrete adjusted multidimensional Hilbert transform
is constructed by setting the fundamental period of the
Fourier transform F {f}Cng[s(k)]} equal to M,g4;(w)S(w)
and extending periodically. The discrete analytic image is
then given by 2(k) = s(k)+jHaq;[s(k)]. The synthetic dig-
ital image Diamond is shown in Fig. 1(a). The imaginary
component of z(k) appears in Fig. 1(b). The instantaneous
amplitude of z(k) is given in Fig. 1(c), and has been scaled



for display. Fig. 1(d) depicts the instantaneous frequency
of z(k) as a needle diagram. Similarly, the synthetic image
Radial Chirp appears in Fig. 1(e). The imaginary compo-
nent of z(k), instantaneous amplitude, and instantaneous
frequency are given in Fig. 1(f), (g), and (h), respectively,
where the amplitude has once again been scaled. For sin-
gle component images, the instantaneous amplitude may
be interpreted as contrast. As indicated by Fig. 1(g), the
contrast of the Radial Chirp image is greatest at the center
and falls off toward the edges of the image.

For both synthetic images, the amplitude functions ex-
hibit ripples in patterns that tend to be elongated in the
direction of action of Haq4;. The ripples are small compared
to the variations in the images. For example, the standard
deviation of the amplitude image shown in Fig. 1(c) is a fac-
tor of ten smaller than the standard deviation of the image
in Fig. 1(a). Note that the frequency vectors in Fig. 1(d)
and (h), which are orthogonal to image edges, all lie in the
right frequency half-plane. For more complicated natural
images, the instantaneous frequency may generally lie in
any of the four quadrants.

The image Wood appears in Fig. 1(i). Im[2(k)] is given
in Fig. 1(j), while the instantaneous amplitude is shown in
Fig. 1(k). In this case, the standard deviation of the am-
plitude is about half as large as that of the image. Hence,
if ripples analogous to those seen in Fig. 1(c) and (g) are
present, they are obscured by large nonstationary ampli-
tude variations. The instantaneous frequency of z(k) is
depicted in Fig. 1(1), where frequency vectors lying in each
of the four quadrants are visible.

Finally, the image Tree appears in Fig. 1(m). The
dominant AM-FM image component was extracted using
the dominent component analysis (DCA) computational
paradigm described in [13], and is shown in Fig. 1(n). The
adjusted Hilbert transform of the dominant component is
given in Fig. 1(o), while the amplitude and frequency of
the dominant component analytic image appear in Fig. 1(p)
and (q), respectively. Again, note that the frequency vec-
tors are orthogonal to image edges and that bright areas in
the amplitude image correspond to regions of high contrast
in the dominant component. Fig. 1(r) and (s) show the log
magnitude Fourier spectra of the Tree image and the domi-
nant AM-FM component, respectively. The log magnitude
Fourier spectrum of the dominant component analytic im-
age, which is supported only in quadrants I and IV, is given
in Fig. 1(t).

5. Conclusion

The analytic image is important because it asso-
ciates unique, physically meaningful amplitude and fre-
quency functions with a real-valued multidimensional sig-
nal, thereby providing an unambiguous definition for multi-
dimensional instantaneous frequency. The adjusted Hilbert
transform and analytic image are useful in the computa-
tion of multi-component AM-FM image models, which have
utility in a variety of machine vision processing tasks. We
believe that such representations will also find significant fu-
ture applications in image and video coding for multimedia
telecommunications. In discrete computational paradigms
where multiband linear filtering is employed to compute
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multi-component AM-FM models, generation of the an-
alytic image can be incorporated directly into the filters
without incurring additional computational overhead.
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Figure 1. Analytic image examples. The Hilbert transform acts in the horizontal direction. (a) Synthetic image
Diamond. (b) Hilbert transform H,4;. (c) Instantaneous amplitude. (d) Instantaneous frequency. (e) Synthetic
image Radial Chirp. (f) Hilbert transform J}(.4. (g) Instantaneous amplitude. (h) Instantaneous frequency.
(i) Wood image. (j) Hilbert transform 3{,4;. (k) Instantaneous amplitude. (I) Instantaneous frequency. (m) Original
Tree image. (n) Dominant component extracted by DCA. (o) Hilbert transform H.q4; of dominant component.
(p) Instantaneous amplitude of dominant component analytic image. (q) Instantaneous frequency of dominant
component analytic image. (r) Log magnitude spectrum of original Trec image. (s) Log magnitude spectrum of
dominant component. (t) Log magnitude spectrum of dominant component analytic image.
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