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ABSTRACT

We present powerful multi-component AM-FM image mod-
els capable of efficiently representing complicated nonsta-
tionary multi-partite images, and show how the representa-
tion can be computed in a practical implementation. With
images of this type, important structural and perceptual in-
formation is often manifest in the nonstationarities. Highly
localized nonlinear operators are used to simultaneously es-
timate the amplitude and frequency modulating functions
associated with each of the multiple components on a pixel-
by-pixel basis. For the first time, we also demonstrate image
reconstruction from the AM-FM representation.

1. INTRODUCTION

The efficacy of AM-FM modeling techniques for analyzing
and characterizing locally coherent nonstationary signals
and images has been well established [1-6]. In 1-D, AM-FM
models can be efficiently computed using the Teager-Kaiser
Energy Operator [4,5]. In terms of analyzing and interpret-
ing the structure, information content, and origin of certain
important signals, the inherent ability of AM-FM models
to capture local nonstationarities offers significant advan-
tages over traditional time-frequency distributions. Recon-
struction of a 1-D signal from the AM-FM model has been
demonstrated recently [1].

A multidimensional version of the Teager-Kaiser oper-
ator, as well as the demodulation algorithm used in this
paper, have been used to compute AM-FM models of im-
ages [2,3,6)]. In image processing and computational vision,
AM-FM modeling has great utility both in estimating in-
stantaneous frequencies on a spatio-spectrally localized ba-
sis and in formulating an efficient representation that facil-
itates analysis. The characterization of images in terms of
their spatially localized instantaneous frequency content is
fundamental to an increasing variety of multi-dimensional
processing techniques including analysis, segmentation and
modeling of texture [7,8], shape from texture [9}, and emerg-
ing techniques in stereopsis [10]. In this paper, we develop
the multi-component AM-FM representation for images,
outline an algorithm for computing the representation, and
for the first time demonstrate reconstruction of images from
the computed multi-component AM-FM representation.
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2. DEMODULATION ALGORITHM

AM-FM modeling is most useful when the images of interest
may be accurately represented as a sum of one or more
locally coherent complex-valued components, each of the
form

t(x) = a(x) exp [ (x)], 1)
where x = (z1,22,...,2), t : R* = C, a: R* — [0, 00),
and ¢ : R* - R Such a component can be demodulated
using the local nonlinear algorithm
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which is ezact for any general n-dimensional complex valued
AM-FM signal component [3,6].

Complicated multi-partite images, for which there often
is no representation in terms of a single component of the
form (1) which admits smooth modulating functions, may
be better modeled as the real part of the sum

a(x) =

Vi(x)

K

tx) = ) ax(x) expliior (x)]- (4)
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In this case, the nonlinear algorithm (2),(3) fails due to in-
terference between the multiple image components. There-
fore, prior to demodulation, we separate the individual com-
ponents using a bank of multiband filters. The filters must
be sufficiently spectrally localized to prevent interference
between components, but also spatially localized to capture
nonstationarities in the locally narrowband components,
which may in fact be globally broadband. The design of
such a filterbank using a wavelet-like polar tesselation of
Gabor functions, which optimally realize the uncertainty
principle lower bound on conjoint spatio-spectral localiza-
tion, can be found elsewhere [3,8,11].

Assuming the filterbank has been properly designed, so
that at most one component dominates the response of each
channel filter at each pixel, demodulation of the filtered
component

to(x) = /]R 1~ P-(P)ip, (5)

where g,(x) is the channel filter with Fourier transform
G, (§2), can be accomplished using the approximate algo-
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In deriving (6),(7), we make use of a quasi-eigenfunction
approximation [3,6,8,11-13] which tightly bounds the er-
rors in the numerator and denominator of (6) by certain
functional norms of g-(x), a(x), and Ve(x). The approxi-
mation errors are negligible provided that g, (x) is well lo-
calized spatially and the components of ¢(x) are reasonably
locally coherent. However, the algorithm should not be ex-
pected to work well for images which are everywhere highly
discontinuous, fractal, or otherwise incoherent.

3. MULTI-COMPONENT REPRESENTATION

The first step in computing the multi-component AM-FM
representation of a real image s(x) is to form a complex-
valued extension which can be analyzed against (4). We
add an imaginary part equal to the 2-D Hilbert transform
of s(x), defined by

J(XTe]')
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= s(x) *

o (8)

where e; = [1,0]%, e; = [0,1]7, § is the Dirac delta, and
the integral is interpreted as a Cauchy principle value. We
refer to the extension t(x) = s(x)+jH[s(x)] as the analytic
image associated with s(x). The spectrum T (£2), which
is supported only in quadrants I & IV of the frequency
plain, results from removing all spectral redundancy from
the conjugate symmetric function S (§2).

The filterbank is invoked on the analytic image, and
the filtered demodulation algorithm (6),(7) is applied to all
channel responses. Hence, each channel produces obser-
vations a(x) and Vp(x) at every pixel. We use a track
processor based on computationally efficient 2nd-order 1-D
Kalman filters to track the individual components across
the channels on a pixel-by-pixel basis [3]. A block diagram
of this scheme is shown in Figure 1.

4. RECONSTRUCTION

Reconstructing an image component from the discrete AM-
FM representation a(k), V(k) is an overdetermined prob-
lem. Given as an initial condition one complex valued sam-
ple obtained from the channel filter used to estimate the
component’s instantaneous amplitude and frequency, the
instantaneous phase (k) can be reconstructed along any
contiguous path of pixels by simply summing the frequency
estimates. The component can then be reconstructed by
substituting the amplitude estimates and reconstruction of
(k) directly into the model (1).

In practice, however, the frequency estimates will con-
tain errors which arise from the approximation inherent in
the algorithm (6), (7), as well as from interference by other
components and out-of-band noise. If only a single sample
of the component were used to determine the initial value
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Figure 1:
multi-component AM-FM representa-
tion.
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of the instantaneous phase, the deleterious effects of these
errors on the reconstructed component would be cumula-
tive.

While sophisticated interpolation techniques could be
used to compensate for these errors, we employ a simple
but effective two-part approach for making the reconstruc-
tion algorithm more robust. First, instead of saving only
a single sample of the estimated component, we save sam-
ples on a rectangular grid, and reconstruct the component
on each square of the grid independently. We use the es-
timated component sample at the upper left corner of the
square to determine the initial value of the instantaneous
phase. Second, we compute two estimates of the phase at
each pixel: one using the phase of a horizontally neighbor-
ing pixel, and one using the phase of a vertically neighbor-
ing pixel. The component is then reconstructed using the
average of these two estimates. Finally, the multi-partite
image s(x) is reconstructed by summing the individually
reconstructed components, according to the model (4).

5. EXAMPLES

In Figure 2, we compute the multi-component AM-FM rep-
resentation of a synthetically generated two-component im-
age exhibiting significant 2-D nonstationarity, and then re-
construct. The original image is shown in the (a) part of the
figure. True values for components C1 and C2 are shown
in Figures 2 (b) and (c), respectively. The presence of two
components was correctly identified by the track processor.
The amplitude estimates for C1 are shown in Figure 2 (d),
while the horizontal and vertical frequency estimates are
given in the (e) and (f) parts of the figure, respectively. For
C2, the amplitude, horizontal frequency, and vertical fre-
quency estimates are given in the (g), (h), and (i) parts of
the figure. To avoid edge effects from the channel filters,
tracking and reconstruction were not performed on the out-
side 16 rows and columns of the image. Note how smooth
the AM-FM representation is, despite the fact that there
are rapid variations in the image. Significant compression
of the estimated quantities could be achieved, e.g. through



simple linear predictive coding. The estimated quantities
are in near perfect agreement with the true values, except
for a small region of oscillatory behavior in C1 where the
vertical frequency approaches DC (which is not surprising,
given that the concept of instantaneous frequency is less
meaningful near DC). -

The individual components reconstructed using a 32x 32
pixel grid of initial conditions are shown in the (k) and (1)
parts of the figure. The reconstructed components, which
are virtually indistinguishable from the true values visually,
were summed to obtain the reconstructed image shown in
Figure 2 (j).

Figure 3 (a) shows the complicated, nonstationary multi-
partite natural Brodatz texture image {ree. In general, AM-
FM analysis of such images is challenging, due primarily to
the presence of an unknown number of components which
may each be supported only on irregularly shaped subim-
ages. This situation presents significant difficulties for our
current simplistic 1-D track processor, which depends on
components being supported. over the entire tracked region.
Furthermore, the presence of many components and har-
monics closely spaced in frequency gives rise to errors in the
filtered demodulation algorithm due to cross-component in-
terference.

Nevertheless, we were able to obtain the excellent re-
construction shown in Figure 3 (d) by performing track pro-
cessing independently over several subregions of the image,
with the side effect that some blocking artifacts are visible.
For this image, the track processor was not able to auto-
matically detect the number of components. Many, many
tracks were generated in each subregion. The reconstruc-
tion in Figure 3 (d) comprises 41 hand-selected components,
five of which are shown juxtaposed in the (c) part of the
figure.

Reconstruction was performed on a 4 x 4 pixel grid of
estimated component samples. The low-frequency compo-
nent shown in Figure 3 (b) was extracted by linear filter-
ing prior to computation of the AM-FM representation and
added back in to the reconstruction. This component is
not ideally suited for AM-FM modelling, because at very
low spatial frequencies it becomes ambiguous which fea-
tures should be interpreted as AM as opposed to FM. Af-
ter incorporating the low-frequency component, however,
we still have a smooth representation amenable to analysis
and compression. Most of the information present in the
image which seems to be missing from the reconstruction is
high-frequency and incoherent in nature.

6. FUTURE WORK

Important future work remaining in this area includes de-
veloping methods for overcoming the extremely difficult
problems in treating complicated natural images. In partic-
ular, this will involve developing an approach for automati-
cally detecting the number of AM-FM components that are
present and for effectively tracking components over irreg-
ularly shaped regions of support.
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Figure 2: Multi-component AM-FM representation and recomstruction of a synthetic image.
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(a) Nonstationary two-

component synthetic image. (b) True values for component one. (c) True values for component two. (d) Amplitude estimates
for component one. (e) Horizontal frequency estimates for component one. (f) Vertical frequency estimates for component
one. (g) Amplitude estimates for component two. (h) Horizontal frequency estimates for component two. (i) Vertical
frequency estimates for component two. (j) Reconstructed image. (k) Reconstruction of component one. () Reconstruction

of component two.

Figure 3: Reconstruction of a complicated natural multi-partite texture image. (a) Tree image. (b) Low-pass component
extracted by linear filtering. (c) Five of the 41 components used to reconstruct. (d) Reconstruction from 41 hand-selected

AM-FM components.
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