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Abstract

This paper studies AM-FM modulation models for
two- and higher-dimensional complez-valued nonsta-
tionary signals and images that are locally coherent but
globally wideband. Demodulation techniques are stud-
ied for demodulating both one-component and multi-
component signal. For the case of multi-component
signals immersed in noise, the individual components
must be isolated by spectrally localized multiband filter-
ing prior to demodulation. An algorithm for demodu-
lating the fillered signal components is developed using
a quasi-eigenfunction approrimation, and bounds for
the approzimation error are given. After multiband fil-
tering with Gabor wavelets, the filtered demodulation
algorithm is used to estimate the dominant emergent
frequencies of multi-component images.

1 Introduction

We explore methods for the accurate and effi-
cient extraction of amplitude modulation (AM) and
frequency modulation (FM) information in nonsta-
tionary, yet locally coherent single-component -
dimensional complex valued signals and images of the

form

t(x) = a(x) exp[jp(x)) (1)
where x = (z1,22,...,%n), t : R* - C a : R® —
[0,1], and ¢ : R® — R, and we also consider,for the
first time, multi-component signals of the form

K
t(x) = > _ ax(x)explipe(x)],

k=1
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which are sums of components of the form (1). These
models are inherently ambiguous representations; in-
deed, given an observed signal ¢(x) there generally ex-
ist an infinite number of function pairs a(x), ¢(x) for
which the model (1) is exact. The models are most
useful when the signal (or all of the components in
the case of the model (2)) is “locally narrowband” in
the sense that the amplitude a(x) and instantaneous
frequency Vi(x) do not vary too rapidly [3]. The
model (1) has been successfully used in the analysis of
textured images when combined with Gabor wavelet
image decompositions {1] - [3] and certain nonlinear
energy operators [4]. One-dimensional AM-FM mod-
els of the form (1) have also been extensively applied
to the analysis of speech signals [5] - [9]. Our objective
is to estimate the amplitude envelope(s) a(x) and the
instantaneous frequencies Vip(x) that may character-
ize the local image structure.

We use the standard orthonormal basis for R", and
denote the unit vector in the z; direction by e;. We
. : : 2
write f¢) for aixif and f00F) for EZ?ax_kf'

2 Single-Component AM-FM Signal

In this section we assume that we are given a signal
t(x) of the form (1). For images, the model (1) is best
regarded as the result of applying a point logarithmic
operation to the analytic function of a positive real sig-
nal, wherein the AM envelope a(x) may be interpreted
as the image contrast function [4], hence 0 < a(x) < 1
(the analytic function of the real signal is uniquely
determined up to an additive constant).

To solve the amplitude estimation problem, we note
that

[t(x)| = la(x) exp[jp(x)]| = la(x)| = a(x).  (3)



Observing that

Z ttk)(x)ek
k

5 {0 explipo] + itx)p®) } e
k

Vi(x)

= Jji(x)Vp(x) + exp[je(x)]Va(x), 4)
we have that
Vi(x)
Vol n S 5)
= Ve-is @

In the absence of noise and other signal components,
the squared-magnitude error associated with (5),

(7

is precisely the instantaneous bandwidth (albeit in n
dimensions) as defined by Cohen in one dimension
[10],[11]. This quantity provides an indication of the
degree to which #(x) is locally coherent. If there is no
amplitude modulation, then B(x) is everywhere zero
and there is a single emergent frequency at each point
in the domain. Thus, (5) is exact for monochromatic
signals of the form

t(x) = Aexp[iQ7Tx], (8)
where A and Q = (wy,ws, ... ,wp) are constant. When
amplitude modulation is present, however, multiple lo-
cal frequencies are in general emergent at each point
in the domain; B(x) is related to their concentra-
tion about Vi(x). But even for signals that are not
monochromatic, the error in (5) is restricted to the
imaginary component of the frequency estimate, and
hence we have the amicable result that

Vt(x)] _

jt(x)

Fig. 1 shows a reasonably sophisticated ex-
ample of a single-component image with con-
stant amplitude and Gaussian phase p(ry,z2) =
(rKo®/N)exp [~ (2} + 23) /0?], where K = 10, o ~
190, and N = 256. The local estimates of V(x) given
by (5) are shown in Fig. 2, where needle length is pro-
portional to period (the reciprocal of [Ve(x)]). Close
examination reveals that the estimated instantaneous
frequencies agree remarkably well with perception.

Vo(x) = Re [ 9)
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Figure 1: Image with Gaussian phase.

Figure 2: Estimates of Vi(x) for the image in Fig. 1.

3 Multi-Component Signals and Noise

The single-component locally narrowband model
(1) breaks down in the presence of out-of-band ad-
ditive noise, when multiple locally narrowband signal
components are present, and when both multiple com-
ponents and broadband noise are present. In each
of these cases, the nonlinear demodulation algorithms
(3),(9) fail as a result of interference between the signal
and the noise, or in the case of multiple components as
a result of interference between the signal components
themselves.

Therefore, in these situations it becomes necessary
to isolate the various locally narrowband components
prior to demodulation. Qur approach to accomplish-
ing this is to pass the image through multiple bandpass
(multiband) prefilters, while ensuring that the filters



are sufficiently narrowband to prevent interference be-
tween signal components and that the frequency do-
main is adequately sampled by the filter set. This
scheme offers the advantage of isolating the AM-FM
components on a spatially local basis, which is re-
quired since the models (1),(2) are nonstationary and
may in fact be globally wideband yet locally narrow-
band.
3.1 Filtered signal approximations

In developing the demodulation algorithm for the
filtered signal components, we use the following im-
portant approximation: if a signal component of the
form (1) is input to a linear system g,(x) with n-
dimensional Fourier transform G,[], then the re-
sponse t,(x) = #(x) * g,(x) can be approximated by

?o (x) = t(x)Go[Vep(x)]. (10)

The approximation (10) is a quasi-extension of the
eigenfunction concept of linear system theory, and is
exact when #(x) is monochromatic. Theorem 1, which
follows, provides a tight bound on the approximation
error under very reasonable constraints on t(x). The
bound is expressed in terms of the p-energy variances
AEP)(g,,), Agf’j)(g,,) of the filter g4(x) [3] defined by

AP = ZA(")(f)’ :H{Aﬁ”m}l ay
and
%0 = |X[a f)| =[] . a2
L ,J
where
AP(f) = [ / lmplf(x)l"dx] T W)
-
and 1
AP(f) = [ /R iz I"If(X)I”dX] Y

as well as the Sobolev p-norms [3] Sgp)(a) and 5.(5-)(30)
of the signal amplitude and phase defined by

50(f) = [Z 5§”)(f)rr -| (15)
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and
50 = [ 6“”0’)'] =[], oo
where 1
§9(f) = [ fk "\f“)(x)‘pdx] ' an
and L
é(p)(f) [/ FOD(x) dx] (18)

The statement of Theorem 1 follows, where reals p, ¢ >
1 are conjugale exponents if p+ q = pq.

Theorem 1: Let g, : R® — C, a : R” — R, and
¢ : R™ — R be such that a is once-differentiable and
¢ is twice-differentiable. Then for conjugate exponent
pa.lrs (p,q), and (p’,¢') with ¢,¢’ >n and 1 <p,p <

2 for which |z;g, (x)[P, |a)(x)9, |x,:c,g.,(x)|" and
|<p("1)(x)|q are integrable on R” for 1 < 4,5 < n,

Eg(x) = |t¢7(x) - {U(X)l
< (‘q_,%)agp“(ga)ss“’)(a)
¢ ®)( V(@)
Sl P g )A (92)8%(#) (22)
n

The proof of the theorem proceeds via techniques
similar to those developed in [3] and is too involved
for presentation here.

Corollary: For con_]ugate exponent pairs (P, a) and

(7,9) such that |a(')(x)|pq [<p(')(x)|qq |$:ga(x)|p and

|a("J)(x)|q are integrable on R” for 1 < 7, j < n, The-
orem 1 also bounds the error in the approximation

) = D) explip(x))Go[Vex)]  (23)
+  ja(x)p®(x) explip(x)]Go [Vi(x)).

|
The corollary is proved by applying Minkowski’s in-
equality followed by Holder’s integral inequality [12],
and bounds the error in the quasi-eigenfunction ap-
proximation t( (x) for the partial derivative of the
filtered signal. Since the partials of 7,(x) are the com-
ponents of Vi,(x), upon substituting (10) and (23)
into (5) the filtered frequency demodulation algorithm
becomes
Vo(x) ~ R [‘7‘ (")] (24
Jte(x)



which is useful only if the error bound (22) can be
made small. Given the frequency estimate in (24),
the filtered amplitude estimate is obtained by post-
normalizing (10) by G,[V(x)] and applying (3).

3.2 Gabor wavelets

For the multiband demodulation algorithm to be
applicable in a wide variety of situations, we wish to
minimize the approximation error (22) without plac-
ing unnecessary constraints on the signal ¢(x). Both
terms in the error can be minimized by choosing fil-
ters g,(x) with minimal p-energy variances. As we
observed above, however, these filters must also be
spectrally localized so that they can effectively isolate
the multiple locally narrowband signal components
that may be present. Further stochastic arguments
have been presented elsewhere [3],[9] which suggest
that the filters g,(x) should also have small Sobolev
p-norms. Simultaneously optimizing these criteria in-
evitably leads to minimum uncertainty filters of the
form

90(x) = [270%] "% exp[-x"x/(40%)],  (25)
which are unit-energy Gaussians. Frequency shifting
and scaling these filters to adequately sample the fre-
quency plane results in channel filters that are Gabor
wavelets. Fig. 3 shows the frequency responses of the
set of 40 spatio-spectrally localized octave-bandwidth
Gabor wavelets we used for multiband filtering in
the examples of the next section. Fig. 4 shows a
(single-component) radial chirp image. The estimates
of V(z) obtained using (24) after processing with the
wavelet filter set are shown in Fig. 4(5).

4 Multi-Component Examples

The problem of isolating and estimating the the in-
dividual amplitude envelopes a;(x) and instantaneous
frequencies Vi (x) for a signal of the form (2) is in
general a formidable one, since the components may
merge, vanish, or develop sudden transitions in fre-
quency or contrast. Furthermore, a priori information
concerning the number of components that are present
in a given signal is not usually available. Nevertheless,
one can always estimate the dominant emergent fre-
quency component on a local basis by applying the
filtered demodulation algorithm (24) at each point in
the domain to the output ¢,(x) of the channel filter
whose magnitude response is largest at that point. If
the number of components is known to be K, then all
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Figure 3: Frequency responses of multiband Gabor
wavelets

K amplitudes and instantaneous frequencies can be
estimated at every point in the domain by applying
the filtered demodulation algorithm to the K outputs
of the multiband channel filters with the K strongest
magnitude responses on a point-by-point basis.

Fig. 5(a) and Fig. 6(a) show images of a tree and
of burlap, respectively, both of which seem well suited
for treatment with the multi-component model (2).
In the case of the burlap image, there are clearly at
least one dominant vertical and one dominant hori-
zontal component existing throughout the image. Fig.
5(b) is the dominant emergent frequency for the tree
image estimated at each point from the channel fil-
ter with the largest magnitude response, where needle
length is proportional to the period. Estimates for
the dominant emergent frequency for the burlap im-
age are shown in Fig. 6(b). Like the single-component
instantaneous frequency estimates in Fig. 2, the esti-
mates in Fig. 5(b) and Fig. 6(b) agree remarkably well
with perception. Discontinuous boundaries between
regions where different signal components are domi-
nant are also clearly visible in the latter two figures.
Finally, frequency estimates based on the outputs of
the channel filters with second largest magnitude re-
sponse at each point are shown for the Tree and Burlap
images in Fig. 5(c) and Fig. 6(c), respectively.

5 Future Work

Future work will include treatment of the multi-
dimensional modulation algorithms in the digital do-
main and further development of techniques for esti-



Figure 5: Tree. (a) Image. (b) V(x) computed from Figure 6: Burlap. (e) Image. (b) Vp(x) com-

filter with largest magnitude response. (c¢) Ve(x) puted from filter with largest magnitude response. (c¢)
computed from filter with 2nd largest magnitude re- Vp(x) computed from filter with 2nd largest magni-
sponse. tude response.
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(%)

Figure 4: Radial chirp. () Image. (b) Vip(x) com-
puted from filter with largest magnitude response.

mating the amplitudes and instantaneous frequencies
of the individual components of multi-component sig-
nals and images. We believe that the model (2) will
find widespread application.
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