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SIGNALS AND SYSTEMS: A CONSISTENT, UNIFIED APPROACH

Joseph P. Havlicek', Peter C. T ag, and James J. Sluss, Jr.3

Abstr act — This paper addr essestwo problems associ-
ated with the traditional appr ach to teaching a junior
level course in signals and systems. First, students are
ezp ectedto develop facility with a variety of transforms
and we have observed that this overwhelms many, reduc-
ing them to simply “memorizing equations.” Second, the
usual treatment of Dir ac’sdelta as a function not only
leads to serious contr adictionswith the standard calcu-
lus, but also leaves intractable schisms surr ounding the
transforms of important harmonic functions. We present
a unified and consistent approach designel to ameliorate
these problems using abstract linear algebr aand distri-
bution theory. The appr oachwas implemented for four
semesters and exit surveys were conducted to assess ped-
ago gical effetiveness.

Index T erms — A bstractLinear A lgebr a, Distribution
Theory, Fourier Transform, Signals and Systems.

1. INTRODUCTION

In this paper we describe a novel approac to teaching a
required junior level signals and systems course in elec-
trical and computer engineering. Several aspects of the
standard approach based on [1] concern us and this moti-
vated the study. In this course, students must deal with
convolution in discrete and continuous time. They must
also learn five transforms, including the Fourier, discrete-
time Fourier, Laplace, Z, and DFT.

Our first concern is that students often complain
about having to memorize all these “equations.” We have
observed many who fail to develop a strong intuitive no-
tion of the theory and perceive each transform as being
separate and unrelated to the others. Lik ewise,many
students fail to develop intuition about why theoutput
of a linear shift invarian t (LSI) system taks the form of a
convolution integral or sum. F or these studerts, the tw o
convolutions are merely mysterious equations that must
be memorized.

Our second concern is with presentation of the Dirac
delta as a mysterious function. This is not only self-
inconsistent, but also contradicts freshman and sopho-
more calculus. Forexample, the “sifting property” of
the Dirac delta states that [, z(£)d(t — to) dt = z(to).

Often, students are given no reason to suspect that this
integral is not a Riemann integral. While w eha vean
integrand that differs from zero only at a singleton, the
value of the integral is generally nonzero — an obvious
contradiction with Riemann integration theory.

If the sifting property is accepted on heuristic argu-
ments, as is done often, our students can be persuaded
that F{4(t)} = 1. They are totally ill-equipped, how-
ever, to make sense of the companion identity F~1{1} =
6(t). Even more serious contradictions and confusion
arise if they attempt to verify directly the formulas for
F{coswpt}, F{sinwot}, or F{es*ot}. Similar maladies
plague the discrete-time case as well, and this is par-
ticularly bothersome.

Our approach is based on injecting tw o new concepts
into the signals and systems course: distribution theory
and linear algebra with particular emphasis on the in-
ner product. In a linear algebraic context, the various
transforms all reduce to the task of writing a given sig-
nal as a linear combination of an appropriate set of basis
signals. For students with a firm understanding of inner
product there is no need to memorize equations: all of
the transforms can be derived and computed by follow-
ing a single unified and consistent procedure, of which
distribution theory is a key element in cases like §(¢) and
the harmonic signals mentioned above. Using this same
procedure, it is almost ob vious thatthe response of an
LSI system takes the form of a convolution.

The main argument that we have heard against the
approach w edescribe is that the inwlved mathematics
is too advanced for engineering undergraduates, and we
set out to test this hypothesis. Our approach is sketched
in Section 2, where w efocus on only the F ourier and
discrete-time Fourier transforms in the interest of brevity.
Results of the exit surveys we conducted for assessment
are briefly presented in Section 3, while conclusions ap-
pear in Section 4.

2. THE APPRO X£H

In this section w e brieflyoutline our approach. We de-
note the inner product betw eenfunctions f and g by
(f,9). We find that our undergraduates are generally
comfortable and facile with the Euclidean inner product,
or dot product in R®. They readily recall that an arbi-
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trary v ectord € R* may be written as ¥ = ¢; 7+ ¢ 7+ csk,
where ¢, = (#,7), ¢ = (7,]), and ¢3 = (¥,k). While
computation of the inner product in more sophisticated
spaces is similar, one of the two vectors must be conju-
gated if complex values are involwed. Our convention is
to always conjugate the second vector.

2.1 . Discrete-Time Time Domain Analysis

Consider the Kronecker delta §[n], which is straightfor-
w ardto graph. By substituting the ordinate values for
the “stems” in the usual graph [2], surrounding these
numbers above and below by square brackets, and turn-
ing the resulting vector up on its “side”, we rapidly con-
vince our students that é[n] in C* is analogous to 7 in
R3. They are then able to grasp the correspondence
between {77, 1—5} in R® and the set of integer translates
{6[n — k]}rez in a countably infinite dimensional space
of signals z[n].

By the same procedure that was used in R®, we write

z[n] = cxdln — K], (1)
kez
where
ck = <:c[n],6[n-—— k]> = Zx[n]&[n —kl=z[k]. (2)
nez

We emphasize to our students that the usual graph of
z[n] may be interpreted as a depiction of the coeflicients
¢ in (1) that weight each shifted Kronecker delta.

For an LSI system H with impulse response h[n],
w esubstitute (2) into (1) to establish that the system
response is given b y cowolution:

yln] = H{z[n]}=H {Zw[klé[n - k]} @)
keZ
= > a[k]H {5[n — K]} (4)
kEZ
= Y az[klh[n — k] = z[n] * h[n). (5)
kEZ

While (3)-(5) convince our students on an intellectual
level, they t ypically remain uncomfortable with the con-
cept until a deeper intuition is developed.

To achieve this, we consider a specific causal exam-
ple where the input z[n] and impulse response h[n] are
both short, finitely supported signals. We write z[n] ac-
cording to (1) and, for some specific time like n = 10,
consider the response to each input term. This leads to
the fact that, at n = 10, the system responds not only
to the input term that arrived at n = 10, but also to in-
put terms that arrived earlier. For example, input term
z[8]d[n — 8] arrivedat n = 8 and caused the response
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z[8}h[n — 8] to begin coming out of the systera at that
time; by time n = 10, the contribution of this icput term
to y[10] is z[8]A[2]. The term z[9]A[1] is also present in
y[10], demonstrating that earlier inputs corresponding
to z[n] for smaller n contribute later h[k] with larger k;
this explains why the indices of z[k] and h[n -- k] go in
“different directions” in the sum of (5). We obtain the
desired pedagogical result by relaxing the causality and
finite support assumptions and realizing that here was
nothing special about the time n = 10. By an intuitively
satisfying path, this leads back to the expression (5) for
y[n]. Following [1], we establish the commutivt y of dis-
crete convolution by making a straightforward change of
variable.

2.2 . Distributions

We introduce distribution theory on the Sc hiartz class
follo wing [3], and we do not concern ourselves with details
of ho w the theory is extended to larger signal classes [3,4].
Before doing this, ho w every ebriefly coverthe mod-
ern integration theory that will be required later in ap-
plying the Riemann-Lebesgue lemma (RLL) [4-6]. We
outline the computational aspects of Lebesgue measure
on the line and bring our students to a point where
they can integrate simple “step functions” with countable
ranges. We then explain qualitatively how the monotone
and dominated convergence theorems are used to inte-
grate more general functions that might ha veuncount-
able ranges [7,8]. Finally, we state without proof the fact
that any Riemann integrable function is also Lebesgue in-
tegrable and that the two integrals are equal when they
both exist.

We begin our discussion of distributibns y oberv-
ing that there are situations in which the effect that a
signal has on a sytem or the w & in which it interacts
with other signals through the inner product are signifi-
cant, and yet the particular values that the signal takes
at particular times are of no interest. A familiar example
is when the oscilloscope is used to observe the input and
output of a circuit driven b y short pulses.If we view the
signals at a large time scale compared to the pulse dura-
tions, then all input pulses look like vertical lines on the
scope even though they may have distinct shapes when
viewed at a finer scale. In such cases w ew ouldlike to
ha vea single mathematical object capable of modeling
whole classes of signals that are not perceptibly different
from one another when viewed at the scale cf interest.
Distributions provide this capability, whereas ordinary
functions cannot.

F ormally a distribution f is a contin uous linear func-
tional defined on an appropriate signal space: f maps
each signal to a number. Given a locally integrable func-
tion f(t), one easy way to construct a distribution is by
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inner product with f:

(z(t), f()) = /R z(t)f*(¢) dt, (6)

where superscript asterisk denotes conjugation. Distri-
butions such as (6) are called regular. We alternatively
use the symbols f, (-, f(¢)), and (z(¢), f(t)) for the dis-
tribution (6).

A singular distribution (-, g(¢)) is a continuous lin-
ear functional for which there does not exist a function
g(t) satisfying (-, g(t)) = [ z(t)g* (t)dt. The prototypical
example of a singular distribution is the Dirac delta

(z(t),6(t)) = 2(0). (7)

Singular distributions should be viewed as a general-
ization of the notion of inner product that frees us from
specifying the precise values of the signal g(t) in (7) at
every time. To maintain notational consistency between
regular and singular distributions, we write the symbolic
integral

Az@ﬂﬂﬂzz@) (8)

for (z(t),d(t)), where it is understood that no ordinary
function d(t) exists satisfying (8) in the sense of Riemann
or Lebesgue integration. T oparaphrase Zemanian [3],
“the left side of (8) has no meaning other than that given
to it by the righ t side.” Another reason for writing the
symbolic integral in (8) is that symbolic manipulations
such as variable changes to accommodate time shifting
and time scaling of distributions, if carried out as though
there were an actual integral in (8), lead to consistent
definitions for these operations over the class of singular
distributions.

Two distributions f(t) and g(t) are said to be equal,
or equal in the sense of distributions, if (z(t), f(t)) =
(z(t), g(t)) for all signals z(t) in the space of interest.
Thus, f and g are equal if they both map every signal to
the same number.

T o define operations on distributions, ve first use or-
dinary integration to determine the behavior of the oper-
ation on regular distributions. We then define the behav-
ior on singular distributions to be consistent with that on
regular distributions. Consider time translation as an ex-
ample. Given the regular distribution f(t), w ewish to
define the distribution f(t — tp). Making a straightfor-
w ard ¢ hange of ariable in (6), we have

(z(t), f(t — o))

/R 2OF (t—to)dt  (9)

/xu+mﬁ%na (10)
R
= (z(t+to), F(1)). (11)
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Based on (11), we define the time-translated distribution

(z(t), g(t = to)) = (=(t + t0), 9(£)) (12)

for all distributions g(t), both regular and singular.

The theme seen in (12), where an operation on a
distribution is defined by moving an equivalen topera-
tion onto the signal z(t), recurs again and again. By the
same type of reasoning, we define the following:

1. A ddition:
(z(t), () + () = (=(t), £()) + (=(t), 9(t))-

2. Scalar multiplication:

(z(t), af (8)) = (a*z(2), £(2)).

3. Time scaling:
(z(t), f(at)) = ({4 (L), £(t)). Note that this eas-
ily establishes that, in the sense of distributions,
(2(t), 8(at)) = (a(L),8(t)) = 4=(0), implying
that d(at) = 1g1é(t).

4. Time differ entiation:(z(t), f'(t)) = (—=z'(t), f(t)).
This may be used to rigorously establish that, for
the unit step function u(t), u'(t) = (¢).

2.3 . Riemann-Lebesgue Lemma

The signal e/“? is fundamental in many engineering dis-
ciplines. Y etw e are unlilely. to encounter this signal in
engineering practice, since its real and imaginary parts
oscillate periodically for all time. How ever, it is not un-
common to encounter a signal z(t) that behaves like e/*
for a time period that is muc h longer than the irterval of
interest for the problem at hand. In such cases, it seems
reasonable to model z(t) as being equal to e/“* and not
worry about the fact that this model is inaccurate for
distant past and future times. This motivates the con-
sideration of e/** as a distribution rather than a function:
it is the signal’s behavior in systems and inner products
over the time irterval of in terest for the currenproblem,
and not the specific values of the signal at all times, that
is significant.

The Riemann-Lebesgue lemma (RLL) is concerned
with the distribution e/* in the limit as w — oo.
The RLL states that, in the sense of distributions,
limy_+o0 €/“t = 0. This limiting distribution maps ev-
ery signal z(t) to the same number as does the regular
distribution 0, namely zero. The most important conse-
quence of the RLL is the fact that

. sinAt
lim =
Ao Tt

(). (13)
Our rigorous proof of (13), which has proven to be both
accessible and satisfying to our students despite its use
of the dominated convergence theorem, is omitted here
in the interest of brevity.

Octobet8-21, 2000 Kansas Cit y, MO

3oth ASEE/IEEE Frontiers in EducatiGonference
F4E-3



2.4 . Codinuous-Time Time Domain Analysis

With the mathematical machinery we no w hare in place,
time domain analysis of continuous-time signals and sys-
tems is no different than it w asin discrete time. The
basis of interest is {6(t — 7)}, cg, the set of translates of
the Dirac delta. We write the signal z(t) as an (uncount-
able) linear composition of the basis signals according
to

o(t) = / erd(t — 7) dr. (14)
R

As before, the coefficients in (14) are nothing more than

inner products between z(¢) and the respective basis sig-

nals:

cr = (z(u),8(u — 7)) = z(7). (15)
The expression (14) for z(t) then reduces to
z(t) = (z(1),6(t — 7)). (16)

For an LSI system H with impulse response h(t),
computation of the response y(t) to input z(t) is then
straigh tforvard:

y(t) = H{z(t)} = H{{(7),6t-7)} 17)
= (a(r), H{6(t —)}) (18)
= (z(r),h(t — 7)) (19)
= / a(r)h(t ~ 7) dr = z(t) * h(t). (20)
R

Note that the operation in (20) is ordinary integration:
the action of the system H transforms the singular dis-
tribution (16) into a regular distribution (20) thatma y
be interpreted as an ordinary Riemann or Lebesgue inte-
gral, provided that h(t) is locally integrable. To develop
an intuitiv enotion of continuous-time convolution, w e
proceed along the same lines as the discussion outlined
in Section 2.1 for the discrete-time case.

2.5 . Discrete-Time Fequency Analysis

For discrete-time F ourier analysis, the basis of interest
is {€"“"},¢[—x,r)- We begin by demonstrating that the
signal z[n] = e?“™ is an eigenfunction of any LSI system.
With h[n] the system impulse response, we have

yln] = Y e mPpfk] (21)
keZ
= " e ikhlk] (22)
kEZ
= Az[n]. (23)

Thus, if w ewrite an arbitrary signal z[n] as a lin-
ear composition of the basis signals {e’“"},¢[—x,r), it is
particularly easy to compute the system response to each
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input term in this composition. We conveniently write
the collection of all eigenvalues X in (23) for all signals in
the basis {€7“"},¢(r,x) together as a function H(e/),
—m < w < w. This collection of eigenvalues, or function,
is known as the frequency response of the system H.
The procedure for writing an arbitrary signal z{n]

in terms of the basis is no different than it w as inSec-
tions 2.1 and 2.4. We have
™

c,e“" dw,
-

zln] = (24)

2n

were the leading factor 511; arises because the Fourier
transform is not a true Hilbert space isomorphism when
the frequency variable is expressed in radian units.
Intuitively, this is equivalent to saying that the ba-
sis {ej“’”}uel_,,,,,) is not orthonormal. The factor
% can be eliminated from (24) by using vhe basis
{e7277"} te(—1/2,1/2) Where the frequency variable f is ex-
pressed in Hertz; w euse the radian frequency basis for
consistency with [1,2,9].

The coefficients ¢, in (24) are computed as inner
products betw een the signalz[n] and the respective ba-
sis signals as usual:

¢y = (zn], ™) = zlnje".

- kez

(25)

For con venience,w ewrite the coefficients ¢, for all of
the basis signals together as a function X (e/“), where-
upon (24) and (25) become the familiar discrete-time
F ourier transform equations

X)) = Z z[n]e=7", (26)
keZ
z[n] = —21;/ X (e7¥)ed“™ du. 27

We now observe from (22) that the eigenvalue A =
H(e’™) in (23) is precisely the Fourier transform of h[n]
evaluated at w; i.e., that the frequency responseof the
system is given b yH(e’*) = F{h[n]}. Using the expres-
sion (27) for the input signal z[n], we compute the system
output according to

yln] = H{z[n]} (28)
- H{% _ZX(ej”)ej“’" dw} (29)
= 517; :X(ej“’)H {e?“"} dw (30)
- -21; :X(eiw)H(efw)ejw" do  (31)
= FHX()H(e™)}, (32)
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which provides an intuitiv e understanding of the fact
that Y (e?*) = X (e/“)H(e’*) and establishes that writ-
ing the signals z[n], h[n], and y[n] in terms of the basis
{7} e[—n,x) instead of the basis {8[n — k]}ez results
in pointwise multiplication for the system output rather
than convolution.

T oconclude this section, w e consider the F ourier
transform pair

eom e T39m 3" 5(w — wo — 27k). (33)

keZ

Using (7) and (27), it is easy to establish the inverse
transform in (33). For the forvard transform, we apply
several routine trigonometric substitutions to obtain

M
X(eju) - ZejwonejwnzM]iLn Z ej(wo—w)n
nez o°n=—
. _ M l
- L0 ) (34)
M-oo  sinfg(w — wo)]

Application of the RLL and L’Hépital’s rule to (34) yields
278 (w — wp) for the fundamental period of X (e/*). Since
the Fourier transform sum is not convergent in the or-
dinary sense in this case, the intrinsic 27 periodicity
of X{(e#) is not preserv edin the passage through the
generalized (distributional) limit how ever.Although the
frequency support of the basis {ej“’"}we[_,,,,,) implied
by (27) coincides with the fundamental period of X (e?*),
the consequence of an intrinsically periodic spectrum is
that the transform can be inverted using a basis that cov-
ers any connected frequency interval of length 2w. For
consistency it is therefore necessary to replicate the fun-
damental period 2md(w — wp) obtained from (34), which
results in the right side of (33).

2.6. Co tinuous-Time Frequency Analysis

Analogous to the discrete-time case, the basis of interest
for continuous-time frequency analysis is {€/“!},cgr. For
any fixed w and any LSI system H with impulse response
h(t), the response to the eigenfunction e/*? is

y(t) = 7! % h(t) = Xe¥t, (35)
where the associated eigenvalue is given b y
A= / h(t)e™3¢t dt. (36)
R

We define the system frequency response H(w) as a map
from each w € R to the eigen valueassociated with the
basis signal ef“?.

For an arbitrary signalz(t) that is to be written as a
linear composition of the basis, the required coefficients

0-7803-6424-4/00/$10.00 (©2000 IEEE

Session F4E

are given as before by the inner product

X (w) = (z(t), ) = / z(t)e 9t dt. (37)
R

Summing up these coefficients times their respective ba-

sis signals as before and multiplying by a constant to

account for the fact that the basis is not orthonormal

then yields

z(t) = 1 / X (w)et dw. (38)
27 Jr
Eq. (37) defines the continuous-time Fourier transform,
while the inverse Fourier transform is defined by (38).
From (36), it is clear that the system frequency response
is given b yH (w) = F{h(t)}.
For an arbitrary inputz(t) written according to (38),
the system output is given b y

u(t) = H{z(t)}:H{Ziw /R X(w)ej“’tdw} (39)
- L[ xH{e

= o /R X (w) H{e™"} duw (40)
1 jw

= g/RX(w)H(w)e ¢ dw (41)

= FUX(W)HW))}. (42)

Like (32), (42) shows that if z(t), h(t), and y(t) are writ-
ten in terms of the spectral basis instead of the Dirac
basis, then the system output is given b y poitiwise spec-
tral multiplication as opposed to convolution.

Applying the distribution theory developed in Sec-
tions 2.2 and 2.3, several importart results become ex-
tremely easy to establish. F or example,

Fo()} = / S(t)eit gt (43)
R
= (et §(1) = 1. (44)
The corresponding inverse transform is
1 V[ e
- _ 1 jw
F-11} = 27r/_°oe dw (45)
1 A
= EAlgréo/_Acoswtdw (46)
. sinAt
= /}gnw — = §(t). (47)

The transform pair e#“°t«2+2m8(w — wo) may then be
established by applying the Fourier transform frequency
shift property to (44) and (47) or directly using distri-
bution theory and arguments similar to those leading
to (34)
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3. REsuLTSs

The unifiepproac h described in Section 2 was imple-
mented in our junior level signals and systems course
over four consecutive semesters. During the last two
semesters, we conducted exit surveys of the students to
assess the effectiveness of the approach. The survey con-
sisted of a series of six questions; tw ofocused on the
use of linear algebra to teach forward and inverse trans-
forms and four focused on the use of distribution theory
to teac h the Dirac delta. Student responses to questions
regarding the use of linear algebra, in particular the in-
ner product, to teach transforms were very favorable in
terms of helping them learn the material. Out of 60 total
respondents, 44 said that the linear algebra helped them,
fiv e said that it hurt them, and 11 said that it had no ef-
fect. Forty-tw o studén said that the transforms should
be taught in terms of inner product in the future, while
15 said that they should be taught using the traditional
approach and three had no opinion.

Student responses to questions regarding the help-
fulness of the distribution theory were mixed and far less
conclusive. The responses revealed that while the stu-
dents found the topic interesting, a significant number of
them had difficulty understanding the distribution the-
ory and indicated a preference for the traditional method
of introducing the Dirac delta “function.” Specifically,
42 students said that they found the theory interesting,
while 15 said that they did not (three students did not
respond to this question). Thirty students said that the
distribution theory helped them, fiv esaid that it hurt
them, 24 said that it had no effect, and one student did
not respond. In response to our question of whether the
Dirac delta should be taught using distribution theory or
taught in the conventional way as a “functionl stu-
dents favoredthe distribution theory ,27 recommended
the conven tional approah, and 12 either didn’t know or
elected not to respond.

4. CONCLUSION

While the scope of our study w astoo limited to sup-
port definitive conclusions, the results strongly suggest
that teaching signals and systems from a linear algebraic
viewpoint is beneficial to student learning. In particu-
lar, unified explicit treatment of the forward transforms
as inner products and the inversetransforms as linear
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compositions of appropriate basis signals seems to in-
crease the students’ in tuitiv ecomprehension of the the-
ory while concomitantly reducing the need to “rnemorize
equations.” Moreover, this approac pow erfully leerages
the students’ thorough understanding of “dot product”
and basis in R3.

The results also suggest that a significani, portion
of the students w ere able to understand the distribution
theory in our approach and also found it helpful. How-
ever, only about one-third of them recommended that
distributions should be taught in the future, whereas
nearly half said that the conventional approach should be
used for future semesters. One plausible explanation that
we have entertained for these mixed results is that, with
the addition of the new topics, the course simply contains
too much material for a single semester. While the in-
troduction of linear algebraic and distributional concepts
could be spread out overseveral math and engineering
courses to address this issue, doing so would require sig-
nificant curricular revisions. Finally, we feel that our re-
sults cast significant doubt on the idea that distribution
theory ,abstract linear algebra, and modern integration
theory are topics that are too advanced for engineering
undergraduates.
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