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Abstract

In this paper we present an unsupervised modulation do-
main technique for segmenting textured images. A dominant
component AM-FM analysis is performed on the image, and
estimates of the locally dominant amplitude and frequency
modulations are extracted at each pixel. Modulation do-
main density clustering is then applied to estimate the max-
imum number of textured regions that might be present in
the image. The feature space is augmented with horizon-
tal and vertical spatial information prior to the application
of k-means clustering to arrive at an initial image segmen-
tation. Connected components labeling with minor region
removal and morphological smoothing are then applied to
yield the final segmentation. We demonstrate the technique
on several synthetic and natural images.

1. Introduction

AM-FM image modeling is an important emerging area
that represents images in terms of spatially localized ampli-
tude and frequency modulations [8]. Computed dominant
modulations have been used in a variety of applications in-
cluding nonstationary analysis [2, 5,7, 14], edge detection
and image enhancement [15], recovery of 3D shape from
texture [2, 19, 20], computational stereopsis [3], and texture
segmentation and classification [1,2, 6]. For texture seg-
mentation, the typical approaches have based the segmenta-
tion on either Gabor filter amplitude and phase responses or
the application edge detection algorithms to the computed
dominant modulations.

In two recent papers we described a more general and
robust technique that performs segmentation by clustering
the dominant modulations in a modulation domain feature
space [21,22]. The primary shortcoming of this technique
is that it is only partially unsupervised: the number of tex-
tured regions present in the image must be known a pri-
ori. In this paper, we present an enhanced algorithm that
uses non-parametric density clustering similar to that de-
scribed in [17] to determine the number of regions that are
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present in an image and to perform fully unsupervised tex-
ture segmentation. This approach has been developed very
recently and we have not yet had an opportunity to compare
the results quantitatively with those delivered by the over-
whelmingly large number of segmentation techniques that
have appeared in the literature. However, the experiments
conducted to date indicate that our proposed approach con-
sistently delivers correct pixel classification rates exceeding
93%, making it competitive with the best techniques that
have been previously reported.

2. Dominant Component AM-FM Analysis

We model the image as a sum of nonstationary 2D AM-
FM functions according to
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Note that this model is complex-valued. Prior to analyzing a
real-valued image s(x), it is necessary to add an imaginary
part g(x) so that ¢(x) = s(x) + jq(x). Writing x = [z y]7,
we use an imaginary part given by the 2D directional Hilbert
transform [8]
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For each image component ¢;(x) in (1), the AM function
ax(x) captures the local contrast. Similarly, the FM func-
tion Vg (x) captures local texture orientation and granu-
larity.

‘Using the dominant component analysis - technique
(DCA) described in [8], we apply the complex-valued im-
age t(x) to a multiband Gabor filterbank. The response
yi(x) of each filterbank channel is demodulated using the
spatially localized nonlinear algorithms
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to estimate the unknown component AM and FM functions
in (1), where G;(-) is the frequency response of the i’th fil-
terbank channel. The dominant image modulations ap(x)
and Vyp(x) are extracted on a pointwise basis from the
channel that locally maximizes the selection criterion [8]
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Use of this criterion is motivated by the fact that (5)
tends to select as dominant those components that have
a high-amplitude and also have frequency vectors lying
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near the maximum transmission frequency of the chan-
nel, thereby reducing demodulation errors due to noise and

cross-component interference. As is well known, the domi-
nant modulations provide a rich description of the local tex-
ture structure that is present in an image [2, 8, 14].

Although we expressed the demodulation algorithms (3)
and (4) in terms of a continuous spatial variable x in the in-
terest of economy of notation, we will refer to discrete im-
age coordinates (m,n) for the remainder of the paper. To
construct segmentation features from the dominant modu-
lations obtained using (3)-(5), we first convert the cartesian
frequency vector to polar coordinates: the magnitude fre-
‘quency is given by R(m,n) = |Vp5(m,n)| and the fre-
quency orientation is given by 8(m, n) = arg Vop(m,n).
We henceforth denote the discrete-domain dominant AM
function by A(m,n). The three features A4, R, and 8 are
each divided by their respective sample standard dev1atlons
to obtain normalized features A, R, and 8.

3. Determining the Number of Regions

Undoubtedly, the most difficult aspect of performing un-
“supervised texture segmentation is determining the number
of regions that are present in an image without @ prior infor-
"mation [4,9,11-13,16-18,23] Indeed, this was the primary
shortcoming of the algorithms described in [21,22]. Sim-
ilar to the technique described in [17], our approach is to
estimate the local density of points in the feature space by

applying a 3D Gaussian low-pass filter with kernel
K(m,n,p) = (27ra2)_g e-VmP+ni+p2/26% 6y
Application of this filter requires discretizing, or binning,
the floating point feature values A, K, and 6. For an image
of size 256 x 256, we typically divide each feature axis into
16 equal sized bins and use a value of o = 2 for the space
" constant in (6). Using a larger number of bins can produce
improved results, but only at the expense of considerably

* increased computation.

The 3D image that results from applying the filter (6)
to the A-R-§ feature space assumes large values where the

density of points in feature space is high and small values
where the points are sparse. We apply a gradient ascent
algorithm to this filtered image to identify all local max-
ima and group the feature vectors into clusters about the
detected maxima. The number of points in each resulting
cluster is compared to a global threshold, where we use a
threshold value of 500 points for images of size 256 x 256.
Minor clusters are removed by merging them with the clos-
est cluster that passes threshold, where closeness is defined
with respect to the nearest neighbor rule. We denote the
number of remaining clusters by M and calculate the corre-
sponding M cluster centroids. Our algorithm then assumes
that the number of regions present in the image is between
one and M.

4. Segmentation by k-Means Clustering
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The density-based clustering procedure described in the
preceding section delivers an estimate M of the maximum
number of regions present in the image and a set of M
candidate cluster centers. Our approach for segmenting
the image is to apply k-means clustering repeatedly for
1 < k < M, where the centroids of the k largest clusters
found by the density-based clustering procedure are used
as initial cluster centers. The final cluster configuration is
selected from among these by validating each result with
respect to the usual squared-error criterion [10]. Details of
the k-means algorithm will be given below.

For the cluster configuration selected by validation, the
cluster labels are mapped back to the image domain and
two post processing steps are applied to arrive at a final seg-
mentation. First, connected components labeling with mi-
nor region removal is applied to enforce a spatial correspon-
dence constraint and remove minor regions of misclassified
pixels. Only. the k largest connected components are re-
tained, where k corresponds to the number of clusters in the
k-means result selected by the validation procedure. Sec-
ond, an isotropic morphological majority filter is applied to
smooth the boundaries of the segmented regions. For im-
ages of size 256 x 256, we use a 9 x 9 circularly symmetric
structuring element.

In performing k-means clustering, we augment the fea-
ture space with pixel position information from the image.
Horizontal and vertical position features X and Y (normal-
ized by sample standard deviation) are added to the A-R-0
feature vector of every pixel to indicate the pixel’s position
within the image. The goal of this increase in feature space
dimension from three to five is to encourage the formation
of clusters that correspond to spatially connected regions
in the image. Note that this requires adding two additional
image position coordinates to each of the candidate cluster
centers that were delivered by the density-based clustering
procedure described in Section 3. These are calculated in



a straightforward manner by averaging the position features
of all pixels belonging to each of the M clusters that were
computed by the density-based approach.

We define the similarity between pixel (p,q) and pixel
(m,n) by

(p,4,m,m) = { [A(p,) ~ A(m,n)]”
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The weights e, 3, and v applied to the features A, R, and
@ in (7) are based on modulation domain entropy; as dis-
cussed in some detail in [21], they are designed to accen-
tuate the features that provide the best class separability in-
formation. The basic line of reasoning is that features with
histograms that exhibit several well defined modes that are
clearly separated from one another tend to be powerful for
discriminating between classes, whereas features with flat
or unimodal histograms provide relatively little class sepa-
rability information.

Here, we describe only calculation of the weight o cor-
responding to the feature A. Similar calculations are used
for the weights 4 and +y in (7). We denote the normalized
histogram of A by p;(g). The entropy of A is then given

E; =~ pi(a)log;p4(9)- ®)
q

We define the normalized entropy for A according to
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and the total entropy in the A-R-8 feature subspace by
Er=E5+Ex+&; (10)

The weight a, which reflects the portion of the subspace
entropy contributed by features R and 6, i.e., the portion
not contributed by A, is given by

aé(ET—Ej)z/SA. 1)

As a final note, we emphasize that, for each k € [1, M],
only one run of the k-means algorithm is required. This is
because we initialize the k-means algorithm with the cen-
troids of the k largest clusters computed by the density clus-
tering approach as opposed to initializing it with random
initial cluster centers as is done frequently.

5. Examples

The images shown in Fig. 1(a), (e), (g), (i), and (k) are
juxtapositions of several Brodatz or Brodatz-like textures.
For the four-texture image of Fig. 1(a), the density-based
clustering procedure estimated the maximum number of re-
gions in the image as M = 10, whereas the total number
of local density maxima prior to thresholding was 17. After
k-means clustering with 1 < k < 10, the squared-error val-
idation criterion correctly selected the clustering result cor-
responding to k = 4. The raw segmentation obtained from
the k-means algorithm for & = 4 is shown in Fig. 1(b). The
result obtained by applying connected components labeling
with minor region removal to the region map of Fig. 1(b)
is shown in Fig. 1(c) and the final segmentation result after
morphological majority filtering appears in Fig. 1(d). In this
case, the correct pixel classification rate is 95.74%.

An image with five textured regions is shown in Fig. 1(e).
In this case, total number of local maxima after density clus-
tering was 26 and M = 12 of these clusters passed the size
threshold. The k-means clustering algorithm was applied
for 1 < k < 12, and the validation criterion correctly se-
lected the & = 5 result. The final segmentation after appli-
cation of connected components labeling with minor region
removal and morphological filtering appears in Fig. 1(f),
where 95.16% of the pixels are correctly classified.

The image of Fig. 1(g) was obtained by rotating the cen-
tral portion of a woodgrain image counterclockwise by 45°.
There were 13 local maxima after density-based clustering,
only M = 6 of which corresponded to clusters containing
enough pixels to pass threshold. The final two-region seg-
mentation after k-means clustering and post processing is
given in Fig. 1(h). In this case, 98.23% of the pixels were
correctly classified by the unsupervised algorithm described
in this paper.

A three-texture image similar to those of Fig. 1(a) and
(e) is shown in Fig. 1(i). There were 18 local maxima af-
ter density-based clustering. Half of these were eliminated
by thresholding, resulting in an estimate of M = 9 for
the maximum number of regions in the image. After k-
means clustering, the validation criterion selected the k = 3
result. The corresponding final segmentation is shown in
Fig. 1(j) where 95.04% of the pixels are correctly classi-
fied. Fig. 1(k) and (I) depict another two-texture example
where 95.62% of the pixels were correctly classified by the
proposed unsupervised approach.

Finally, two natural images from the MIT Media Lab Vis-
Tex database are shown in Fig. 1(m) and (0). The maximum
number of regions estimated by the density-based cluster-
ing procedure was M = 9 in both cases, and the squared
error validation criterion selected the k = 2 result delivered
by the k-means algorithm in each case. The final segmen-
tations obtained after connected components labeling with
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minor region removal and morphological majority filtering
are shown overlayed on the original images in Fig. 1(n) and
(p), where pixel values in one region are divided by two
with respect to their values in the original image.

6. Conclusion

We presented a fully unsupervised modulation domain
technique for segmenting textured images. The key feature
. of the approach involves application of a Gaussian filter to
estimate the density of points in a 3D modulation feature
space. Candidate clusters are formed about local maxima in
the filtered result-and used to estimate the number of regions
~ in the image without a priori information. The number'and

centroids of these clusters are subsequently used to initial-
ize a k-means clustering algorithm in a 5D feature space
that also incorporates pixel position information. Finally,
the squared-error cluster validation criterion is used to se-
lect one of the k-means clustering results for use in comput-
. ing the final segmentation. Connected components labeling
" with minor region removal and morphological majority. fil-
- tering are applied as post processing steps to enforce spatial
* correspondence, remove small regions of misclassified pix-
-~ els, and smooth region boundariesin the final segmentation.
The technique is promising in that it consistently ob-
" tains the correct number of image regions and delivers cor-
rect pixel classification rates exceeding 93%. Future work
that remains to be done in assessing the algorithm’s effec-
tiveness includes exhaustive testing against a large number
. of synthetic and natural images and direct quantitative and
. qualitative comparison of the results with the best compet-
. ing techniques that have been published. -
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Figure 1. (a) Four-texture original image. (b) Result of k-means clustering for k£ = 4. (c) Result after
connected components labeling. (d) Final segmentation obtained after application of morphological
majority filtering. The correct pixel classification rate is 95.74%. (e) Five-texture original image.
(f) Final segmentation result delivered by the proposed unsupervised algorithm. Correct pixel clas-
sification rate is 95.16%. (g) Original WoodWood image. (h) Final segmentation result. Correct pixel
classification rate is 98.23%. (i) Three-texture original image. (j) Final segmentation result, 95.04% of
the pixels are correctly classified. (k) Two-texture original image. (I) Final segmentation result with
correct pixel classification rate of 95.62%. (m) Original GrassPlantsSky.0005 image. (n) Overlay of final
segmentation result on the original image. Pixel values in the lower region are divided by two with
respect to the original image, whereas pixel values in the upper region are unaltered relative to the
original image. (o) Original Building0008 image. (p) Overlay of final segmentation on original image.
Pixel values in the right-hand region are divided by two relative to the original image.
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