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Abstract

We present a new theory of multidimensional AM-
FM image modeling and derive algorithms for extract-
ing AM-FM sub-image information from digital im-
ages. In contrast to Fourier components, AM-FM im-
age functions admit arbitrarily varying emplitude and
phase modulations. Thus, they are inherently capable
of efficiently capturing essential nonstationary image
structures. Often, such nonstationarities contribute
significantly to visual perception and interpretation.

We describe a practical approach for computing AM-
FM image representations using nonlinear demodula-
tion operators. A Gabor filterbank isolates compo-
nents locally, and optimal filters based on a statisti-
cal state-space component model are used to track im-
age multi-components across the filterbank channel re-
sponses. We present dramatic examples where the es-
sential structure of natural images is successfully re-
covered from their computed AM-FM representations.

1. Introduction

The discrete Fourier transform models an N x N im-
age as the sum of N? sinusoidal components, each with
constant amplitude and frequency. For nonstationary
analysis, however, it is of interest to consider an image
t(m) to be a sum of AM-FM functions
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t(m) = > ti(m) = > as(m)expljes(m)], (1)
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where m = [m n|T, a; : Z2 = [0,00), ¢; : Z2 -5 R, and

t,t; : Z2 — C. In (1), it is assumed that t(m), t;(m),

a;(m), and ¢;(m) are the samples of corresponding
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continuous-domain functions #(x), t;(x), a;(x), and
@i(x) taken with respect to a unity sampling interval.

A real-valued image s(x) may be analyzed against
the model (1) using the analytic image t(x) = s(x) +
JH[s(x)] [2], where

His(x)] = l/Rs(x—~Tew)%;

xTe
s(x) * %X—T:y}. (2

In (2), e; and e, are horizontal and vertical unit vec-
tors, respectively, and the integral takes its Cauchy
principal value. Then, s(x) = Re[t(x)], the Fourier
transform T'(u,v) = F[t(x)] is zero in the left half of
the £ = [u v]T frequency plane, and

F{H[sx)]} = —jsgn(u)S(u,v). (3)

Each component t;(m) in the sum (1) is an AM-
FM image function admitting modulating functions
a;(m) and Ve;(m) that are permitted to vary arbi-
trarily across the image domain. Hence, each AM-FM
component is inherently capable of capturing signifi-
cant nonstationary image structure, and many images
can be represented using substantially fewer than N?
AM-FM components.

In this paper, we compute multi-component repre-
sentations (1) admitting only smoothly varying, or lo-
cally coherent components [1]. Such components tend
to each embody physically meaningful, smooth, non-
stationary or evolutionary structure within an image.
Thus, these representations find great utility in non-
stationary image analysis. Furthermore, we expect
that locally coherent AM-FM image representations
will find significant application in future image and
video coding schemes; a related 1D approach achieved
compression ratios of 43:1 for sampled musical instru-
ment signals [3].
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2. Demodulation

In computing representations of the form (1), it is
necessary to isolate the multiple image components
from one another to facilitate estimation of each com-
ponent’s individual modulating functions. We use a
multiband bank of Gabor filters for this purpose. The
filters need not isolate components on a global scale;
rather, it is required that each filter response be dom-
inated by at most one component at each pixel.

Let g,(m) be the unit-pulse response of the Gabor
filter for filterbank channel p, and let Gp(w) be the
filter frequency response. Let yp(m) = t(m) * g,(m)
and let ey represent e, or e,. Then, for the component
that dominates y,(m) at pixel m, each component of
Vy;(m) of may be estimated using

Yp(m + eg) — yp(m — ek)] )

Tos. — :
e, Vi (m) arcsm[ 25, ()

and

yp(m +eg) + Yp(m — ek)] (5)

Tos. _
e, V@i (m) arccos[ 20, (m)

Each of (4), (5) places the estimated frequency vec-
tor components to within 7 radians. Together, they
place V@;(m) to within 27 radians. Once V{;(m) has
been computed, a;(m) may be estimated by

~ _ Yp(m)
wm) = | e ©

The approximate algorithm (4) - (6) is based on a
discrete quasi-eigenfunction approzimation. The ap-
proximation errors are tightly bounded by theoretical
results which guarantee that these errors will generally
be small or negligible if the components ¢;(m) are each
locally coherent [1].

3. Filterbank

We isolate components in the model (1) on a spatio-
spectrally localized basis using optimally conjointly lo-
calized Gabor filters in a polar wavelet-like frequency
tesselation. The continuous-domain unity L?-norm
channel filter g,(x) with radial center frequency rp =
|2, and orientation 8, = arg§2, is

_ 1 1 7 AT
gp(x) = p—er exp [ 4U;L;x x] exp 797 x] .

The frequency response G,(£2) is Gaussian, the filter 7-
peak radial octave bandwidth is B = log,[rz2/r1], where

r1 = rp —v/—Inn/o, and ry = r, + /—1n7n/0p, and
the n-peak orientation bandwidth is © = 2arctan /7,
where v = (28 — 1)2/(2B + 1)?. We arrange the filter
center frequencies along rays in quadrants I and IV
of the frequency plane such that the n-peak contours
of any four adjacent filters intersect in a single point.
The radial center frequency of the first filter on each
ray is ro, and the center frequencies of the remaining
filters on the ray follow a geometric series with common
ratio R. The angular spacing between rays is A =
2 arcsin [(43)—% {(R? +1)(y—1) + 2R(y + 1)}%].

To capture the low-frequency information in the im-
age, we incorporate a baseband channel into the filter-
bank. The impulse response of this filter is

X) = ——=exp |——5X X|. 7
) = e |- )
The filter space constant oy is is designed so that the
n-peak contours of G»(€2) and of the first filters on any
two adjacent rays of the filterbank all intersect in a
single point. Thus,

v—Inn

= >
rocos%—\/—_f":;—’l—rgsinziz‘-

(8)

Op

where 0o = v/—1n7/(2770./7)-

The filterbank used in the examples of Section 6 had
parameters ro = 9.6 cycles per image, R =18, B =1
octave, and n = 1/2, giving v = 1/9, © =~ 38.9°, and
A = 20.6°. This filterbank has 40 frequency modulated
channels and one baseband channel.

4. Component Model

Each channel of the multiband Gabor filterbank
delivers estimated modulating functions V@;(m) and
@;(m) at each pixel in the image. To compute the rep-
resentation (1), we must determine how many compo-
nents are present and which filterbank channel should
be used to estimate the modulating functions of each
component at each pixel.

We extract estimated modulating functions for a
low-frequency component from the filterbank baseband
channel at each pixel. For the remaining components
t;(m), we formulate a statistical state-space component
model in terms of the modulating functions V¢;(m)
and a;(m). Using this model, we design Kalman filters
for tracking V;(m) and a;(m) across the filterbank
channel responses. The baseband channel estimates
are not considered by the Kalman filters.

In formulating the state-space model, we begin by
ordering the image pixels according to a path function
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P which maps each pixel to a scalar lattice point k € N,
Pixels are mapped sequentially by traversing the first
row of the image from left to right, the second row
from right to left, and so on. Under the mapping P,
the modulating functions of ¢;(m) may be written as
Vi(k) and a;(k). Then, a;(k) and each component of
Vi(k) may be expanded in a first-order Taylor series
about a lattice point k. The derivatives of each modu-
lating function (taken with respect to arc length along
?) may also be expanded in zeroth-order Taylor series
about k. Writing these Taylor series together leads to
a sixth-order canonical state-space model for ¢;(m), as
described in [2].

The system modes of the state-space model corre-
sponding to a;(k) and to each component of V;(k)
may be decoupled to yield three independent second-
order systems. The system describing a;(k) is

= ]+ B @

ai(k) = 11 0] [ ZEZ; ] (10)

where a}(k) is the derivative of a;(k) and where u, (k)
and v, (k) are uncorrelated stochastic processes [1,2].
Analogous systems describe the components of Vy; (k).

The estimates (4) - (6) delivered by filterbank chan-
nel p are related to the system output (10) by

ai(k) = ai(k) +na(k), (11)

where n, (k) is a stochastic process modeling the errors
inherent in (4) - (6). The design of a Kalman filter for
tracking and estimating a;{k) follows from (9) - (11),
and is given in [2], along with filters for tracking and
estimating each component of V; (k).

At each point k along P, the Kalman filters de-
liver estimates of the quantities a;(k) and V;(k) for
each tracked component. They also predict what values
these quantities will assume at point k + 1. Observa-
tions @;(k + 1) and V@;(k + 1) of component t;(m) are
then taken from the filterbank channel with center fre-
quency closest to the component’s predicted frequency.
After all existing component tracks have been updated
at point k, the filterbank is scanned for channels deliv-
ering frequency estimates (4), (5) which do not asso-
ciate with any existing track. New tracks are initiated
using the observations delivered by such channels.

5. Postfilters

The Kalman filters described in Section 4 work well
for images that contain only a few components which

are well separated in frequency. However, many nat-
ural images contain phase discontinuities arising from,
e.g., occlusions, surface defects, or surface discontinu-
ities. The modulation function Vi;(m) of an image
component ¢;(m) can generally contain unbounded ex-
cursions of either sign near such discontinuities.

If the Kalman filters are permitted to follow such
frequency excursions in an image comprising several
components, then the track corresponding to a particu-
lar component ¢;(m) containing a wideband frequency
excursion will typically take observations from a fil-
terbank channel that is dominated by another tracked
component t,(m). When this occurs, the tracks corre-
sponding to these components tend to become coinci-
dent and continue updating from the same filterbank
channels indefinitely.

Therefore, in computing representations for multi-
partite natural images, it is necessary to postfilter the
estimates (4) - (6) to ameliorate the effects of wideband
frequency excursions arising from image phase discon-
tinuities. We use low-pass Gaussian postfilters, since
their envelopes and bandwidths may be simply related
to the channel filters. With x = [z y]T, the impulse
response of the unity L'-norm postfilter for smoothing
the estimated modulating functions delivered by filter-
bank channel p is

_ 1 1 C2 {2
P = e |-z (4 1) | 02

where o, is the space constant of channel filter g,(x),
kg and kg are postfilter space constant scaling factors,

¢t _ | cosd sind| |z

[f} - [—sinﬂ cosﬁ} [y]’ (13)
¥ = 6, — %, and 6, is the orientation of channel fil-
ter gp(x). Thus, the orientation bandwidth of the fil-
ter (12) is governed by the scaling factor x¢ and the
magnitude frequency bandwidth is governed by kq. If
ke = kg = 1.0, then the linear bandwidth of p,(x) is
identical to that of gp(x). Larger postfilter space con-
stant scaling factors yield a filter with a narrower band-
width, which performs more smoothing. Taking s
small facilitates the movement of tracked components
between channels which differ in orientation, while tak-
ing ko small facilitates the movement of tracked com-
ponents between channels which differ in magnitude
frequency. With the postfilters, initial frequency esti-
mates are computed using (4) and (5). These estimates
are then postfiltered, and the postfiltered frequency es-
timates are used in the amplitude algorithm (6). The
amplitude estimates themselves are then postfiltered.
For the examples of Section 6, the postfilter space con-
stant scaling factors were kg = 3.0 and ko = 3.25.
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6. Examples

The image Reptile is shown in Fig. 1(a). The low-
pass component shown in Fig. 1(c) was reconstructed
from the estimated modulating functions of the filter-
bank baseband channel. This component embodies
smooth shading and contrast variations in the image.
The Kalman filters detected five additional components
in this image. Reconstructions of these components are
shown in Fig. 1(d) - (h), and each capture elements
of the hexagonal texture structure. The components
of Fig. 1(d) and (f) are each dominated by different
orientations in different image regions. The amplitude
modulations in the components of Fig. 1(e) and (h) are
complementary: the component of Fig. 1(e) has lower
contrast on the left and higher contrast on the right.
This is reversed in the component of Fig. 1(h). Fi-
nally, the component of Fig. 1(g) is of relatively lower
frequency and may be interpreted as an AM-FM har-
monic of the component in Fig. 1(f). A reconstruction
of the image from all six computed components appears
in Fig. 1(b). It is of remarkable quality for such a small
number of components. The computed representation
has clearly succeeded in capturing the essential struc-
ture of the image.

Fig. 1(i) shows the image Burlap, while the image
Raffia is shown in Fig. 1{(m). For each of these im-
ages, the Kalman filters identified eight components.
A reconstruction of the Burlap image from all eight
tracked components and the baseband component is
given in Fig. 1(j). Reconstruction of the Raffia im-
age from its computed nine-component representation
appears in Fig. 1(n). These reconstructions agree re-
markably with the originals, and the essential structure
of both images has been captured by the computed rep-
resentations using only nine components.

7. Future Work

While truly amazing, the reconstructed images of
Fig. 1(b), (j), and (n) are not perfect. There is no-
ticeable high frequency information missing from each
reconstructed image. Such structure tends to be sup-
ported on small, irregularly shaped image regions. For
example, the prominent vertical edge separating the
left one-fourth of the Reptile image from the right
three-quarters of the image is supported only over a few
columns. Thus, it is extremely difficult for the Kalman
filters described in Section 4 to maintain tracking of
this structure while traversing back and forth across
image rows using the path P. Nevertheless, elements of
the edge are manifest in nonstationary frequency mod-
ulations in the components of Fig. 1(d), (f), and (g), as

1017

well as in nonstationary amplitude modulations in the
components depicted in Fig. 1(c), (e), and (h). Thus,
low frequency elements of the edge are clearly visible
in the six-component reconstruction of Fig. 1(b). A
similar effect occurs in the hexagonal patterns visible
in the upper left-hand portion of the image and else-
where. While the essential elements of these patterns
appear in the reconstructed image, there is noticeable
high frequency information missing.

In addition to images containing regionally sup-
ported structure, the computational approach pre-
sented in this paper also has difficulty in handling
images which contain multiple objects or multiple re-
gions exhibiting disparate texture characteristics. An
alternative approach called the channelized components
paradigm involves computing one AM-FM component
from the estimated modulating functions delivered by
each channel of the multiband Gabor filterbank. There
are two main disadvantages to this more simplistic ap-
proach. First, many of the channelized components
tend to be nearly zero over most of the image. Sec-
ond, various individual features of the image structure
tend to be manifest in multiple channelized compo-
nents. Thus, channelized components representations
are inefficient.

Nevertheless, we typically obtain excellent recon-
structions from channelized components AM-FM im-
age representations. For example, Fig. 1(1) shows a
channelized components reconstruction of the Reptile
image. Channelized components reconstructions of the
Burlap and Raffia images are shown in Fig. 1(k) and
(0), respectively. Finally, Fig. 1(p) shows a channelized
components reconstruction of the image Celebrity.

Future research in computed multi-component AM-
FM image representations will involve the develop-
ment of improved Kalman filtering strategies to ob-
tain high quality reconstructions such as those shown
in Fig. 1(k), (1), (o), and (p) using only a few locally
coherent computed AM-FM components.
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Figure 1. Computed AM-FM image representations. (a) Reptile image. (b) Reconstruction from six
computed AM-FM components. (c) - (h) Reconstructed components of Reptile image. (i) Burlap im-
age. (j) Reconstruction from nine computed AM-FM components. (k) Reconstruction from channel-
ized AM-FM components. (1) Reconstruction of Reptile image from channelized AM-FM components.
(m) Raffia image. (n) Reconstruction from nine computed AM-FM components. (o) Reconstruc-
tion from channelized AM-FM components. (p) Reconstruction of Celebrity image from channelized
AM-FM components.
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