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ABSTRACT

In this paper we utilize multi-component AM-FM func-
tions to model multi-partite nonstationary images that are
locally coherent, yet globally wideband. We also detail
an approach for simultaneously estimating the modulating
functions associated with each of the multiple components.
Components are isolated by a multiband bank of Gabor
wavelets, and estimates of the modulating functions are de-
rived from each channel. We use simple one-dimensional
Kalman filters to track each identified component across
the channels.

1. INTRODUCTION

We explore new techniques for extracting multiple ampli-
tude modulation (AM) and frequency modulation (FM)
components from images. For the first time, we demon-
strate effective identification, demodulation, and tracking
of multiple globally wideband, nonstationary yet locally
coherent individual signal components making up a multi-
component image.

AM-FM modeling techniques and associated demodula-
tion algorithms have been the subject of significant recent
interest {3] - [11]. Bovik, et. al., demonstrated powerful
characterizations of texture in terms of emergent frequency,
or frequency modulation models [3]. Maragos, Kaiser, and
Quatieri [6] - [10], and Bovik, Maragos, and Quatieri [9],
[11] characterized and popularized the Teager-Kaiser En-
ergy Operator for AM-FM signal demodulation. A multi-
dimensional version of the Teager-Kaiser operator and its
associated Energy Separation Algorithm was developed by
Maragos, Bovik, and Quatieri [4].

Havlicek, Bovik, and Maragos introduced a related de-
modulation algorithm unique in its ability to estimate mul-
tidimensional instantaneous frequency with correct sign in-
formation, and used it to demodulate the dominant com-
ponents of multi-component images [5]. In multiple dimen-
sions, the signs of the instantaneous frequency components
play an important role in determining the local orientation
of the instantaneous frequency vector. These signs defi-
nitely are significant in representing orientations outside of
the first quadrant of the frequency hyperplane.

In the present paper, we combine this demodulation
algorithm with computationally efficient low-order 1-D
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Kalman filters to effectively track and demodulat:: the in-
dividual components of an n-dimensional multi-cornponent
image modeled as

K

t(x) = Y ax(x)explipk(x)],

k=1

)

where X = (z1,%2,...,2Za), t : R* = C, a : R™® — [0,1],
and p: R" = R.

2. SINGLE COMPONENT CASE

For a single nonstationary, yet locally coherent n-di nensional
complex valued image component modeled as

t(x) = a(x) exp[jp(x)],

2)

which is “locally narrowband” in the sense that tle ampli-
tude a(x) and instantaneous frequency V¢(x) do not vary
too rapidly, the demodulation problem involves estimating
the amplitude envelope a(x) and the instantaneous frequen-
cies Vip(x) that characterize the local image struciure. We
accomplish this by observing that

Vt(x) = jHx)Ve(x) + explig(x)]Va(x).  (3)

Hence
Vi(x) _ .Va(x)
This leads immediately to the demodulation algorithm
t(x)| = la(x) exp[jp(x)]| = |a(x)] = a(x) (%)
and
_ Vi(x)
Ve(x) = Re []t(x)] . (6)
The quantity ,
Bx) = VL )

la(x)[?
is the n-dimensional extension of the instantaneous band-
width, defined in one dimension by Cohen [12]. This quan-
tity is related to the spread of frequencies present around
the dominant, or emergent, instantaneous frequ:ncy of a
component on a localized basis.

In (5), (6), if the image of interest is real, w: form its
complex extension by adding j times its Hilbert ‘ransform
prior to demodulation. As we shall point out in Section 3,
multiband wavelet processing is required to isolate individ-
ual components in the case of a multiple component signal,



and hence there is no computational penalty in using the
Hilbert transform extension method. In fact, it saves us
from having to compute half of the multiplies in all subse-
quent FFT-based filtering operations.

3. MULTI-COMPONENT CASE

Since the demodulation algorithm (6) is nonlinear, it breaks
down in the presence of out-of-band additive noise, when
multiple locally narrowband signal components are present,
and when both multiple components and broadband noise
are present due to interference between the various signal
components [11]. Therefore, in these situations it becomes
necessary to tsolate the various locally narrowband compo-
nents prior to demodulation. We accomplish this by pass-
ing the multi-component image through a multiple band-
pass (multiband) bank of Gabor wavelets, which are opti-
mal in their conjoint time-frequency uncertainty {2]. This
scheme isolates the AM-FM components on a spatially lo-
cal basis, and we subsequently apply the demodulation algo-
rithm (5), (6) to the filtered channel outputs with the slight
modification that the amplitude estimates so obtained must
be divided by the appropriate channel filter magnitude eval-
nated at the estimated instantaneous frequencies. Although
this filtered demodulation scheme is an approximation, we
have theoretical results which tightly bound the approxi-
mation error, and by which we can force the error to be
small by designing the multiband filters prudently [5].

3.1. Gabor Wavelet Filter Bank in 2D

All of the filters have unit L? norm in both domains. The
equation for a filter with center frequency (um,vm) is

S N ES R
gm(z1,2) = ~— = exp [t +ad

exp [127(um 21 + vmz2)],
with Fourier transform
Gm(u,v) = 20m\/2_7rexp {—41203,,

[(u - um)2 + (v—- vm)z] } .

Along rays, the filter radial center frequencies progress
geometrically with common ratio R, such that the radial
center frequencies of adjacent filters are related by rm41 =
Rrm. With v = (2B — 1)2/(2® + 1), we take om =

—Inn/(47272,7), so that each filter has a radial n-peak
bandwidth of B octaves and an orientation bandwidth © =
2arctan /7. Moreover, by spacing adjacent rays at angles
of

A = 2arcsin \/é [(R? +1)(y = 1) + 2R(y + 1}],

we ensure that any four adjacent filters intersect precisely
where each is at a fraction 7 of peak response. With this
dense spacing, every point in the frequency plane is covered
by a filter responding at n-peak or higher.

For the examples in this paper, weused R =18, B =1,
and 5 = %, giving eight rays in the right-half plane. The
radial center frequency of the first filter on each ray was 9.6
cycles per image. Each response image was postfiltered as

described in [1].
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Figure 1: Frequency tracks of two image
components in a region. The index k 1d-
vances as we traverse the image in she
spatial domain.

3.2. Multi-Component Algorithm

With the filtered demodulation algorithm, every channel in
the multiband filter bank produces observation:. of a(x) and
of V(x) at every pixel in the image. The problem of multi-
component demodulation then becomes one of determining
which channel should be used in estimating the modulating
functions of each component at each pixel. Figure 1 depicts
a case where two components exist in an image region con-
taining N + 1 pixels. Suppose that we specify an order for
the pixels such that traversing them in order r:sults in our
following a contiguous path in the spatial doriain. Then,
as we traverse the pixels in order, the pixel nuniber k varies
from 0 to N. With this variation in k, the irstantaneous
frequency of each component also maps out a track in the
frequency domain, as depicted in Figure 1. At each pixel, we
decide which channel to use in estimating the modulating
functions of a given component by following :hat compo-
nent’s frequency domain track with a track processor. A
block diagram of the overall scheme is shown in Figure 2.
The demodulation algorithm (5), (6) is performed in the
blocks marked “ESA”.

3.3. Component Tracking

In this section we discuss the details of a trazk processor
which is both simple and computationally etficient. For
each image component, the quantities which we track are,
with reference to eq. 1, ax and each component of V.
In two dimensions, we let U(x) = gg—lga(x) and V(x) =

52=¢(x).

We make no specific assumptions about st tistical cor-
relation between these quantities, and hence traick each one
separately. For the remainder of this developm=nt, we refer
to an arbitrary one of them as f(z1,%2). We ‘nap the dis-
crete domain vector function f(m,n) to a one dimensional
function fix by

k= { mN +n,
(m+1)N-n-1,

m even

m odd, ®)



2,
-0,
— 2
-—bv(pz

- a
=90k

Figure 2: Block diagram of the multi-
component algorithm.

where N is the row dimension of the image (assumed square),
and write the function fi in a first order Taylor series:

k
fe= o1+ fioa +f (k- t)f"()dt, (9)
k=1

which is exact up to sampling errors. Since we do not expect
fi to vary too rapidly or too wildly from pixel to pixel, we
do not model the higher order terms of the series explicitly,
but rather consider that f’ is essentially a constant plus a
drift, where the drift is an uncorrelated noise process uk.
This immediately gives us the simple and widely applicable

plant model
J={o al[f]+ (2]

[fk+1
Frea1

Although this model is perfectly valid, it should not be
expected to lead to the best possible track filter since it
does not make use of all of fi’s two-dimensional neighbors.
Nevertheless, the design of an elegant Kalman track filter
involving only scalar equations is straightforward from the
model (10):

(10)

ﬁ|k ﬁclk—l + ax(fi - fklk—]) (11)
.?Ik+1|k = ]?lk!k-ul + Be(f2 = Fuper) (12)
Ew+1|k = ﬁlk + )?'Huk: ' (13)

where ai and Bx are the Kalman gain sequences, f7 is the
observation of f at pixel k, fijx—1 is the prediction of f at

pixel k given k — 1 observations, and fix is the estimate of
f at pixel k given k observations.

3.8.1. Track Gating

At each pixel, let a2 be the amplitude estimate obtained
by applying (5) to channel n, and let U7, V7 be the instan-
taneous frequency estimates obtained by applying (6) to
channel n. Let @, be the predicted am;ﬂjtude o/f\ track m
at the pixel, obtained from (13), and let U, and Vi, be the
predicted instantaneous frequencies.
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For each track, let e, be the smoothed residual in am-
plitude, and €y, €v be the smoothed residuals in instanta-
neous frequency, where the smoothing is performed with a
single-pole IIR filter. We define the radius of the track gate
for track m at a pixel by

Rom = \/7(5¢a)? + M5ev)? + ((5ev)?,

where 7 & |am|™2, A o |Tm|™2, and ¢ o |Vin|™2, and the
distance from track m to the estimates of channel n by

Emm = \/r(a.,, —a2)? + AU — ULY2 + ¢ (Vi - Vi2)2.

We say that the estimates of channel n lie within the gate
of track m at a particular pixel if epnn < Rom.

8.3.2. New Track Starts

We would like to try starting a new track on a chaunel that
produces a large amplitude observation ey, and whose fre-
quency observations UgZ, V) do not lie within the gate of
an existing track. However, our confidence in the observa-
tions produced by a channel is highest when the observed
frequencies are close to the channel center frequer cy, since
this generally affords us improved immunity again:t out-of-
band information through an enhanced SNR. The quantity
|Gn(u,v)| / maxy,v |Gn(u, v)| lies between zero and one, and
increases as (u,v) moves closer to the filter center fiequency.
Hence we define the quality of channel n at each jixel by

ag |Ga(Un, V)
maxy,y |Ga(u,v)|’

Qn = (14)
At each pixel, if the observations from the chaniels with
the highest values of @, do not lie within the gates of any
existing tracks, then we start new tracks on those :hannels.

3.8.8. Track Updating

At each pixel, we update each existing track using the ob-
servations from the channel whose center frequency is clos-
est to the predicted frequencies of the track, prov.ded that
these observations lie within the track gate. If the observa-
tions are outside the gate, however, we coast the track by
updating it directly from the predictions.

3.8.4. Vertical Updating

We mentioned in Section 3.3 that a disadvantage of the
one-dimensional plant model is the fact that tracks are up-
dated at a pixel using only information from ho-izontally
neighboring pixels. We partially ameliorate this situation
by saving the state of each track at every pixel. When track
processing reaches the corresponding pixel on the next im-
age row, if the observations lie within the gate of the saved
vertical state, and the if distance em n from the sived state
is smaller than the distance to the current (horizor tal) state
of the track, then we restore the track to the saved state.
This has the effect of creating a track split at the pixel on
the previous row, with one of the split tracks continuing
horizontally while the other propagates vertically for one
row.



4. EXAMPLES

The results of applying the multi-component demodula-
tion algorithm with component tracking described in Sec-
tions 2 - 3 to track two components of a multi-component
tree image are shown in Figure 3. All images are scaled for
maximum dynamic range.

Figure 3(a) shows the image. It’s discrete Hilbert trans-
form is shown in Figure 3(b), and we formed the associated
analytic image by adding j times the Hilbert transform to
the image. The amplitudes of the two tracked components
are shown in Figures 3(c) and (f), respectively. The de-
modulated amplitude tends to be large in regions where
the image component exhibits high contrast.

The instantaneous bandwidths, computed from the two
demodulated amplitudes, are shown in Figures 3(d) and (e).
The instantaneous bandwidth is smallest at points where
only a single instantaneous frequency is emergent, while it
tends to be large in regions characterized by the presence of
numerous subemergent frequencies. In an imprecise sense,
our confidence in the estimated amplitudes and frequencies
is best where the instantaneous bandwidth is small, and
worst where it is large. This generalization can be made
rigorous using the main theorem of [5].

Finally, the estimates of the instantaneous frequency
vectors Vi (x) for each tracked component are shown in
the needle diagrams of Figures 3(e) and (f). Only one needle
is shown for each block of 8 x 8 pixels. The needle orienta-
tion is the pointwise estimate of the orientation of Vi (x),
which is generally normal to visually perceived contours
in the image. The length of each needle is inversely pro-
portional to [Vex(x)|, which makes it proportional to the
instantaneous period. This display convention facilitates vi-
sual comparison of the frequency estimates with the original
image, since spatially extended image features characterized
by the presence of low frequencies are associated with long
needles in the needle diagram, while smaller features char-
acterized by the presence of high frequencies are associated
with shorter needles.

Clearly, the image in Figure 3(a) contains additional sig-
nificant components in addition to the two we have tracked;
determination of how many components are actually present
remains an open problem.

In Figure 4, we apply the approach to another interest-
ing image which displays nonstationarity with local coher-
ence. Again, all images are scaled for maximum dynamic
range. The original 256 x 256 burlap image is shown in
Figure 4(a), and the Hilbert transform is shown in Fig-
ure 4(b). We tracked three components, and the estimated
amplitudes are shown in Figures 4(c), (f), and (i). Notice
that tracking of the third component did not start until row
16 of the image, hence the amplitude estimate is zero for
rows zero to 15 (and the instantaneous bandwidth is 255
in this region). The instantaneous bandwidth images are
shown in Figures 4(d), (g), and (j), while needle diagrams
of the estimated instantaneous frequency vectors are shown
in Figures 4(e), (h), and (k). Once again, the image clearly
contains additional important information that we have not
captured in tracking only three components.

5. FUTURE WORK

Important future work in this area includes development
of true multi-dimensional track filters and recoastruction of
an image from the estimated modulating signzls, including
determining how many components are present.
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Figure 3: (a) Tree image, real part. (b) Imaginary part, computed by Hilbert transform. (c) Estimate of a1 (x). (d) Estimated
instantaneous bandwidth of component one, |Va;(x)|/|a1(x)|. (¢) Needle diagram showing estimate of Vi, (x). Tle length
of each needle is inversely proportional to to |Ve1(x)} (proportional to wavelength). (f) Estimate of a2(x). (g) Es:imate of

|Vaz(x)]/|e2(x)|. (h) Estimate of Vip2(x).
. (e)
. (h)

(k)

(d)

(i)

Figure 4: (a) Burlap image, real part. (b) Imaginary part, by Hilbert transform. (c) Estimate of a1(x). (d) Estimate of
|Vai(x))/|a1(x)]. (e) Estimate of V1 (x). (f) Estimate of a2(x). (g) Estimate of |Vaz(x)|/|az (x)]. (h) Estimate of V2 (x).
(f) Estimate of as(x). (g) Estimate of |Vas(x)|/|as(x})|. (h) Estimate of Vpa(x). Tracking of component 3 did not begin
until row 16. .
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