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Abstract—In this paper, we present a new pixel-level scene model
for segmenting video into foreground and background structure. The
design of the model is largely influenced by several recently reported
stochastic background models that have been shown to significantly
outperform traditional deterministic techniques. In contrast to existing
nonparametric scene models, we propose a learning algorithm that inte-
grates new information into the models by replacing the most significant
outlying values with respect to the current sample collections. Outliers
are identified using a variable bandwidth kernel density estimation (KDE)
procedure. We demonstrate the superiority of our model against a recent
state-of-the-art video segmentation system and compare and contrast the
theoretical aspects of our model with a wide variety of existing techniques,
and well known video segmentation challenges.

Index Terms—video segmentation, scene modeling, background mod-
eling

I. INTRODUCTION

We consider the problem of segmenting video into foreground

and background regions using pixel level scene modeling techniques.

Recently, the first nondeterministic background model (ViBe) was

proposed in [1] and shown to outperform a wide variety of existing

algorithms. The ViBe model is unique in that it is the first and only

scene model that uses a completely stochastic maintenance algorithm

to integrate new information into the system. We implemented ViBe

and immediately observed its superiority to several other well known

scene modeling techniques, namely, the GMM of Stauffer and Grim-

son [2], [3], the multidimensional median filter of [4], the temporal

low-pass filter of [5] and the KDE technique proposed by Elgammal,

Harwood and Davis in [6], [7]. In [1], Barnich demonstrated the

effectiveness of the ViBe model against the Zivkovic GMM [8], the

Codebook proposed in [9], a pixel level single Gaussian model with

adaptive variance, and several other lesser known techniques such as

the Σ−Δ model [10], a Bayesian histogramming algorithm [11], an

alternative GMM [12], and a simple temporal low-pass filter similar

to [5]. In addition, Brutzer [13] independently verified the claims of

Barnich by comparison to another collection of well known scene

models that included a classical median filter [14], the Stauffer and

Grimson GMM [2], [3], the Oliver and Pentland Eigenbackground

subtraction method [15], the single Gaussian model proposed in [16],

a Bayesian histogram [11], the Codebook of [9], the Zivkovic

GMM [8], and a self organizing map (SOM) [17].

The ViBe scene model is a pixel level nonparametric background

model that operates in the grayscale or RGB colorspaces and uses

kernel density estimation (KDE) to classify pixels in unsegmented

video frames. The number of previously observed samples that are

used to characterize the distributions of background values at each

pixel location is fixed at twenty. The background probabilities of each

pixel in an unsegmented frame are estimated by performing KDE

using a spherical cutoff kernel [1] with a fixed radius of twenty

pixels. If the background probability is less than or equal to 0.1,

then the pixel is classified as foreground, otherwise it is classified

as background and integrated into the system at the pixel level and

possibly at the neighborhood level.

In ViBe, pixels that are classified as background are automatically

inserted into the sample collection at the corresponding pixel location.

In contrast to existing nonparametric models where the oldest value in

the sample collection would be replaced by the new value, ViBe uses

a uniformly distributed random variable to determine the index of the

sample to be replaced. The authors show that this policy ensures that

the expected lifespan of each sample decays exponentially and that

the probability of a sample being preserved is independent of time,

and therefore that the system is memoryless. We propose a different

update policy that replaces the most significant outlier in the sample

collection. We argue that the outlying value is both the least important

sample in the statistical sense, and the most likely sample to represent

a component of the foreground that has been erroneously included

in the background model. In Section VI we show that this outlier

replacement policy has no negative impact on the performance of the

algorithm and that it nearly eliminates the persistent ghost problem

described later in this section.

In addition to integrating background pixels into the corresponding

pixel level models, the values may be propagated to a single neigh-

boring distribution to promote spatial consistency throughout the

scene. In the ViBe system, a uniformly distributed random variable

is used to propagate the background sample to a neighboring model

with a probability of 1/16. In the case that the sample is selected

for propagation, one of the eight neighboring sample collections

is randomly selected using another uniformly distributed random

variable. Selection of the sample within the neighboring distribution

to be replaced is also performed by a stochastic process where

a random variable that follows a uniform distribution is used to

determine which sample to replace. The ViBe neighborhood diffusion

process is based on an assumption that balances two conflicting

premises, namely that the structures of the neighboring distributions

are similar enough that information can be randomly swapped without

fear of corrupting the sample collections, yet disparate enough that

swapping of information improves the diversity of each model in a

constructive sense. In the case where neighboring pixel level models

lie on a different side of an edge boundary, the assumption that

adjacent distributions are similar is clearly incorrect and will lead

to unpredictable corruption of the two models through the diffusion

algorithm of [1]. Because the neighboring substitution index is chosen

at random, the potential for severe damage to the model is greatly

increased as important and unimportant values are equally likely to

be replaced. Indeed, all of our simulations with the model from [1]

revealed unjustifiably high foreground probabilities along the edges

of the background structure when examined prior to application of

the final segmentation threshold. The proposed outlier replacement

strategy reduces the effects associated with random propagation of

information to neighboring models because the impact to the model

is minimized by replacement of the least significant sample.

We identify the following four scene modeling components and
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use them to describe the theoretical aspects of our algorithm and

to compare and contrast the model with a wide variety of existing

techniques.

• Model representation: The collection of static and dynamic

system parameters combined with data storage elements that

represent the model at a single discrete time instance k.

• Model initialization: The method by which the elements of the

scene model are initialized at time k = 0.

• Frame segmentation: The procedure used to compare an un-

segmented video frame to the current instance of the model to

arrive at a segmented video frame.

• Model maintenance: The algorithm or update policy used to

integrate new information into the existing scene model. The

maintenance strategy may or may not make use of the segmented

frame, but in general it will make use of the image features

observed within the observed unsegmented video frame.

In addition, we provide the reader with a descriptive list of the

challenging problems and definitions thereof that have been histori-

cally encountered in the field of video segmentation by aggregating

the work of [18] and [13] in the following comprehensive collection.

From this point forward, we use these terms to analyze both the

theoretical aspects of our proposed algorithm as well as the simulation

results.

• Bootstrapping: In many situations, the scene model must be

initialized in the presence of foreground objects, and because a

trusted model of the scene does not yet exist, it is impossible

to determine the difference between foreground and background

objects. In the video segmentation literature, this procedure is

known as bootstrapping, although the actual statistical term

“bootstrap” is at best only loosely related to this process.

• Gradual illumination changes: Reasonable changes in light-

ing conditions such as those that are naturally occurring and

expected in outdoor environments.

• Sudden illumination changes: Unexpected variations in light-

ing conditions that occur frequently in indoor settings, but are

generally unpredictable.

• Dynamic background components: Swaying tree branches,

rippling water, and uninteresting components of the scenery

are all common examples of dynamic background components.

Unfortunately, the definitions of background and foreground are

not completely straightforward, and thus, the term background

may refer to any elements of the scenery that are unimportant

to the application at hand.

• Camouflaged foreground components: Foreground objects

that share very similar color and textural appearance with the

background, making detection difficult if not impossible.

• Shadows: Shadows may be cast by either foreground or back-

ground objects and they pose a significant challenge to video

segmentation systems because they generally appear different

from the known background components and thus they are

incorrectly identified as foreground objects.

• Ghosts/waking person: When background objects suddenly

become a part of the foreground such as in the case of a parked

car leaving its space, the region uncovered by the object is, in

many cases, incorrectly identified as a foreground object. If the

incorrectly classified region is not quickly identified as part of

the background in the model update step, then the object may

linger for a long period of time and continue to appear as a

persistent ghost.

• Foreground aperture: The situation in which homogeneously

colored or textured regions within a moving foreground object

are incorrectly identified as background structure because they

do not appear to be in motion.

II. MODEL REPRESENTATION

We employ a pixel level nonparametric model to characterize the

temporal distributions of background image features according to [1],

[6], [7]

M(p) = {φ1, φ2, φ3, . . . , φN}, (1)

where M is a nonparametric model of the background scene rep-

resented by a collection of N previously observed values in the

grayscale intensity feature space and p = (x1, x2) are the horizontal

and vertical coordinates of a single pixel. In terms of versatility,

nonparametric models are unique in that they are well suited to

the representation of multimodal statistical distributions where the

number of modes is unknown and likely to change over time.

Historically, nonparametric models have been shown to provide ex-

cellent characterizations of highly dynamic background components

and gradual variations in lighting conditions [1], [6], [7], [9], [19]–

[23]. Naturally occurring changes in lighting conditions have been

easily modeled with unimodal techniques. However, it is impossible

to model dynamic background components simultaneously undergo-

ing changes in lighting conditions with unimodal statistical models.

Thus, nonparametric techniques have been generally accepted as a

powerful tool in the modeling of complex outdoor environments [1],

[6], [7].

III. MODEL INITIALIZATION

We performed a blind initialization of the model over N frames,

by assigning each grayscale value directly according to

M(p) = {φ1, φ2, φ3, . . . , φN}
= {Ik−(N−1)(p), . . . , Ik(p)}, (2)

where Ik represents a single video frame at time k. Because descrip-

tive information about the foreground and background structures is

not generally available during the initialization process, and because

the presence of moving foreground objects is both likely to occur and

unlikely to be detected accurately, we elected to use a naive initial-

ization strategy. With this approach, the effects of a moving object

are spread over several spatial locations rather than concentrated at

a single location as in the case of the single frame bootstrapping

techniques.

In the ViBe model, initialization is performed by single frame

bootstrapping and the samples are randomly selected from a 3 × 3
neighborhood centered about the model location using a uniformly

distributed random variable [1]. Unfortunately, this tactic increases

the degree to which moving foreground objects corrupt the initial

background model, because entire regions within the model will

contain only foreground values. When the video processing begins,

these moving foreground regions will begin to uncover the true

background structure, resulting in both a true foreground detection

due to the moving object and a false foreground detection or ghost

in the place of the objects original position. In addition, the random

selection of values from a neighborhood may cause neighboring

values from significantly different image regions to dominate or

perturb the initial model of the background scene in an undesirable

way. For these reasons, we have adopted a simpler initialization

method that avoids the accidental creation of a ghost and delays

the neighborhood diffusion process until sufficient models of the

foreground and background structure are available for use in the

information sharing process.
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IV. FRAME SEGMENTATION

Segmentation was performed by thresholding the estimated back-

ground probabilities of each observed pixel Ik(p) value within the

unsegmented frame Ik according to

Lk(p) =

{
Foreground, P (Ik(p)) < T
Background, Otherwise

, (3)

where T is a fixed threshold and P (Ik(p)) is the background

probability of a single observed pixel Ik(p) estimated by

P (Ik(p)) =
1

N

N∑
i=1

K(Ik(p), φp
i ). (4)

In (4), φp
i represents the i’th sample from the background model M

at pixel location p, and K is a uniform spherical cutoff kernel of

radius R defined by [1]

K(a, b) =

{
1, |a − b| ≤ R
0, Otherwise

, (5)

where a, b ∈ R.

Pixel level segmentation techniques produce high resolution binary

classification of foreground and background structures within video.

In terms of the foreground aperture problem, these rich segmentations

make it possible to use post segmentation algorithms to identify fore-

ground details that penetrate the occluding background structures and

use them to reconstruct a more accurate estimate of the object shape.

Popular pixel level scene models that have featured post segmentation

algorithms for dealing with the foreground aperture problem are the

GMM of Stauffer and Grimson [2], [3], where foreground detections

are combined through a connected components algorithm, and the

nonparametric models of Elgammal, Harwood and Davis [6], [7],

where foreground regions are refined through a probabilistic analysis

of the neighboring pixels. Not surprisingly, the advantage of high

resolution segmentations is not completely without a few drawbacks,

namely the susceptibility of pixel level algorithms to the foreground

aperture problem. To combat the foreground aperture problem, a wide

variety of post segmentation procedures have been proposed, such as

a region growing operation by back-projection [18], morphological

operations combined with a binary support map to strictly define

the support of each foreground object [24], [25], and a probabilistic

region growing algorithm [6], [7]. In the model that we propose in

this paper, we do not perform any post segmentation processing,

however. Because information is shared among neighboring models

through the model update policy, the effects of foreground aperture

and camouflage on the final segmentations are significantly reduced.

V. MODEL MAINTENANCE

Here, for the first time, we propose a scene model update policy

where pixels that have been identified as foreground in the seg-

mentation step are integrated into the existing pixel level models

by replacing the most significant outlying samples. We define the

outlier in each background model to be the least probable value by

estimating the probability of each sample with respect to the entire

sample collection using KDE according to

Outlier Index = arg min
i=1,...,N

1

N

N∑
j=1

K(φp
i , φp

j ), (6)

where φp
i and φp

j are samples from the model M(p) and K is a

spherical cutoff kernel similar to (5). In (6), the radius of the kernel

is computed from the data using the method originally presented

by Elgammal, Harwood and Davis in [6], where the bandwidth is

set to the median absolute deviation measured between all of the

possible sample pairs and where pairs composed of identical samples

are excluded. We adopt the neighborhood diffusion process from [1]

and randomly select a neighboring model using a random variable

that follows a uniform distribution. Once a neighboring distribution

is selected, the value is integrated into the model using the outlier

replacement strategy described in (6).

This update policy achieves excellent results against the ghost

problem, because the image features associated with ghosts generally

correspond to outliers in the background sample collections. With

respect to the overarching problem of false foreground detections, this

outlier replacement policy ensures that the neighboring distributions

are only minimally transformed by the diffusion procedure, which is

of utmost importance in cases where the adjacent model has been

poorly chosen.

VI. RESULTS AND CONCLUSIONS

We demonstrate the effectiveness of our proposed algorithm on a

surveillance video provided by the performance evaluation in tracking

and surveillance (PETS) workshop [26]. We identified a 200 frame

subsequence of the video that contains a moving person that leaves

a ghost behind, and a moving vehicle. Ground truth data for each

frame was obtained by manually segmenting each frame of the PETS

video. Our initial results are shown in Fig. 1, where (a) and (e) are the

original raw video frames, (b) and (f) are the ground truth frames,

(c) and (g) are the foreground probability images from the ViBe

algorithm, and (d) and (e) are the foreground probability images

from our proposed algorithm. In Fig. 1 (c) and (g), erroneously

high foreground probabilities are observed along all of the stationary

edges due to the uniform replacement of values within poorly chosen

neighboring models. In our results, these false foreground detections

along with the ghost of the original location of the person are nearly

eliminated (Fig. 1 (d) and (h)).

Table I shows the results of the two algorithms evaluated in terms

of percentage correct classification (PCC) and a new probability

correct classification (PrCC) measurement proposed here for the first

time. Percentage correct classification (PCC) is computed according

to

PCC =
TP + TN

TP + TN + FP + FN
, (7)

where TP is the number of true positives, TN is the number of true

negatives, FP is the number of false positives, and FN is the number

of false negatives. To better identify the differences in the two scene

models, we propose the probability of correct classification (PrCC)

measurement and use it to evaluate each algorithm prior to application

of the final segmentation threshold. The PrCC is computed according

to

PrCC =
TPprob + TNprob

TPprob + TNprob + FPprob + FNprob

(8)

where TPprob is the sum of the foreground probabilities at the ground

truth foreground pixel locations, TNprob is the sum of the background

probabilities at the ground truth background locations, FPprob is the

sum of the foreground probabilities at the ground truth background

locations and FNprob is the sum of the background probabilities at

the ground truth foreground location. Because a principled threshold

selection process does not exist for these types of models, it is better

to study the accuracy of the model prior to the use of empirically

determined thresholds. In both quantitative assessments, the proposed

algorithm outperforms ViBe, and in the case of the model based

comparison (PrCC), the improvement is significant.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Selected video frames depicting frames 500 and 600 of the PETS sequence in terms of the original images (a, e), ground truth segmentation images
(b, f), ViBe foreground probability images (c, g) and the foreground probability images of the proposed algorithm (d, h).

TABLE I
PERFORMANCE RESULTS OF THE TWO VIDEO SEGMENTATION SYSTEMS.

Model PCC PrCC

ViBe 99.3477% 93.5280%

Proposed Algorithm 99.4938% 99.0120%

ACKNOWLEDGMENT

This work was supported in part by the U.S. Army Research

Laboratory and the U.S. Army Research Office under grant W911NF-

08-1-0293.

REFERENCES

[1] O. Barnich and M. Van Droogenbroeck, “Vibe: A universal background
subtraction algortihm for video sequences,” IEEE Trans. Image Process-
ing, vol. 20, no. 6, pp. 1709–1724, June 2011.

[2] C. Stauffer and W.E.L. Grimson, “Adaptive mixture models for real-time
tracking,” in Proc. IEEE Int’l. Conf. on Comp. Vision, Pattern Recog.,
Fort Collins, CO, USA, June 23-25 1999, vol. 2.

[3] C. Stauffer and W.E.L. Grimson, “Learning patterns of activity using
real-time tracking,” IEEE Trans. Pattern Anal., Machine Intel., vol. 22,
no. 8, pp. 747–757, Aug. 2000.

[4] R. Cucchiara, M. Piccardi, and A. Prati, “Detecting moving objects,
ghosts, and shadows in video streams,” IEEE Trans. Pattern Anal.,
Machine Intel., vol. 25, no. 10, pp. 1337–1342, Oct. 2003.

[5] G.W. Donohoe, D.R. Hush, and N. Ahmed, “Change detection for target
detection and classification in video sequences,” in Proc. IEEE Int’l.
Conf. Acoustic Speech and Signal Processing, 1988, pp. 1084–1087.

[6] A.M. Elgammal, D. Harwood, and L. Davis, “Non-parametric model
for background subtraction,” in Proc. European Conf. Computer Vision,
2000, vol. 1843, pp. 751–767.

[7] A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis, “Background
and foreground modeling using nonparametric kernel density estimation
for visual surveillance,” Proc. IEEE, vol. 90, no. 7, pp. 1151–1163, July
2002.

[8] Z. Zivkovic, “Improved adaptive gaussian mixture model for background
subtraction,” in Proc. IEEE Int’l. Conf. on Pattern Recognition, 2004,
vol. 2, pp. 28–31.

[9] K. Kim, T. Thanarat, H. Chalidabbhognse, D. Harwood, and L. Davis,
“Real time foreground-background segmentation using codebook
model,” Real-Time Imaging, vol. 11, pp. 172–185, 2005.

[10] A. Manzanera, “Σ − Δ background subtraction and the zipf law,”
Progress in Pattern Recognition, Image Analysis and Applications,
Springer, vol. 4756, pp. 42–51, Nov. 2007.

[11] L. Li, W. Huang, I. Gu, and Q. Tian, “Foreground object detection
from videos containing complex background,” in ACM Int’l. Conf.
Multimedia, Berkeley, CA, Nov. 2003, pp. 2–10.

[12] P. KaewTraKulPong and R. Bowden, “An improved adaptive background
mixture model for real-time tracking with shadow detection,” in Proc.
European Workshop Advanced Video Based Surveillance Systems, 2001.

[13] S. Brutzer, B. Hoferlin, and G. Heidemann, “Evaluation of background
subtraction techniques for video surveillance,” in Proc. IEEE Int’l. Conf.
on Comp. Vision, Pattern Recog., Colorado Springs, CO, June 2011, pp.
1937–1944.

[14] N. McFarlane and C. Schofield, “Segmentation and tracking of piglets
in images,” in Machine Vision and Applications, 1995, vol. 8(3), pp.
187–193.

[15] N.M. Oliver, B. Rosario, and A.P. Pentland, “A Bayesian computer
vision system for modeling human interactions,” IEEE Trans. Pattern
Anal., Machine Intel., vol. 22, no. 8, pp. 831–843, Aug. 2000.

[16] S.J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler, “Track-
ing groups of people,” in Computer Vision and Image Understanding,
Oct 2000, vol. 80(1), pp. 42–56.

[17] L. Maddalena and A. Petrosino, “A self-organizing approach to back-
ground subtraction for visual surveillance applications,” IEEE Trans.
Image Processing, vol. 17, no. 7, pp. 1168–1177, July 2008.

[18] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower:
Principles and practice of background maintenance,” in Proc. IEEE
Int’l. Conf. Computer Vision, Kerkyra, Sep. 20-27 1999, pp. 255–261.

[19] M. Seki, T. Wada, H. Fuliwara, and K. Sumi, “Background subtraction
based on cooccurrence of image variations,” in Proc. IEEE Int’l. Conf.
on Comp. Vision, Pattern Recog., Madison, WI, USA, June 18-20 2003,
vol. 2, pp. 65–72.

[20] A. Mittal and N. Paragios, “Motion-based background subtraction using
adaptive kernel density estimation,” in Proc. IEEE Int’l. Conf. on Comp.
Vision, Pattern Recog., Washington, DC, USA, June 27 - July 2 2004,
vol. 2, pp. 302–309.

[21] Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes for
object detection,” IEEE Trans. Pattern Anal., Machine Intel., vol. 27,
no. 11, pp. 1778–1792, Nov. 2005.

[22] I. Haritaoglu, D. Harwood, and L.S. Davis, “W4: Real-time surveillance
of people and their activities,” IEEE Trans. Pattern Anal., Machine Intel.,
vol. 22, no. 8, pp. 809–830, Aug. 2000.

[23] K. Kim, T.H. Chalidabhongse, D. Harwood, and L. Davis, “Background
modeling and subtraction by codebook construction,” in Proc. IEEE
Int’l. Conf. Image Processing, Oct. 24-27 2004, vol. 5, pp. 3061–3064.

[24] C.R. Wren, A. Azarbayejani, T. Darrell, and A.P. Pentland, “Pfinder:
Real-time tracking of the human body,” IEEE Trans. Pattern Anal.,
Machine Intel., vol. 19, no. 7, pp. 780–785, July 1997.

[25] Q. Zang and R. Klette, “Robust background subtraction and mainte-
nance,” in Proc. IEEE Int’l. Conf. on Pattern Recognition, 2004, vol. 2,
pp. 90–93.

[26] Computer Vision Pattern Recognition (CVPR), “Performance
evaluation of tracking and surveillance (PETS),” Website:
ftp://ftp.pets.rdg.ac.uk/PETS2001/, 2001.

148


