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Abstract

Challenging infrared data sequences such as the well-known
AMCOM closure sequences are characterized by highly nonsta-
tionary, evolutionary target and clutter signatures, poor target-to-
clutter ratios, and complex kinematics arising from both the tar-
get motion and the motion of the sensor platform itself. In such
cases, track consistency checks can provide a valuable means for
detecting an imminent track loss. In this paper, we consider a sim-
ple target model with a correlation-based detection process and a
straightforward SIR particle filter track processor. We show that
the performance of the track processor can be dramatically im-
proved by incorporating modulation domain consistency checks to
identify failure in the correlation-based detection process. This
strategy results in a robust dual-domain tracker that, despite the
simplicity of its state model, delivers superior tracking perfor-
mance against the very difficult AMCOM sequences.

1. Introduction

We consider the difficult problem of tracking extended targets
in midwave (3 μm - 5 μm) and longwave (8 μm - 12 μm) infrared
video sequences. We focus our attention on the well-known AM-
COM closure sequences [4,9,16,17]. This data set consists of ∼ 40
sequences where an airborne maneuvering sensor closes on a va-
riety of moving and stationary terrestrial targets. In general, these
data represent challenging tracking problems because the target
signatures undergo significant magnification and pose variations.
In addition, many of the sequences are characterized by strong,
highly structured clutter and/or low target-to-clutter ratios.

A standard approach to the infrared tracking problem involves
detection based on template correlation followed by an optimal
Kalman estimator. However, in cases where the target state space
model is nonlinear or the measurement and/or process noises are
non-Gaussian, the Kalman filter is not optimal. Particle filter-
ing [1–3, 15] has emerged recently as an empirical tracking ap-
proach that often performs better than the Kalman filter against
such cases. Although it is possible within the particle filtering
framework to combine the detection and tracking processes [2, 3],
here we will adhere to the more traditional model where detection
and tracking are considered separately.

We assume a midwave or longwave imaging sensor that ac-
quires video frames fk, k ∈ N. We refer to the raw pixel values
fk(x1, x2) as the pixel domain representation of the frame. Pixel
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domain detection is accomplished by template matching (e.g., nor-
malized correlation) [10, 14], where a target detection is declared
at the peak of the normalized correlation function. The template
is initialized by manually designating a window about the target
in the first frame f0. This approach affords generality in the sense
that it could correspond to a signature match in a system employ-
ing a library of stored signatures or alternatively to an assisted tar-
geting system with a human in the loop who manually designates
a previously unknown target type.

Subsequent to the initial frame, the track processor is expected
to run autonomously without further human intervention. Pro-
vided that the target signature does not exhibit significant temporal
evolution, correlation detection and tracking tend to be effective
since the initial template provides a reasonable characterization of
the target throughout the video sequence. In scenarios such as the
AMCOM sequences, however, the target signatures exhibit sig-
nificant nonstationary evolution. Consequently, after only a few
frames the template becomes stale in the sense that it no longer
provides an accurate characterization of the observed target. When
this occurs, the target is typically lost and the tracker often locks
onto structured features of the clutter, an effect that is exacerbated
by the apparent motion of the background in the image plane that
arises from the sensor platform kinematics.

In the literature, this has been referred to as the template up-
date problem [10]. As the target signature evolves, the template
must be updated or refreshed in order to preserve the quality of the
detection process and maintain track lock. A naı̈ve approach is to
refresh the template every L ≥ 1 frames based on the target signa-
ture observed in the last tracked frame. However, for highly evo-
lutionary target signatures one must choose L small. Inevitably,
the template overadapts and becomes matched to the background
instead of the target. A more robust approach is to update the tem-
plate when the observation fails to agree with the predicted track
centroid. This approach still fails against highly evolutionary sig-
natures, however, since the quality of the prediction is degraded
rapidly as the template becomes stale.

In this paper, we introduce powerful new AM-FM consistency
checks to identify when the detection process has been compro-
mised by target signature evolution. These new checks, which are
based on a modulation domain correlation tracker, are integrated
with a pixel domain particle filter to obtain a robust new dual-
domain track processor where stale templates are detected and re-
freshed on the fly. As illustrated by the examples given in Sec-
tion 4, this integrated approach has proved remarkably effective
against the AMCOM sequences. In Section 2 we briefly describe
computation of the modulation domain image model, while details
of the dual-domain track processor are given in Section 3.
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Figure 1. Frequency response of 18-channel Ga-
bor filterbank for infrared target tracking.

2. Modulation Domain Frame Model

Our key hypothesis is that degradation of the pixel domain
target track can be detected by simultaneously observing the tar-
get and background in a second domain where the target signa-
ture evolution, and hence failure of the track processor, is man-
ifest differently. AM-FM models [5, 8, 13] provide a modula-
tion domain image representation in terms of localized amplitude
and frequency modulations. Recently, we demonstrated that such
models are effective for representing infrared targets and back-
grounds and can substantially enhance target-clutter class sepa-
rability [7, 11, 12].

Since the AM and FM functions of a real-valued image com-
ponent are ambiguous, we regularize the demodulation problem
by constructing a complex multicomponent model tk for each in-
frared video frame fk according to

tk(x1, x2) = fk(x1, x2) + jH[fk(x1, x2)] (1)

≈
MX

m=1

am(x1, x2) exp[jϕm(x1, x2)], (2)

where H[·] is the partial Hilbert transform [6]. It is unneces-
sary for (2) to provide a complete representation of the frame fk.
Rather, what is important is that the M AM-FM components cap-
ture the structurally important features of the targets and back-
grounds. Through extensive experimentation, we determined em-
pirically that representation in terms of the M = 18 frequency
selective Gabor filterbank channels shown in Fig. 1 is sufficient.
Filterbanks of this type were described in [5, 8].

After applying the filterbank to the complex image tk, we es-
timate the modulating functions am and ∇ϕm in (2) from the fil-
terbank channel responses ym according to [5]

∇ϕm(x1, x2) = Re

»∇ym(x1, x2)

jym(x1, x2)

–
(3)

and am(x1, x2) = |ym(x1, x2)|. Intuitively, the AM functions
am capture the local envelope, while the FM functions ∇ϕm cap-
ture local orientation and pattern spacing. The AM-FM model for
fk consists of the 54 images am, rm, and θm, 1 ≤ m ≤ 18, where
rm = |∇ϕm| and θm = arg∇ϕm are the polar representation of
the vector field ∇ϕm.

3. Dual-Domain Track Processor with AM-FM
Consistency Checks

The pixel domain target centroid and velocity are modeled with
a four-element state vector xk = [x1,k ẋ1,k x2,k ẋ2,k]T =
[xT

1,k xT
2,k]T , where x1,k = [x1,k ẋ1,k]T and x2,k =

[x2,k ẋ2,k]T . We employ a constant velocity model, which is jus-
tified by the fact that the sensor platform closes on the target in the
AMCOM sequences. The state transition equation is given by

»
x1,k+1

x2,k+1

–
=

»
F1 0
0 F2

– »
x1,k

x2,k

–
+ vk, (4)

where

F1 = F2 =

»
1 Δ
0 1

–
, (5)

Δ is the interframe time, vk = [0 v1,k 0 v2,k]T , and v1,k and
v2,k are zero-mean white Gaussian noises uncorrelated with one
another. The pixel domain observation model is given by

zk = Hxk + nk, (6)

where

H =

»
1 0 0 0
0 0 1 0

–
, (7)

nk = [n1,k n2,k]T , and n1,k and n2,k are zero-mean white noises
uncorrelated with one another and with vk.

We process the pixel domain observations with a standard
SIR particle filter [1, 3, 17], where the state transition prior fol-
lows from (4), the likelihood of the observation p(zk|xi

k) follows
from (6) with n1,k and n2,k assumed to be Rayleigh distributed,
and resampling is performed at each time step. The Rayleigh
assumption on the measurement noise was justified by empirical
analysis of several AMCOM sequences against Monte Carlo sim-
ulations of the state transition equation. The pixel domain tracked
centroid is given by the expectation of [x1,k x2,k]T with respect
to the current particle population and weights, where the weights
are proportional to the likelihood.

Performance of the pixel domain SIR track filter depends crit-
ically on the quality of the observations zk, which deteriorates
rapidly if the template is permitted to become stale. In order to
detect when a template refresh is needed, we run a modulation
domain normalized correlation tracker in parallel with the pixel
domain track filter. Each modulation domain pixel is 54-element
vector comprising scalar entries from the 54 images am, rm, and
θm. Thus, one may visualize the modulation domain image repre-
sentation as a cube constructed by stacking the 54 images am, rm,
and θm.

The modulation domain template has the same horizontal and
vertical extent as the pixel domain template. However, like the
modulation domain image representation, it consists of pixels that
are 54-element vectors. The modulation domain template is ini-
tialized in the first frame by drawing 54-element vectors from the
images am, rm, and θm at the same pixel sites that are used to
initialize the pixel domain template. Normalized correlation is
performed in the modulation domain “cube,” and the modulation
domain track centroid is declared at the global maximum of the
modulation domain correlation function.

A stale template condition is readily detected by divergence
of the pixel domain and modulation domain track centroids. Due
to nonstationary evolution of the target signature in the AMCOM
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sequences, there are instances where the pixel domain tracker fails
first, where the modulation domain tracker fails first, and where
both trackers fail simultaneously. However, it is extraordinarily
rare that the failure modes in the two domains are similar. Thus,
an impending track loss in one or both domains is almost always
accompanied by a divergence of the two centroids.

When divergence is detected, we backtrack to the last frame
where the centroids agreed and refresh both the pixel domain and
modulation domain templates. We also consider a variety of hy-
potheses regarding the size and aspect ratio of the template. A
fixed list of increases and decreases are applied to both the hori-
zontal and vertical template dimensions. Each hypothesis is eval-
uated based on the first four moments of the template pixel values.
The hypothesis yielding minimum L2 distance to the moment vec-
tor of the observed target signature in the last frame where the pixel
domain and modulation domain centroids agreed is accepted.

4. Results and Discussion

In this Section, we present results for two longwave infrared
AMCOM closure sequences. As a baseline for comparison, we
implemented a standalone pixel domain normalized correlation
tracker with a fixed template, with template update in every frame,
and with a variety of fixed interval template update strategies.
None of these was capable of delivering satisfactory performance
against the AMCOM sequences. For illustrative purposes, we
show here the results for the fixed template strategy.

One of the most difficult AMCOM sequences is rng19 13,
which depicts a convoy of three vehicles rounding a corner. In
addition to significant magnification and aspect variations that re-
sult from closure of the sensor platform, the target signatures in
this sequence undergo profound evolution due to the kinematics of
rounding the corner. A pair of frames, one early and one late, are
shown in Fig. 2, where the tracked centroid is shown as a black
cross. Results for the dual-domain tracker with AM-FM consis-
tency checks are given in Fig. 2(a) and (b). In both cases, the SIR
filter track centroid is located on the lead target (as it is through-
out the entire sequence). Results for the standalone pixel domain
tracker are given in Fig. 2(b) and (d). In this case, the lead vehicle
is lost as soon as it turns the corner and the tracker variously locks
onto background clutter and following vehicles as they come near.
Errors in the detection process relative to ground truth for both the
dual-domain and standalone pixel domain trackers are given for
the entire rng19 13 sequence in Fig. 3.

Results for a second, more typical AMCOM run (rng16 07) are
given in Fig. 4. The target in this case is a slow moving truck and
there are significant magnification variations due to closure of the
sensor platform. SIR track centroids for the dual-domain track
processor are given in the upper row (Fig. 4(a)-(d)) for frames
250, 300, 350, 360, while the track centroids for the standalone
pixel domain correlation tracker are given in Fig. 4(e)-(h) for the
same frames. As is typical, the pixel domain tracker totally fails to
maintain track lock in this case. By contrast, the SIR filter centroid
from the dual-domain track processor remains on the main target
signature throughout the entire sequence.

In this brief paper, we have demonstrated that AM-FM con-
sistency checks can dramatically improve the performance of ele-
mentary track processors against challenging, real-world infrared
data sequences. Several important questions remain open, includ-
ing that of incorporating the modulation domain observations di-

rectly into the measurement and state equations.
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(a) (b) (c) (d)

Figure 2. Tracking results for AMCOM run rng19 13. The problem is to track the lead vehicle around the turn.
(a),(b) Dual-domain tracker at frames 150 and 250. (c),(d) Standalone pixel domain correlation tracker at frames
150 and 250.
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Figure 3. Horizontal and vertical detection errors (pixels) for AMCOM run rng19 13. Dual-domain tracker: (a),(b)
x1 and x2 pixel domain correlation errors. (c),(d) x1 and x2 modulation domain correlation errors. (e),(f) Stan-
dalone pixel domain correlation tracker errors.
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Figure 4. Tracking results for AMCOM run rng16 07, frames 250, 300, 350, and 360. (a)-(d) Dual-domain tracker.
(e)-(h) Standalone pixel domain correlation tracker.
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