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ABSTRACT

A new stochastic learning algorithm for use in nonparametric pixel-
level background models is presented in this paper. For the first time,
we propose the use of kernel density estimation (KDE) techniques
in the model update step to identify outliers within the pixel-level
sample collections and replace them with with recently observed
background image features. A neighborhood diffusion process that
improves on recently reported scene model learning techniques is
presented, wherein information sharing between similarly structured
adjacent background models is encouraged to promote spatial con-
sistency within localized image regions. We demonstrate the supe-
riority of the proposed algorithm by comparison with the state-of-
the-art ViBe system using the well known percentage correct classi-
fication (PCC) statistic and a new figure of merit, probability correct
classification (PrCC), presented here for the first time.

Index Terms— video segmentation, scene modeling, back-
ground modeling

1. INTRODUCTION

In this paper, we present a new stochastic learning algorithm for non-
parametric pixel-level background models that overcomes several
important problems in video segmentation. The update policy em-
ploys data driven nondeterministic techniques to integrate pixel and
neighborhood level image features in the grayscale colorspace. At
the pixel level, recently observed grayscale image values that have
been classified as background structure in the segmentation proce-
dure are integrated into the model by replacing the outlying samples
in the corresponding pixel-level background models. At the neigh-
borhood level, new background values are propagated to a randomly
chosen neighboring sample collection, where the probability of se-
lection is directly proportional to a measurement of the similarity be-
tween the shapes of the central and adjacent sample collection distri-
butions. We demonstrate the effectiveness of our proposed algorithm
against the state-of-the-art visual background extraction (ViBe) sys-
tem [1]. In all of our test cases, we observed significant improve-
ment in terms of percentage correct classification (PCC) and a new
metric probability correct classification (PrCC) presented here for
the first time. In addition, the proposed algorithm achieves excel-
lent performance against the well known and challenging persistent
ghost problem.

Statistical background modeling techniques have generally been
divided into parametric and nonparametric representations. Paramet-
ric statistical models first began to appear in the mid to late 1990s
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when the computational complexity required for parameter estima-
tion became widely available. These types of models were specifi-
cally attractive because they required a minimal amount of memory
storage to achieve success against a broad spectrum of the initially
observed challenges in scene modeling. In [2], the distributions of
background values at each pixel location were modeled using mul-
tivariate Gaussians in the YUV colorspace, resulting in good seg-
mentations of foreground and background components in the pres-
ence of indoor and outdoor lighting variations. Later, Gaussian mix-
ture models (GMMs) were used to characterize multimodal distri-
butions of pixel level features arising in natural scenes composed
of dynamic foreground and background components [3–5]. Due to
the overwhelming success of parametric scene modeling techniques,
significantly improved versions of the GMM [6] and reapplication of
well known median filtering techniques [7] continue to be reported
in the literature.

Nonparametric background models were proposed for char-
acterizing the temporal distributions of image features in video
when computer memory became abundant and the computational re-
sources required for estimating probabilities from sample collections
by kernel density estimation (KDE) became available. In practice,
both parametric and nonparametric models have been implemented
predominantly at the pixel level, resulting in a loss of spatial infor-
mation when compared to early background modeling techniques.
In the earliest pixel-level models, post processing was performed on
the detected foreground pixels using connected components labeling
followed by morphological region growing/decaying algorithms [8]
to refine the final segmentations.

Recently, the lack of spatial awareness in pixel-level video
segmentation algorithms has led to a resurgence in the use of
neighborhood-level information in many recently reported scene
modeling algorithms. In [9], a nonparametric joint domain-range
model was used to model the distribution of background image
features in the spatial-RGB feature space and KDE was used to
estimate the probabilities of observed pixel values prior to segmen-
tation. In other cases, spatial information has been incorporated
into pixel-level models by representation through the use of the
microstructural textural response [10], spatial derivatives [11] and
the local binary pattern (LBP) feature [12]. In [1], Barnich and
Van Droogenbroeck proposed the first completely stochastic non-
parametric scene model, where background information is shared
between neighboring pixel-level models in the model maintenance
step. The ViBe system proposed in [1] has been theoretically and
experimentally verified to achieve superior performance against a
wide range of well known scene modeling algorithms [1, 13]. Ta-
ble 1 presents an abbreviated list of the prominent scene modeling
techniques to which ViBe has been compared favorably.

Our proposed algorithm and the ViBe system are both nonpara-
metric pixel-level background models and they both perform neigh-



Table 1. Prominent Background Modeling Techniques
Author(s) Model Description Feature Vector Feature Vector Localization
Donohoe, Hush and Ahmed [14] Temporal Low-Pass Grayscale Pixel
McKenna, Jabri, Duric, et al. [15] Multivariate Normal RGB/Sobel Neighborhood
Oliver, Rosario and Pentland [16] PCA Grayscale Frame
Stauffer and Grimson [4, 5] GMM Grayscale/RGB Pixel
Elgammal [17, 18] Nonparametric Grayscale/RGB Pixel
Cucchiara, Piccardi and Prati [19] Median Filter RGB Pixel
Zivkovic [6, 20] GMM Grayscale/RGB Pixel
Kim, Thanarat, Chalidabbhognse, et al. [21] Codebook RGB Pixel

borhood level information sharing to promote spatial consistency
throughout the image lattice. The difference between the two algo-
rithms is the model update policy. In ViBe, new background samples
are integrated into the corresponding models by random replace-
ment using a uniformly distributed random variable, and informa-
tion is swapped between neighboring models by randomly selecting
a neighbor and then randomly replacing a sample within that neigh-
boring sample collection. We have observed that random neighbor
selection produces undesirable results in cases where the adjacent
sample collections have differently shaped distributions, as is the
case with pixels on different sides of an edge. In addition, the ran-
dom replacement of samples within the distribution has a tendency
to corrupt the model in cases where the replaced value was in a high
density region within the model. The proposed method overcomes
the limitations of ViBe by (1) replacing the outliers within the dis-
tributions and (2) discouraging the sharing of information between
incompatible sample collections.

2. PROPOSED SCENE MODEL

We employ a pixel level nonparametric model to characterize the
temporal distributions of background image features according to [1,
17, 18]

M(p) = {φ1, φ2, φ3, . . . , φN}, (1)

where M is a nonparametric model of the background scene rep-
resented by a collection of N previously observed values in the
grayscale intensity feature space and p = (x1, x2) is the spatial
coordinate of a single pixel. In terms of versatility, nonparametric
models are unique in that they are well suited to the representation
of multimodal statistical distributions where the number of modes is
unknown and likely to change over time.

We performed a blind initialization of the model overN frames,
by assigning each grayscale value directly according to

M(p) = {φ1, φ2, φ3, . . . , φN}
= {Ik−(N−1)(p), . . . , Ik(p)}, (2)

where Ik represents a single video frame at time k. Because descrip-
tive information about the foreground and background structures is
not generally available during the initialization process, and because
the presence of moving foreground objects is both likely to occur and
unlikely to be detected accurately, we elected to use a naive initial-
ization strategy. With this approach, the effects of a moving object
are spread over several spatial locations rather than concentrated at a
single location as in the case of the single frame bootstrapping tech-
niques.

Segmentation was performed by thresholding the estimated
background probabilities of each observed pixel value Ik(p) within

the unsegmented frame Ik according to

Lk(p) =

{
Foreground, P (Ik(p)) < T
Background, Otherwise , (3)

where T is a fixed threshold and P (Ik(p)) is the background prob-
ability of a single observed pixel estimated by

P (Ik(p)) =
1

N

N∑
i=1

K(Ik(p), φp
i ). (4)

In (4), φp
i represents the i’th sample from the background model M

at pixel location p, and K is a uniform spherical cutoff kernel of
radius R defined by [1]

K(a, b) =

{
1, |a− b| ≤ R
0, Otherwise (5)

where a, b ∈ R.

3. MODEL UPDATE POLICY

Because nonparametric models characterize statistical distributions
with fixed size sample collections, learning is generally conducted
by replacement of the oldest value within the sample collection [17].
In [1], the authors propose a technique whereby the sample to be
replaced is chosen by a uniformly distributed random variable, argu-
ing that this tactic produces a uniform decay of the sample collec-
tion over time. We propose a more conservative approach based on
replacement of the most significant outliers in the collection. This
replacement strategy is similar to the online k-means algorithm used
in parametric models [4] in that low probability regions within the
model are more likely to be discarded and replaced with more recent
observations.

We define the outlier in each background model to be the least
probable value and identify it by estimating the probability of each
sample with respect to the entire sample collection using KDE ac-
cording to

Outlier Index = arg min
i=1,...,N

1

N

N∑
j=1

K(φp
i , φ

p
j ), (6)

where φp
i and φp

j are samples from the model M(p) and K is a
spherical cutoff kernel. In (6), the radius of the kernel is computed
from the data using a technique introduced by Elgammal in [17],
where the bandwidth is set to the median absolute deviation mea-
sured between all of the possible unique sample pairs and where



pairs composed of identical samples are excluded. In the case where
no unique outlier exists, the sample to be replaced is selected at ran-
dom from the collection of minumum probability values identified
by (6).

We propose a neighborhood information sharing policy that is
similar to [1] except that we specifically discourage the sharing
of information between incompatible sample collections. For each
pixel level background model, we form a probability mass function
by assigning a weight to each of the eight-connected neighboring
background models based on a measurement of the similarity be-
tween the central M(p) and neighboring M(q) distributions. Here,
q represents the spatial location of a single neighboring background
distribution in the collection of pixels that are eight-connected neigh-
bors of the central pixel p indicated by Λ(p). The similarity metric
w is computed by measuring the L2 norm between histograms of the
two sample distributions and then exponentiating the result accord-
ing to

wi(p,q) = exp

−( 256∑
i=1

[h(M(p))i − h(M(q))i]
2

)(1/2)
 ,

(7)
where h(·) is a function that takes a collection of values and pro-
duces a 256 bin histogram and q ∈ Λ(p). The neighboring distribu-
tion that the new background value will be inserted into is selected by
drawing at random from the distribution defined by the normalized
neighborhood similarity weights {wi}i∈|Λ(p)|. Once a neighboring
distribution is selected, the value is integrated into the model using
the outlier replacement strategy given in (6).

4. RESULTS & DISCUSSION

We demonstrate the effectiveness of our proposed algorithm on a
surveillance video provided by the performance evaluation in track-
ing and surveillance (PETS) workshop [22] and the Beach People
sequence from the University of California San Diego (UCSD) back-
ground subtraction dataset [23]. We processed 200 frames of the
PETS sequence and 250 frames of the Beach People sequence. In
both cases, ground truth data was manually created.

Table 2 shows the results of the proposed algorithm compared to
ViBe in terms of percentage correct classification (PCC) and proba-
bility of correct classification (PrCC). Percentage correct classifica-
tion (PCC) is computed according to

PCC =
TP + TN

TP + TN + FP + FN
, (8)

where TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the num-
ber of false negatives. To better identify the differences in the two
scene models, we propose the probability of correct classification
(PrCC) performance metric and use it to evaluate each algorithm
prior to application of the final segmentation threshold. We argue
that the pixel-level foreground and background probabilities allow
for a richer analysis of the scene models when compared to the alter-
native binary classification results that have been traditionally used
to evaluate video segmentation systems. The PrCC is computed ac-
cording to

PrCC =
TPprob + TNprob

TPprob + TNprob + FPprob + FNprob
(9)

where TPprob is the sum of the foreground probabilities at the ground

Table 2. Performance results for the proposed algorithm and ViBe
using Percentage Correct Classification (PCC) and Probability Cor-
rect Classification (PrCC).

Sequence PCC PrCC
ViBe Proposed ViBe Proposed

PETS 99.3% 99.5% 93.5% 99.0%
BeachPeople 93.5% 95.1% 85.6% 87.3%

(a) (b)

Fig. 2. Final segmentation results depicting frame 450 of the PETS
sequence after application of the segmentation threshold to the prob-
ability images shown in Fig.1 (g, h). Subfigure (a) corresponds to
the foreground probability image in Fig.1 (g), and (b) corresponds to
the foreground probability image in Fig.1 (h).

truth foreground pixel locations, TNprob is the sum of the background
probabilities at the ground truth background locations, FPprob is the
sum of the foreground probabilities at the ground truth background
locations and FNprob is the sum of the background probabilities at the
ground truth foreground location.

Fig. 1 depicts selected frames from the two test videos, where
the effectiveness of our algorithm can be observed by comparing
foreground probability images from ViBe and the proposed algo-
rithm. Clearly, the model update policy proposed in this paper
produces a significant reduction in the number of potential false
positives along the edges of stationary background structures. The
ghost problem occurs in situations where stationary objects begin
to move and uncover previously unobserved background structure
resulting in the erroneous detection of foreground object. Fig. 2
shows the final segmentation results from the two frames shown
in Fig. 1, where a persistent ghost in the original location of the
moving person (Fig. 2(a)) is eliminated by the proposed model up-
date technique (Fig. 2(b)). Our proposed scene model is effective
against the ghost problem because the false foreground detections in
the ghost region are quickly identified as outliers and replaced with
more appropriate background pixel values in the model update step.
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