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Abstract—We introduce a new adaptive image fusion algorithm to
address the decomposition level problem in the multiresolution fusion
technique. The fusion scheme consists of two parallel processes which
are linearly combined on a spatially adaptive basis: lowpass fusion
to exploit the inherent target-background discrimination capability of
infrared sensors and highpass fusion to capture texture and shape
details leveraging the visible band imagery. The weighting coefficients
for each process are determined by maximizing a no-reference fusion
quality metric. We demonstrate the effectiveness of the proposed
algorithm against a variety of practical infrared fusion tasks where
it delivers tangible performance gains relative to several well-known
state of the art fusion techniques.
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I. INTRODUCTION

Image fusion is a technique to combine images captured by one
or multiple sensors into a single output image. Such techniques play
an important role in applications such as photography, night vision,
and remote sensing where one exposure or one sensor can not
achieve the desired goal. For example, in landscape photography,
it is difficult to shoot a high depth-of-field scene and maintain
front-to-back sharpness with one exposure even if a small aperture
is used. As the aperture decreases, the image sharpness degrades
because of optical diffraction. Nevertheless, an optimal front-to-
back sharpness of any particular scene can be achieved by blending
multiple shots with larger apertures and different focused regions.
In surveillance applications, infrared sensors are often used together
with visible sensors to enhance image quality of ambient scenes.
Infrared sensors, on the other hand, can not capture object textures
as well as visible sensors. Therefore, a fusion of infrared and visible
sensors can produce a single image that retains textures while
maximizing target-background discriminability. The fused image
can then be used to improve tracking algorithms or to assist human
observers.

While image fusion is a board subject, we restrict our attention
to the fusion task where multiple co-boresighted sensors capture
the same scene from identical or nearly identical optical axes.
Image fusion algorithms can be divided into two categories: pixel-
based approaches and region-based approaches [1]. In the pixel-
based approaches, the multi-resolution (MR) fusion scheme is the
most popular framework in the literature. Input images are first
decomposed into multiple scales using, e.g., a Laplacian pyramid
or a wavelet transform [2], [3]. In each scale, the output image
is determined from the transformed input images on a pixel by
pixel basis. The decision scheme is usually the max filter where
the largest transformed coefficient is transferred to the output.
The final fused image is then obtained by inverting the multiscale
representation. However, the pixel-based fusion algorithms do not
integrate spatial information in images and are sensitive to registra-
tion errors [1]. The region-based approaches address this problem

by accounting for regions or objects through a segmentation of
the input images prior to the fusion step [4], [5], [6]. The fusion
algorithms then make decisions based on regions instead of pixel-
wise. However, region-based algorithms depend on the accuracy of
the segmentation and on the region merging steps, both of which
are error prone.

Many successful fusion algorithms share a common theme.
These algorithms operate in a transform domain and select im-
portant features of the source images such as edges and energy
to transfer to the output image. Hence, the performance of these
algorithms depends on the chosen image transformation. For in-
stance, fused images produced by the translation invariant wavelet
transform contain less distortions than those produced by the dec-
imated wavelet transform [3]. Recently, there has been a growing
interest in designing fusion algorithms by optimizing image quality
metrics [7], [8]. In this paper, we pursue an optimization based
linear adaptive fusion (LAF) algorithm for infrared image fusion.
The LAF consists of two parallel processes, highpass fusion and
lowpass fusion. The fused image is computed as a weighted linear
combination of these two processes. The weighting coefficients are
determined by maximizing the no-reference fusion quality index
proposed by Piella and Heijmans [9]. We evaluate the effectiveness
of the proposed algorithm against four major classes of image
fusion quality metrics. The simulation results indicate that the LAF
consistently delivers performance gains relative to state of the art
fusion techniques.

II. BACKGROUND

Most recent fusion algorithms operate in a transform domain,
e.g., multiresolution (MR) analysis [1]. In this scheme, each input
image is decomposed into multiple subbands. For each subband, a
fusion operator is then defined to select important features from the
input subbands to transfer to the output subband. The fused image
is then obtained by reconstructing from the output subbands.

One of the earliest MR schemes is the Laplacian pyramid (LP)
proposed by Burt and Adelson [10]. Li, Manjunath, and Mitra [2]
used the maximally decimated discrete wavelet transform (DWT)
to improve the fusion performance. To overcome the translation
invariance limitations of the DWT, Hill, Canagarajah, and Bull
performed image fusion using the complex wavelet transform [3].

Most of the MR fusion methods are pixel-based, i.e., the fusion
operator is applied on a pixel-by-pixel basis. These techniques do
not use spatially coherent information in images such as edges and
local feature statistics. Zhang and Blum [4] used edge detection
and region labeling algorithms to find region of interests to create
a fusion decision map. They then performed image fusion in the
wavelet domain. Region identification is also a common theme



in subsequent region-based image fusion works by Lewis and
O’Callaghan [11] and by Piella [5].

III. LINEAR ADAPTIVE FUSION

Infrared sensors can discriminate between targets and back-
grounds (clutter) because targets such as humans and machines are
usually warmer than the clutter. Visible sensor, however, is capable
of capturing textures of the scene. Based on this observation,
we preserve characteristics of infrared sensors using a lowpass
fusion process. Scene details of the visible sensors such as textures
and shapes are retained by a highpass fusion process. However,
the decomposition into lowpass and highpass components varies
for different image pairs. For example, a certain image pair may
contain more textures than others. Hence, a fixed highpass/lowpass
decomposition level for every image pairs is not an optimal
choice. Here, we address the highpass/lowpass decomposition level
selection using an image quality optimization approach.

Figure 1. Block diagram of LAF image fusion.

The proposed algorithm is illustrated in Fig. 1. We assume that
the images f and g are captured by a visible sensor and an infrared
sensor. First, f and g are decomposed into lowpass and highpass
components. Let h be a Gaussian low-pass filter with adaptive
bandwidth parameter σ. The spectrum of this lowpass filter is given
by

ĥ(ω, β) = exp

[
−||ω||

2

2β2

]
. (1)

In particular, the lowpass images are then obtained as f1 = f ∗ h
and g1 = g ∗h. The highpass images are computed as f2 = f−f1
and g2 = g − g1.

The lowpass fusion decision is given by

y1(β) =
f̄1

f̄1 + ḡ1
f1 +

ḡ1

f̄1 + ḡ1
g1, (2)

where f̄1 and ḡ1 denote the local mean of f1 and g1 computed in
a local neighborhood, e.g., an 8-by-8 window.

The highpass fusion scheme is computed based on local variance
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σ2
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g2, (3)

where σ2
f2

and σ2
g2 are the local variance of f2 and g2 computed

in a neighborhood about each pixel, e.g., within an 8-by-8 window.

The fused image y is then obtained as a summation of (2)
and (3). After some rearrangement, the fused image can be rewrit-
ten as

y(β) =
h ∗ f̄

h ∗ (f̄ + ḡ)
[h ∗ (f − g)] +

h ∗ σ2
f

h ∗ (σ2
f + σ2

g)
[(f − g)− h ∗ (f − g)] .

(4)

The fused image y in (4) is a function of β. We find the optimal
value of β that maximizes the no-reference fusion quality index

arg max
β

Q(f, g, y(β)), (5)

where Q(f, g, y(β)) is the quality measure of the fused image y
given input images f and g. The quality index Q(f, g, y(β)) is
given in [9] by

Q(f, g, y(β)) = λQ(f, y(β)) + (1− λ)Q(g, y(β)). (6)

where Q(f, y(β)) and Q(g, y(β)) are the full-reference structural
similarity index (SSIM) [12]. The mixing coefficient λ is the
weighted salient feature computed from the image pairs (f, y) and
(g, y). Here, we use local variance as the salient feature. Once
the bandwidth parameter β is obtained, the final fused image y is
computed as in (4).

IV. RESULTS AND DISCUSSION

We computed LAF against twelve publicly available sets of
images obtained from www.imagefusion.org or from our website
with Matlab source code1. We compare the LAF results with
seven other fusion algorithms: DWT (decimated discrete wavelet
transform), SIDWT (shift invariant discrete wavelet transform),
DT-CWT (dual-tree complex wavelet transform), LP (Laplacian
pyramid), RL (ratio pyramid), GL (gradient pyramid), and AVG
(average) [20]. The performance of these seven algorithms and LAF
were quantified using four classes of quality metrics: information
theoretic measures [13], [14], image feature measures [15], [16],
structural similarity measures [9], [17], and perceptually motivated
quality measures [18], [19]. For any given metric (except the
Chen-Varshney (VC) metric [18]), a higher score means better
performance. Mathematical descriptions of these quality metrics are
found in the review by Liu et al. [20]. The number of decomposition
levels for the MR method was set to 4. LAF used the default 8×8
window in the calculation of the SSIM index and the local variance
feature.

We tabulate the fusion results for the Bristol set and the Kayak
set in Table I and in Table II. Quality metrics are tabulated
across rows and fusion algorithms are listed down each column.
For each quality metric, we indicate the best fusion method with
bold numbers. We note that none of the fusion methods wins in
every test case. This observation is consistent with the detail study
in [20]. However, LAF performs best with respect to most of the
quality measures, especially with respect to the Piella metric [9]
which LAF is designed for. In addition, we studied the overall
performance of LAF for all of the test images. For each test
set, we ranked the eight fusion algorithms from 1 to 8 based on
quality scores. We then averaged the ranking scores over twelve test
cases. In this ranking study, LAF delivers the best overall fusion

1URL: http://hotnsour.ou.edu/chuong/imagefusion/



Table I
FUSION PERFORMANCE COMPARISON AGAINST THE BRISTOL SET.

Method MI [13] Wang [14] Xydeas [15] PWW [16] Piella [9] Cvejie [17] VC [18] CB [19]
DWT 0.5617 0.8118 0.5634 0.4110 0.5965 0.4582 1075.7109 0.3445
SIDWT 0.4023 0.8058 0.3987 0.3986 0.4737 0.5068 1065.9187 0.3195
DT-CWT 0.2963 0.8039 0.5314 0.4296 0.6351 0.5055 845.6816 0.4436
LP 0.3361 0.8048 0.6251 0.4641 0.6943 0.5284 671.9634 0.4821
RL 0.3242 0.8035 0.1635 0.2864 0.1018 0.3782 1648.4622 0.4530
GL 0.3832 0.8055 0.5608 0.4739 0.6387 0.5289 786.7205 0.4152
AVG 0.4348 0.8066 0.4185 0.3709 0.4564 0.5148 891.8675 0.4653
LAF 0.5844 0.8128 0.6490 0.5417 0.6946 0.4806 1004.9463 0.4795

Table II
FUSION PERFORMANCE COMPARISON AGAINST THE KAYAK SET.

Method MI [13] Wang [14] Xydeas [15] PWW [16] Piella [9] Cvejie [17] VC [18] CB [19]
DWT 0.4376 0.8078 0.4753 0.3294 0.1233 0.4508 1681.1400 0.3500
SIDWT 0.5359 0.8099 0.5216 0.4212 0.1500 0.5602 969.4817 0.3507
DT-CWT 0.4225 0.8075 0.5050 0.3851 0.1345 0.5275 923.0406 0.3761
LP 0.4660 0.8083 0.5429 0.5306 0.1821 0.5760 1040.5504 0.4358
RL 0.4562 0.8079 0.3753 0.3786 0.1061 0.4841 1164.6833 0.4815
GL 0.5005 0.8091 0.5459 0.4877 0.1758 0.5727 988.2112 0.3830
AVG 0.6401 0.8129 0.5504 0.4980 0.1763 0.5997 976.6850 0.4216
LAF 0.6405 0.8120 0.5560 0.3447 0.1967 0.6009 921.2385 0.3667

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2. Image fusion results of LP, SIDWT, and LAF for the Bristol, UNCamp, and Kayak test sets. Visible input images are shown in the first column.
Infrared input images are depicted in the second column. LP, SIDWT, and LAF fusion results are shown in the third, fourth, and fifth columns, respectively.



performance. It is interesting to observe that in some test cases the
simple average method performs better than other tested methods,
including LAF, with respect to the MI measure. However, the MI
measure computes image fusion quality using distributions which
may not be appropriate for evaluating the quality of visual scenes.

In Fig. 2, we show the fused outputs of LAF and two other
regularly benchmarked methods, LP and SIDWT [9], [20]. The
first and second columns are input images taken from two different
sensors, visible and infrared. The LP fusion outputs are given in the
third column. The fourth column depicts the results of SIDWT. The
last column contains the LAF fusion results. The test image sets are
Bristol, UNCamp, and Kayak [21]. We observe that LAF retains
the contrast of the input images better than other two methods,
especially in important regions where human body is presented
against the ambient clutter background as in Fig. 2(e).

Besides producing superior fusion results, LAF has the advan-
tage of not requiring parameter tuning. However, LAF runs slower
than other tested methods. For a 256x256 fusion task, the current
Matlab implementation takes an average of 5 seconds on an Intel
2GHz single-core processor with 2GB of RAM.

V. CONCLUSIONS

We introduced a linear adaptive fusion (LAF) algorithm for
heterogeneous sensors vision system. The fused image is computed
as a weighted linear combination of visible and infrared input
images. To take advantage of the unique operating characteristic
of infrared sensors, we divide the fusion scheme into two parallel
processes: lowpass fusion and highpass fusion. The weighting
coefficients of each process are determined by maximizing the
SSIM-based no-reference fusion quality measure. We demonstrated
the effectiveness of the proposed algorithm quantitatively and
qualitatively. The experimental results indicate that LAF consis-
tently delivers superior performance relative to seven competing
techniques. We are currently evaluating the performance of LAF
under noisy and high distortion scenarios.
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