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ABSTRACT

Clinical assessment of bone marrow is limited by an inability
to evaluate the marrow space comprehensively and dynami-
cally and there is no current method for automatically assess-
ing hematopoietic activity within the medullary space. Evalu-
ating the hematopoietic space in its entirety could be applica-
ble in blood disorders, malignancies, infections, and medica-
tion toxicity. In this paper, we introduce a CT/PET 3D auto-
matic framework for measurement of the hematopoietic com-
partment proliferation within osseous sites. We first perform
a full-body bone structure segmentation using 3D graph-cut
on the CT volume. The vertebrae are segmented by detecting
the discs between adjacent vertebrae. Finally, we register the
bone marrow CT volume with its corresponding PET volume
and capture the spinal bone marrow volume. The proposed
framework was tested on 17 patients, achieving an average
accuracy of 86.37% and a worst case accuracy of 82.3% in
automatically extracting the aggregate volume of the spinal
marrow cavities.

Index Terms— bone segmentation, bone marrow extrac-
tion, CT/PET imaging

1. INTRODUCTION

The marrow space is the site of hematopoiesis in animal
and human. It produces all the critical blood cells includ-
ing red blood cells which disperse oxygen, white blood cells
which are critical for the immune system, and platelets which
are necessary for coagulation and hemostasis. Diseases of
hematopoiesis are often life threatening and can include ma-
lignancies, medication or exposure toxicities, infection and
autoimmune diseases. Currently there is no comprehensive
way to evaluate the proliferation of hematopoetic cells within
this compartment. Using current imaging modalities and
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techniques, the marrow space can be visualized by MRI or
CT or proliferation can be assessed by PET, albeit with poor
specificity and sensitivity. However, neither has been shown
to aid in hematopoetic evaluation. This may be in part due
the challenges of evaluating the marrow space, including the
irregularity of the medullary border and trabecular surface
from the internal blood vasculature within osseous structures.

Recent studies [1–5] showed that joint CT/PET imaging
can enable physicians to noninvasively monitor and evaluate
recovery progress in patients who have undergone bone mar-
row transplant. With CT/PET imaging technology, anatomic
details such as bone structures, kidney, and water are best cap-
tured by CT while the PET modality is capable of measuring
biochemical changes inside organs. When used in tandem,
these two modalities can improve the accuracy of segmenta-
tions that are restricted to specific organs or ROIs. The bio-
chemical properties captured by PET allow physicians to ef-
ficiently quantify the bone marrow cell proliferation. How-
ever, in previous CT/PET studies [1–5], the ROIs were gen-
erally designated manually by physicans, making the the pro-
cess of evaluating the marrow space time consuming, labor
intensive, and prone to error. In addition, the evaluation ob-
tained from a set of selected ROIs may not generalize to the
whole bone marrow volume of the patient. While 3D semi-
automatic or automatic bone segmentation algorithms have
been reported in the literature, most do not include extrac-
tion of the medullary cavities and most were not designed for
measuring bone marrow proliferation. The combination of
CT and PET for the bone marrow segmentation makes our
approach unique.

Recent bone segmentation research can be categorized
into two main approaches: estimation-free methods and ma-
chine learning methods. The estimation-free methods usually
do not require an explicit model for the segmented objects.
This category of algorithms includes classical region grow-
ing, watershed segmentation, active contours, and graph-cut
methods [6]. Hybrid approaches such as the hierarchical ap-



proach also produce promising results. For example, Kang
et al. [7] combined adaptive thresholding and region growing
to perform 3D bone segmentation. Mastmeyer et al. [8] used
a hierarchical scheme where region growing was followed
by segmentation of the vertebrae via detection of the disks
between them. In addition, auxiliary detection techniques are
augmented to the segmentation workflow to take advantage
of the prior topological knowledge of the human body. Yao
et al. [9] and Klinder et al. [10] proposed algorithms to lo-
cate the spinal column by detecting the spinal cord. Recent
advances in segmentation techniques employ machine learn-
ing techniques. In particular, the statistical learning methods
are used to build trainable models for the objects to be seg-
mented. Huang et al. [11] used training with Adaboost to
construct vertebrae detectors. Ma and Liu [12] learned low-
level edge descriptors to detect vertebrae. Glocker et al. [13]
used a supervised classification forest to train a model to
detect vertebrae shapes and label them.

In this paper we propose a new, fully automatic frame-
work for segmenting the marrow compartments of the human
spinal column from CT data and for measuring biochemical
activity from joint PET data. We use a graph-cut segmenta-
tion [14] to obtain an initial 3D map of the full-body bone
volume. We then refine this segmented volume to extract the
vertebral bodies. The vertebrae are isolated by detecting the
vertebral discs. To overcome false detections, we formulate
the vertebrae detection task as a tracking problem and use a
Kalman filter to reject false disc locations. The detected disc
locations enable us to segment all the vertebral bodies in the
spine. Once the medullary cavities inside the vertebral bodies
are isolated, measurement of biochemical activity from joint
PET images is achieved by registering the PET and CT vox-
els. While bone segmentation is a classical research problem,
to the best of our knowledge, the proposed approach is the
first automatic 3D bone marrow segmentation method to be
specifically targeted for bone marrow cellularity analysis. We
note that Sambucetti et al. [15] proposed an active contour ap-
proach to measure bone marrow volume. However, they used
2D active contour segmentation on a per-slice basis to con-
struct the 3D bone volume and their method requires expert
human intervention.

2. SEGMENTATION FRAMEWORK OVERVIEW
An overview of the proposed approach is given in Fig. 1. We
use a 3D bilateral filter to smooth away certain artifacts that
may be present in the original input CT volume (Sec. 2.1).
We then perform 3D graph cut segmentation [14] to obtain
the full-body bone structure. We isolate the spinal column
and detect the discs between adjacent vertebral bodies. Bone
cortex regions are rejected to obtain bone marrow spaces.

2.1. Volume Smoothing

We are specifically concerned with joint PET/CT scans of pa-
tients who have undergone marrow ablation with total body

Fig. 1. Block diagram of the proposed spinal column segmen-
tation framework.

irradiation and chemotherapy prior to transplantation, which
can lead to undesirable non-smooth artifacts in the CT data
occurring at the interior of the hard bone regions. Prior to seg-
mentation, we apply 3D bilateral filtering [16, 17] to remove
these artifacts. The bilateral filter is a smoother that performs
neighborhood averaging using weights given by the product
of a spatial kernel and an intensity (range) kernel that are nor-
mally both Gaussian. It can smooth spurious artifacts while
retaining the strong edges of the cortical bone tissue. For pa-
rameter tuning, we set the spatial bandwidth σs = 2, the range
bandwidth σR = 5, the spatial sampling factor SS = 5, and
the range sampling factor SR = 15.

2.2. Graph-cut Segmentation

In general, bone tissue tends to exhibit higher CT Hounsfield
units (intensities) relative to non-bone material such as wa-
ter, air, and muscle. Closely following the implementation
described in [18], we use the graph-cut segmentation algo-
rithm [6,14] which optimizes a global energy functional con-
sisting of a per-pixel component that penalizes misclassified
voxels and a boundary component that enforces spatial coher-
ence of the segmented objects.

LetN be a system of symmetric 7-voxel 3D cross-shaped
neighborhoods on the 3D CT volume and let Ip be the inten-
sity of bilateral filtered CT voxel p in Hounsfield units (inten-
sity). Each voxel is assigned a label Bp according to

Bp =

{
1, if voxel p classified as “bone,”
0, if voxel p classified as “not bone.” (1)

As in [6], the labelsBp are assigned by minimizing the energy

E =
∑
p

Rp(Bp) + λ
∑
p,q∈N

1p,qS(p, q), (2)

where λ = 0.03, 1p,q = 1 if Bp and Bq assigned to different



Fig. 2. Average Hounsfield unit of each transverse slice of the
segmented vertebrae mask shown in Fig. 3(a).

labels, and

Rp =

 1, Bp = 1 and Ip < Tl,
1, Bp = 0 and Ip > Th,
0, otherwise.

(3)

The high and low thresholds Th and Tl are set to -50 and 200
Hounsfield units, respectively, and were determined through
empirical analysis of the bilateral filtered CT volume data.
Unlike [6], we use a simplified boundary penalty given by
S(p, q) = exp(−|Ip − Iq|/σ) with σ = 10.

3. VERTEBRAE FILTERING

From the segmented full-body bone structure described in
Sec. 2.2, we isolate the vertebral bodies from each other by
detecting the disc region between two adjacent vertebrae. We
then track these detected disc locations with a Kalman fil-
ter. From these filtered positions, we obtain the segmented
vertebral bodies for the whole spinal column by simple 3D
morphological filtering.

3.1. Vertebral Disc Detection

In order to isolate the vertebrae, we detect the locations of the
discs between vertebral bodies. We observe that the voxels
in the neighborhood of the disc locations tend to have lower
Hounsfield value in the CT component. Therefore, on a slice
by slice basis in the transverse plane, we compute the average
slice intensity by intersecting the bone voxels with straight
lines of varying slopes. Let S be the vertebral slice in the
sagittal plane as shown in Fig. 3(a). Let Lθ,i be a collection
of lines with origins at slice i and slopes tan(θ). We compute
the average distance for the slice i as

H(i, θ) = avg(Li,θ ∩ S). (4)

We find the slope of the line Li by minimizing the average
Hounsfield unit H(i, θ) as

θ∗ = argmin
θ

H(i, θ). (5)

An instance of distance H(i, θ∗) is illustrated in Fig. 2. Here
we are interested in the local minima of the distance H(i, θ∗)
because they represent the detected disc positions between
vertebral bodies. The local maxima are also useful to sup-
press false disc locations because they indicate the cortical
bone region next to the vertebral discs. In our implementa-
tion, we sweep θ from −π/4 to π/4 in increments of π/32.
The optimal θ∗ is obtained by brute-force search. We also
compute the distance H for the PET component. The com-
bination of CT distance and PET distance gives us additional
measurements to reduce false detections.

3.2. Disc Tracking by Kalman Filter

The disc detection process described in Sec. 3.1 is able to
detect most disc locations. However, it often fails at a few
locations due to noise, artifacts, and inherently non-visible
vertebral discs. For example, in Fig. 3(b), the CT component
gives false alarms at the 6th and 8th positions starting from
the bottom of the image, while the PET component misde-
tects the 7th disc. To address this issue, we model the disc
filtering process with a constant velocity dynamic model and
track the disc locations with a Kalman filter. The state space
representation of the dynamic model is given by

xk+1 =

[
1 1
1 0.95

]
xk + uk, (6)

zk =
[
1 0

]
xk + vk, (7)

where xk = [xk ẋk]
T and where uk ∼ N (0,Uk) and vk ∼

N (0,Vk) are zero-mean white Gaussian noises with covari-
ance Uk and Vk. The state variable xk models the position of
the kth detected disc, while ẋk measures the height of kth ver-
tebra in the sagittal plane. The gain of 0.95 in Eq. 6 implies
that the height of vertebra decreases from the lumbar to the
cervical region. In the experiments, we set the process noise
variance and the observation noise variance to be 0.5 and 0.2.
An example of tracking the disc locations is shown in Fig. 3.
The Kalman filter is able to recover the missing disc positions
while effectively rejecting the false detections.

From the tracked disc positions, we segment each verte-
bra by constructing a 3D boundary volume from these points.
The segmented vertebral bodies include both cortical and can-
cellous bone tissue. The cancellous bone is located inside the
cortical tissue and can therefore be extracted by applying a
3D morphological erosion filter having a ball structuring ele-
ment of radius 3. Finally, we register the CT and PET voxels
to measure biochemical activity within the bone marrow from
the PET component. We select the simple rigid deformation
model for the registration process and the cost function mea-
sures the mutual information between the CT and PET modal-
ities. It is then straightforward to compute a statistical charac-
terization of biochemical activity within the marrow volume.



(a) (b) (c) (d)

Fig. 3. Vertebrae filtering and segmentation: (a) Sagittal plane view of spinal column segmented from CT data. (b) Vertebral
discs detected by finding local minima. Red circles denote disc positions detected from the CT component while blue crosses
denote disc positions detected from the PET component. (c) Final disc positions obtained by Kalman filtering. The tracked
locations are marked with yellow circles. (d) Segmented vertebral volumes (prior to isolation of the marrow cavities by erosion).

4. EXPERIMENT AND DISCUSSION

We tested the proposed framework on 17 patients who un-
derwent complete bone marrow transplant. Patients were
prospectively enrolled on an IRB approved protocol and un-
derwent imaging for marrow and organ evaluation. Patients
were evaluated at multiple points, some of which included
chemotherapy and/or radiation therapy with depletion of the
marrow compartment. As this study uses a novel contrast
agent, the size of our dataset is currently limited.

Using the segmentation volume G obtained manually by
expert physicians as a baseline, we evaluated the segmented
volume M delivered by the proposed automatic framework
by computing the percent agreement D defined as

D = 100× |M∩ G|
|G|

, (8)

where |.| denotes bone volume summed across voxels. Intu-
itively, D measures the percentage overlap between the seg-
mented volume and the manually labeled ground truth vol-
ume. A perfect segmentation result is 100%.

Results are shown in Table 1. Patient number is given in
column 1 while column 2 shows the correct segmentation rate
D. Across all 17 tested patients, the worst case performance
is D = 82.3570% while the best result is D = 89.8072%.
The mean and median are D = 86.3728% and 86.9578% re-
spectively. Currently, we model the vertebral body with an el-
lipse. However, most of the detection error occurs in regions
where the shape of the vertebral body deviates from circles
or ellipses. Thus, these results can be improved by develop-
ing a more sophisticated shape model for the vertebral body.
In column 3 of Table 1, we also show root mean square er-
ror (RMSE) results for the vertebral disc tracker computed
between the tracked and ground truth disc positions. The
tracker performed well on 14 out of the 17 patients. How-
ever, higher errors occurred on patients 7, 8, and 14 where

Table 1. Segmentation results for proposed framework.

Patient D (%) ERMSE(voxel)
1 87.394 0.860464
2 85.002 0.942403
3 89.110 1.025827
4 87.289 1.026326
5 89.807 1.147532
6 84.976 0.884444
7 82.855 4.543005
8 88.439 5.821971
9 86.958 1.133246

10 84.273 0.860464
11 87.907 1.145727
12 88.523 2.000408
13 85.348 1.004205
14 82.357 5.006391
15 87.985 0.805521
16 84.626 0.805521
17 85.489 1.633903

significant noise and artifacts in the CT data degraded disc
detection performance.

5. CONCLUSION

We introduced a fully automatic CT/PET 3D bone marrow
segmentation framework to measure proliferation within the
cortico-medullary junction and medulla of the marrow space.
The framework consists of three main components including
full-body 3D graph-cut segmentation, spinal column segmen-
tation, and cancellous region extraction. We isolated the ver-
tebral bodies by detecting the discs between adjacent verte-
brae. The disc detection process was guided by a Kalman
tracker. Our novel method was able to capture the prolifera-
tion of the hematopoetic space with a high degree of repro-
ducibility. This technique could be valuable in evaluation of
marrow changes due to malignancy, toxins, infections and au-
toimmunity.
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