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ABSTRACT

We propose a new algorithm to compute the frequency modulation
functions associated with the well-known monogenic signal. The
new algorithm extracts the frequency modulation functions with-
out requiring an auxiliary process to estimate local orientation. In
addition, we show that, in situations where a multi-scale multi-
orientation decomposition is required to analyze a signal, the partial
Hilbert transform approach computes AM-FM functions similar to
those obtained by the monogenic signal while maintaining a more
efficient signal representation.

Index Terms— AM-FM, monogenic signal, partial Hilbert
transform

1. INTRODUCTION

Fourier analysis is an important tool for analyzing and representing
a stationary signal as a sum of pure sinusoids having constant am-
plitudes and constant frequencies. However, in practice many im-
portant signals are nonstationary in the sense that the amplitude en-
velope and frequency content are time varying (or space varying).
Obvious examples include seismic survey data, radar returns, a vari-
ety of communication signals, and many biomedical signals [1]. The
AM-FM model

f(x) = a(x) cos[ϕ(x)] (1)

has been widely used to represent such signals, where, for the 2D
case we are concerned with in this paper, a(x) : R2 → R+ is a
smoothly varying non-negative amplitude modulation (AM) func-
tion and ϕ(x) : R2 → R is the phase modulation function. The
frequency modulation (FM) function ∇ϕ(x) carries a rich local de-
scription of the surface pattern orientation and granularity.

The AM-FM model (1) is ill-posed in the sense that infinitely
many pairs of a(x) and ϕ(x) exist which satisfy the equality (1).
In his seminal 1D paper [2], Gabor used the Hilbert transform (HT)
to disambiguate the AM-FM modeling problem by constructing a
complex signal extension called the analytic signal. In arbitrary di-
mensions, any given complex extension associates unique AM and
FM functions with a real signal which may be obtained directly by
taking the magnitude of the complex signal and by differentiating
the argument of the complex signal.

While Gabor’s analytic signal is well-defined in 1D, extension to
higher dimensions is nontrivial. The main reason is that there is no
straightforward means of extending the Hilbert transform into mul-
tiple dimensions. Peyrin, Zhu, and Goutte [3] defined a 2D complex
signal by performing a 1D Hilbert transform along a specified di-
rection; such transforms are frequently referred to as partial Hilbert
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transform (pHT). Havlicek, Havlicek, and Bovik proposed an ad-
justed multiplier [4] to enforce harmonic correspondence [5] of the
multidimensional pHT and used it to define a multidimensional an-
alytic image [6]. Other related developments include Hahn’s single
orthant complex signal [7] and the hypercomplex signal of Bülow
and Sommer [8], both of which are important but of limited inter-
est for our purposes here because they do not provide a complete
representation of all possible signal orientations. Felsberg and Som-
mer [9] introduced the multidimensional monogenic signal where
the 1D HT is replaced by an nD Riesz transform. Independently,
Larkin et al. [10] used the same signal model to study fingerprints.

While other approaches exist for computing AM-FM models
without an explicit complex extension such as the Teager-Kaiser en-
ergy operator [11] and the quasi-local approximation [12, 13], the
explicit complex extension approaches including the pHT model and
the monogenic signal have remained highly popular. These two
models have been successfully applied in many practical applica-
tions such as motion estimation [14], fingerprint modeling [10], and
texture analysis [15] just to name a few. Both compute an explicit
complex extension for the real signal by adding an imaginary part
that is equal to the pHT for the partial Hilbert approach and equal
to the Riesz transform for the monogenic signal. The main advan-
tage of the monogenic signal lies in the isotropic kernel of the Riesz
transform, which tends to avoid undesirable rippling in the AM func-
tion; such amplitude ripples are characteristic of the AM functions
typically obtained via the pHT. As will be described in more detail
below, the main advantage of the pHT approach is that it enables the
FM functions to be obtained directly without the need for an auxil-
iary orientation estimation procedure as is required with the mono-
genic signal approach.

In this paper, our attention is focused on the pHT and monogenic
signal approaches. We propose a new alternative algorithm for com-
puting the monogenic signal FM functions that avoids the need for an
auxiliary orientation estimation procedure. In addition, we demon-
strate that in situations where a multi-scale multi-orientation signal
decomposition is required, the pHT approach can deliver equivalent
modulation functions to those obtained with the monogenic signal
while maintaining a simpler representation. We argue that the pHT
method and monogenic signal are both viable approaches. They are
closely related and it is in fact possible to formulate a closed form
relationship between the two representations although we will not do
so here in the interest of brevity. For signals that admit orientations
(e.g., spectral support) orthogonal to the direction of action of the
pHT, the pHT approach will always suffer from undesirable ampli-
tude rippling that is not present in the monogenic signal. However,
pHT based models are always more efficient than the monogenic
signal in the sense of requiring only one imaginary component as
opposed to two. For signals that do not admit significant spectral
support orthogonal to the pHT direction of action, both approaches
typically deliver equivalent but slightly different AM-FM interpreta-



tions of the signal.

2. COMPUTATION OF THE AM-FM IMAGE MODEL

While the pHT and the monogenic signal have both been generalized
to higher dimensions, we limit our discussion to 2D signals through-
out the paper in the interest of simplicity. Let f(x) : R2 → R be a
real-valued signal. We use the hat “b” to denote Fourier transform,
as in f(x)↔ bf(ω).

2.1. Partial Hilbert Transform Approach

The 2D pHT [16, p. 49] extends the 1D version by performing a 1D
HT in the direction specified by a unit vector e. Let qe(x) be the
pHT of f(x) in the direction e with Fourier spectrum given by

bqe(ω) = −jsgn(ωT e) bf(ω), (2)

where the signum function is defined by

sgn(τ) =

8><>:
+1, τ > 0

0, τ = 0

−1, τ < 0.

(3)

and ω = [ω1 ω2]
T . The 2D complex signal is constructed exactly

as in the 1D case, i.e., ze(x) = f(x) + jqe(x). As in the 1D case,
the spectrum of the 2D complex signal admits frequency support on
precisely half of the frequency space. With ze(x) the 2D complex
signal obtained via the 2D pHT, the AM-FM model (1) is computed
according to [6]

ae(x) = |ze(x)|, (4)

∇ϕe(x) = Im
»
∇ze(x)

ze(x)

–
, (5)

where “∇” denotes gradient. Note that (4), (5) provides an AM-FM
representation that is exact in the sense of achieving equality in (1).

While the algorithm (4), (5) always produces an AM-FM model
that achieves equality in (1), the obtained AM function will gener-
ally exhibit undesirable amplitude rippling when the input function
f(x) admits nontrivial spectral support at orientations orthogonal to
e. These ripples are not intuitive and are generally not consistent
with human visual perception. They occur because the pHT kernel
is directional and not isotropic. Image features that are normal to e
are not represented in a visually intuitive way, and this is a limitation
of the pHT approach.

2.2. Monogenic Signal

In the context of signal processing applications, Felsberg and Som-
mer [9] first proposed the Riesz transform as an appropriate multidi-
mensional extension of the HT for constructing a multidimensional
analog of the analytic signal. In 2D, they defined a three component
complex signal zmo(x), viz., the monogenic signal, according to

zmo(x) = f(x) + if1(x) + jf2(x), (6)

where i and j are two distinct orthogonal hypercomplex imaginary
units. The functions f1(x) and f2(x) are two components of the
Riesz transform with Fourier spectra given bybf1(ω) =

ω1

||ω||2
bf(ω),

bf2(ω) =
ω2

||ω||2
bf(ω). (7)

In practice, the monogenic signal is computed using an auxiliary
local orientation estimate φ(x) according to

f(x) = amo(x) cos[ϕmo(x)],

f1(x) = amo(x) sin[ϕmo(x)] cos[φ(x)],

f2(x) = amo(x) sin[ϕmo(x)] sin[φ(x)], (8)

where amo(x) is the monogenic AM function and ϕmo(x) is the
monogenic local phase. From these relations, the AM and FM func-
tions can be calculated analytically. The AM is given by

amo(x) =
q
f2(x) + f2

1 (x) + f2
2 (x). (9)

and the monogenic local phase is given by

ϕmo(x) =
f1(x)

|f1(x)| arctan

"p
f2
1 (x) + f2

2 (x)

f(x)

#
. (10)

Note that the monogenic phase function (10) is wrapped and lies in
the interval [−π, π]. Therefore, the FM functions, which are calcu-
lated by the gradient of ϕmo(x), will be (potentially grossly) inac-
curate at locations where jumps of integer multiples of π occur due
to branch cuts in the arctan function because of phase wrapping.
This problem can be circumvented by estimating the local orienta-
tion φ(x) in (8) and then constructing an imaginary image qmo(x) as
proposed in [10, 17]. The imaginary image qmo(x) is given by

qmo(x) = f1(x) cos[φ(x)] + f2(x) sin[φ(x)]. (11)

The FM functions are then computed directly from (5), where
ze(x) = f(x) + jqmo(x).

As the kernel of the Riesz transform is isotropic, the computed
AM in (9) does not exhibit amplitude rippling as is observed with the
pHT approach. Nevertheless, the computation of the FM functions
in the monogenic approach is more complicated than in the case of
the pHT as the monogenic approach requires a priori knowledge of
the local orientation φ(x).

3. NEW ALGORITHM FOR COMPUTING THE
MONOGENIC FM

In the complex signal extension framework, the pHT computes the
imaginary part of the complex signal as ae(x) sin[ϕe(x)] using (2),
whereas the monogenic approach, without the local orientation
φ(x), actually computes the imaginary part as amo(x)| sin[ϕmo(x)]|.
Therefore, computation of the monogenic FM function involves esti-
mation of the local orientation φ(x) to deduce the correct sign of the
imaginary component. For instance, Larkin, Bone, and Oldfield [10]
and Unser, Sage, and Ville [17] adopted the classical tensor structure
orientation estimation [18].

We observe that both the local orientation φ(x) in (8) of the
monogenic signal and the term arg∇ϕe(x) in (5) of the pHT cap-
ture the local orientations of structures in the image f(x). Hence,
the local orientation is not required for the computation of the
FM functions. Taking the derivative of the model (1) in both
horizontal and vertical directions, we obtain a relationship be-
tween the derivatives of the real signal f(x) and the FM function
∇ϕmo(x) = [ϕx(x) ϕy(x)]T according to

fx(x) = ax(x) cos[ϕmo(x)]− ϕx(x)amo(x) sin[ϕmo(x)],

fy(x) = ay(x) cos[ϕmo(x)]− ϕy(x)amo(x) sin[ϕmo(x)],



where∇amo(x) = [ax(x) ay(x)]T and∇f(x) = [fx(x) fy(x)]T .
We then rearranged these derivatives to compute the magnitude of
the monogenic FM functions

|ϕx(x)| =
|ax(x) cos[ϕmo(x)]− fx(x)|
|amo(x) sin[ϕmo(x)]| ,

|ϕy(x)| =
|ay(x) cos[ϕmo(x)]− fy(x)|
|amo(x) sin[ϕmo(x)]| , (12)

where the denominator is obtained from (8) as

|amo(x) sin[ϕmo(x)]| =
q
f2
1 (x) + f2

2 (x). (13)

We calculate the orientation of the FM vector as

θ(x) = arctan

„
ay(x) cos[ϕmo(x)]− fy(x)

ax(x) cos[ϕmo(x)]− fx(x)

«
, (14)

where −π/2 ≤ θ(x) ≤ π/2. Notice that the range restriction of
θ(x) is the result of the phase ambiguity of the model (1) where
both −ϕmo(x) and +ϕmo(x) are valid representations because
cos[ϕmo(x)] is an even function. From (12) and (14), the FM
functions are obtained according to

ϕx(x) =
p
|ϕx(x)|2 + |ϕx(x)|2 cos[θ(x)], (15)

ϕy(x) =
p
|ϕy(x)|2 + |ϕy(x)|2 sin[θ(x)]. (16)

4. RELATIONSHIP BETWEEN MONOGENIC AND
PARTIAL HILBERT APPROACHES

In practical applications, a multipartite signal may admit multiple
orientations at a given pixel. Therefore, it is desirable to decompose
the signal into individual components of different orientations so that
the assumptions inherent in (1) are valid. For instance, the mono-
genic model has been used with multi-scale multi-orientation repre-
sentations such as wavelets [17, 19] and the steerable pyramid [20]
to analyze local signal features. Given an input signal specified by
a single orientation, both the pHT and the monogenic approach pro-
duce the same frequency magnitude for the imaginary components
qe(x) and qmo(x).

Assume that s(x) is the output from one channel in a multi-scale
multi-orientation realization of the steerable pyramid filterbank [21]
modified as described in [22]. In particular, let θ0 be the orientation
of the filter center frequency; the spectrum of s(x) can be written in
polar form as

bs(r, θ) = bξ(r, θ)[cos(θ − θ0)]2`, (17)

where bξ(r, θ) is the Fourier spectrum of the original image f(x) at
a given scale and ` denotes the number of orientations per scale.

For a real signal s(x), the Riesz transform of s(x) produces two
components s1(x) and s2(x). Similar to [10,17], we represent these
two components by a complex signal p(x) = s1(x) + js2(x). Note
that the complex signal p(x) plays the role of the imaginary image
in the context of the complex signal extension approach. It may be
shown that the Riesz transform has unity gain:

||bp(ω)||2 = ||bs(ω)||2
»
ω2
x

||ω||2 +
ω2
y

||ω||2

–
= ||bs(ω)||2. (18)

To demonstrate that the pHT also has unity gain for the spe-
cific type of signal in (17), let g(x) = Hθ0{s(x)}, let e =

(a) Babara image (b) Steerable pyramid spectrum

(c) Channel input image s(x) (d) Difference of (e) and (f)

(e) Monogenic AM (f) pHT AM

Fig. 1. Computed AM using the monogenic signal and pHT.

[cos(θ0) sin(θ0)]
T be the unit vector with angle θ0, and let

κ = [cos(θ) sin(θ)]T be the polar representation of the rectan-
gular frequency ω = [ωx ωy]

T . The pHT of g(x) can be written
as

bg(r, θ) = −jsgn(κT e)bs(r, θ)
= −jsgn[cos(θ − θ0)]bs(r, θ). (19)

The frequency magnitude of g(x) is then given by

||bg(r, θ)||2 =

(
||bs(r, θ)||2, if cos(θ − θ0) 6= 0,

0, if cos(θ − θ0) = 0.
(20)

According to (17), bs(r, θ) vanishes when cos(θ − θ0) = 0. Hence,
||bg(ω)||2 = ||bs(ω)||2 = ||bp(ω)||2.

While the frequency magnitude of the imaginary signals in the
two approaches are the same, the computed AM functions are not
necessarily equal. Fig. 1 shows the AM computed by the two ap-
proaches. The original barbara image is given in Fig. 1(a). A spec-
tral depiction of the modified steerable pyramid is given in Fig. 1(b).



Fig. 1(c) shows one component of the multipartite image obtained
as a steerable pyramid filterbank channel response. The absolute
difference of the computed AM from the two approaches is given in
Fig. 1(d), where brighter pixels denote a greater difference.

Figs. 1(e) and (f) depict the computed AM functions of the
monogenic signal and the pHT approach respectively. In this exam-
ple, the mean difference between the two AM functions is 0.022037
with reference to the range of AM functions [0, 12.3618]. While
the pHT approach does not compute exactly the same AM and FM
functions as those obtained by the monogenic signal, it provides an
equivalent AM-FM representation.

5. DISCUSSION AND CONCLUSION

As noted in Sec. 2.1, the pHT kernel is not isotropic and does not
have unity gain. However, for the particular signal model in (17), the
pHT kernel no longer causes undesirable amplitude rippling because
the spectrum bs(r, θ) vanishes at the same places where the pHT ker-
nel is zero. In other words, the pHT kernel can be interpreted as be-
ing effectively isotropic for signals of type (17). In addition, the pHT
offers a simpler representation as the associated complex signal con-
tains two components whereas the monogenic signal requires three.
Because the pHT computes the imaginary image as a(x) sin[ϕ(x)]
instead of |a(x) sin[ϕ(x)]| with the monogenic signal, we can use
a simpler computation method in (5) to compute the FM function
∇ϕ(x) without having to estimate the local orientation φ(x) as is
required in the pure monogenic signal approach.

In this paper, we proposed a new algorithm to compute the FM
functions for the monogenic signal. We showed that the proposed
algorithm is simpler than the monogenic signal model as it does not
require the local orientation estimation step. In addition, we showed
that in situations where a multi-scale multi-orientation signal decom-
position is required to analyze a signal, both the pHT and the mono-
genic signal deliver similar AM and FM functions. However, the
pHT provides simpler computations. Therefore, we advocate for use
of the pHT in multi-scale multi-orientation AM-FM applications.
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[8] T. Bülow and G. Sommer, “The hypercomplex signal - a novel
extension of the analytic signal to the multidimensional case,”
IEEE Trans. Signal Proc., vol. 49, no. 11, pp. 2844–2852, Dec.
2001.

[9] M. Felsberg and G. Sommer, “The monogenic signal,” IEEE
Trans. Signal Proc., vol. 49, no. 12, pp. 3136–3144, Dec. 2001.

[10] K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demod-
ulation of two-dimensional fringe patterns. I. General back-
ground on the spiral phase quadrature transform,” J. Opt. Soc.
Am. A, vol. 18, no. 8, pp. 1862–1870, Aug. 2001.

[11] P. Maragos and A. C. Bovik, “Image demodulation using mul-
tidimensional energy separation,” J. Opt. Soc. Amer. A, vol. 12,
no. 9, pp. 1867–1876, Sep. 1995.

[12] G. Girolami and D. Vakman, “Instantaneous frequency esti-
mation and measurement: a quasi-local method,” Meas. Sci.
Technol., vol. 13, pp. 909–917, May 2002.

[13] V. Murray, P. Rodrı́guez, and M.S. Pattichis, “Multiscale AM-
FM demodulation and image reconstruction methods with im-
proved accuracy,” IEEE Trans. Imag. Proc., vol. 19, no. 5, pp.
1138–1152, 2010.

[14] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance
of optical flow techniques,” Int’l Journal of Comput. Vision,
vol. 12, no. 1, pp. 43–77, 1994.

[15] M.S. Pattichis and A.C. Bovik, “Analyzing image structure by
multidimensional frequency modulation,” IEEE Trans. Pattern
Anal., Machine Intel., vol. 29, no. 5, pp. 753–766, May 2007.

[16] E. M. Stein, Singular Integrals and Differentiability Properties
of Functions, Princeton University Press, Princeton, NJ, 1970.

[17] M. Unser, D. Sage, and D.V.D Ville, “Multiresolution mono-
genic signal analysis using the Riesz-Laplace wavelet trans-
form,” IEEE Trans. Imag. Proc., vol. 18, no. 11, pp. 2402–
2418, Nov. 2009.

[18] H. Knutsson, “Representing local structure using tensors,” in
Proc. 6th Scandinavian Conf. Image Anal., Oulu, Finland, Jun.
1989, pp. 244–251.

[19] S. Olhede and G. Metikas, “The monogenic wavelet trans-
form,” IEEE Trans. Signal Proc., vol. 57, no. 9, pp. 3426–3441,
Sept. 2009.

[20] S. Held, M. Storath, P. Massopust, and B. Forster, “Steerable
wavelets frames based on the Riesz transform,” IEEE Trans.
Imag. Proc., vol. 19, no. 3, pp. 653–667, Mar. 2010.

[21] W. T. Freeman and E. H. Adelson, “The design and use of
steerable filters,” IEEE Trans. Pattern Anal., Machine Intel.,
vol. 38, no. 2, pp. 587–607, March. 1992.

[22] C. T. Nguyen and J. P. Havlicek, “AM-FM image filters,” in
Proc. IEEE Int’l. Conf. Image Proc., San Diego, CA, Oct. 12-
15, 2008, pp. 789–792.


