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Abstract—We introduce a novel decomposition algorithm
capable of extracting locally coherent and visually meaningful
texture components from images. The algorithm estimates
texture dominant orientation for each coherent component
and iteratively extracts it from the image based on a new
quantitative coherency measure formulated in the modulation
domain. The original image is perfectly reconstructed from
extracted components.
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I. INTRODUCTION

Separating intrinsic component from a complex signal has

been one of the fundamental tasks in the signal and image

processing arena [1]–[5]. Intrinsic components not only

enable an in-depth understanding of complex signals but also

provides unique features for higher level applications, e.g.,
recognition and classification. The signal decomposition,

however, is particular challenging because it seeks to solve

for more than one solutions given one input signal, viz., ill-

posed problem [4], [5]. For example, in the cocktail party

problem, one attempts to isolate voice of individuals from

a conversation involving multiple people and background

noise; or in image analysis where the objective is to de-

compose an image of multiple texture sources into visually
meaningful components.

Early attempts employed multiresolution time-frequency

techniques to represent the signal as a sum of localized parts.

Examples of these techniques include Gabor filterbank by

Daugman [6], the steerable pyramid by Simoncelli and Free-

man [7], and wavelets [8]. While these techniques have been

applied successfully in many applications, they frequently

produce components that fail to correspond with human

visual perception. This limitation is a consequence of lacking

specific perceptually motivated models for components.

Recently, Meyer [9] pioneered a two component image

decomposition using nonlinear partial differential equation

(PDE) approach. In this approach, an image is broken into

a sum of two parts: a cartoon and a texture. The cartoon

depicts a the structure of the image and is modeled by a

bounded variational function, whereas the texture part is

modeled by certain energy norms. These two components
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are computed simultaneously by a total variation minimiza-

tion framework [3], [4]. Similar to Meyer’s cartoon and

texture decomposition idea, Starck, et al. [5] introduced an

image decomposition where components are extracted from

two sparse dictionaries optimized for cartoon and texture.

Evangelopoulos and Maragos [10] also adopted this two

component image model and formulated the decomposition

in the modulation domain. Even though the two component

image decomposition model delivers meaningful results, it

is restricted to two components and does not produce locally

coherent components.

In contrast to the cartoon and texture model, Bovik, et
al. [1] proposed a multicomponent image model where they

represented each component with slowly varying amplitude

modulation (AM) and frequency modulation (FM) functions,

thereby explicitly computing AM-FM image models in the

modulation domain. A Kalman filtering framework was

developed in [11] to track texture multicomponents spatially

across the channels of a Gabor filterbank and extract them.

While this approach did not prove sufficiently robust to

enable reliable analysis of general images, it should be noted

that the 1-D AM-FM signal model was applied successfully

in [12] to track multicomponent amplitude and frequency

modulations temporally in human speech.

In this paper, we perform image decomposition using the

modulation domain image model (AM-FM model) in [1],

[13]. We propose an iterative algorithm for decomposing a

texture image into homogeneous components. We estimate

the dominant orientations for the coherent components and

introduce a quantitative coherency measure to isolate them

from each other. The coherent components are then itera-

tively extracted by a greedy matching algorithm similar to

matching pursuit [2]. The extracted components are locally

coherent and agree with human perception. In addition, they

can perfectly reconstruct the original image.

II. AM-FM TEXTURE DECOMPOSITION

The AM-FM image model represents an image t(x) as a

finite sum of K AM-FM components [1], [11]

t(x) =
K∑

k=1

tk(x) =
K∑

k=1

ak(x) cos[ϕk(x)], (1)
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where the AM functions ak(x) and FM functions ∇ϕk(x)
are smoothly varying and x ∈ R

2. In an image, we interpret

ak(x) as local contrast, |∇ϕk(x)| as texture spacing or

granularity, and arg∇ϕk(x) as local texture orientation.
Let m, n ∈ N and let I(m, n) contain the samples of

the continuous image t(x) in (1). Let Ik(m, n) contain

the samples of component tk(x) in (1). Then the compo-

nent Ik(m, n) admits a modulation domain representation

Γk = [Ak(m, n) Rk(m, n) θk(m, n)] which may be

computed with the spline-based demodulation framework

given in [14], where

Rk(m, n) = |∇ϕk(m, n)|,
θk(m, n) = arg∇ϕk(m, n), (2)

and Ak(m, n) is the magnitude of the complex image

whose real part is the image Ik and imaginary part is the

partial Hilbert transform of the real part. We construct the

modulation domain representation of a K component image

I(m, n) by stacking individual components as

Γ = [Γ1 Γ2 . . . Γk]T . (3)

The vector Γ will be used as a dictionary for component

extractions.
We compute the dominant FM ϑ(m, n) of the image

I(m, n) by selecting the maximum of all Rk on a pixel-

by-pixel basis. We estimate the orientation of the coherent

component Ik(m, n) by constructing an eight-bin histogram

from the dominant orientation ϑ(m, n). The orientation

angle ρ is obtained by searching for the histogram’s peak.

The orientation map of coherent component Ik(m, n) is then

given as

Θk(m, n) =
{

ϑ(m, n), |ϑk(m, n)− ρ| ≤ π/16,

ρ, otherwise.
(4)

We illustrate the process of computing orientation map

Θk(m, n) for each component in Fig. 1. The original cloth

image is shown in Fig. 1(a) while its dominant FM field

is shown in Fig. 1(b). The dominant FM field in Fig. 1(b)

contains arrows pointing to multiple orientations. The pro-

posed orientation estimation algorithm is able to iteratively

decompose it into two dominant orientation maps in Fig. 1(c)

and Fig. 1(d) that are each highly coherent, both locally and

globally.
The dominant orientation (4) is used as unique feature to

match against the overcomplete dictionary Γ (3). The texture

component is computed as the linear combination

D(m, n) =
K∑

j=1

αj(m, n)Aj(m, n) cos[ϕj(m, n)], (5)

where the coherency measure αj(m, n) is defined by

αj(m, n) =

{
1, δj(m, n) ≤ π

16 ,

exp(− δj(m,n)−π/16
π/16 ), otherwise

(6)

and δj(m, n) = |θj(m, n) − Θk(m, n)|. Intuitively, the

coherency measure αj(m, n) indicates the closeness of the

orientation field (4) to the modulation functions in the

dictionary Γ. The threshold bandwidth π/16 in (6) was

chosen for agreement with the eight orientations present per

level in the adapted steerable pyramid.

Since the algorithm performs image decomposition re-

cursively, it allows perfect reconstruction of the original

image from the decomposed components. The coherent

components are extracted from the image iteratively until

the energy of extracted component is less than 0.1% the

energy of the original image or the energy of residual

signal is no more than 1% compared to that of the original.

Consequently, residual component does not contain any

significant textures of the original image and it can be

interpreted as the DC component.

III. RESULTS AND DISCUSSION

We tested the algorithm against a variety of Brodatz

textures. For each extracted component, we computed the

modulation domain feature dictionary Γ as in (3). We then

estimated the dominant texture orientation Θ as in (4). The

extracted component D was then found by matching the

dominant orientation Θ against the dictionary Γ as described

in (5) and (6). The results are illustrated in Fig. 2. The

first row shows the original test images. The second and

third rows illustrate the first and the second components

respectively. The fourth row shows the DC component of

the decomposition. The fifth row depicts the reconstructed

image from the first two components and the DC component.

The gray scale levels in these images are contrast stretched

together and directly comparable.

The original woven brass image is shown in Fig. 2(a).

It can be interpreted as a two component image with

perpendicular diagonal stripes. The algorithm produces five

components; three components are shown Fig. 2(b)-(d). The

first two components in Fig. 2(b)-(c) are locally coherent

and coincide with human perception. Fig. 2(e) shows the

reconstruction from Fig. 2(b), (c), and (d). The reconstructed

image from the first two components captures most of the

visual impact of the original image with 89% energy.

Another perceptually motivated decomposition example is

illustrated for the the raffia image in Fig. 2(f). The algorithm

is able to identify oriented textural lines in the raffia image

and decompose them into two dominant components shown

in Fig. 2(g)-(h). The reconstruction image using the first

three components contains 80% of the original energy and

is depicted in Fig. 2(j). Vertical and horizontal components

of the loose burlap image in Fig. 2(k) are presented in

Fig. 2(l)-(m). The DC component is shown in Fig. 2(n),

while the three component reconstruction image is depicted

in Fig. 2(o). The reconstructed image from the first three

components contains 90% of the original energy.
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Figure 1. (a) Original woven brass image. (b) Dominant FM field of woven brass. (c) First dominant orientation. (d) Second dominant orientation.

Although the extract components in Fig. 2(q)-(r) of the

tree image are locally coherent, they do not agree with hu-

man perception which interprets the image with one circular

component. Such limitation can be explained by the range

restriction imposed on the angular bandwidth threshold of

the coherency measure in (6). The angular bandwidth was

set to π/16, which is not wide enough to handle circular

textural patterns.

IV. CONCLUSIONS

In this paper, we proposed an iterative texture decom-

position algorithm capable of extracting locally coherent

and meaningful components from textural images. We intro-

duced a new quantitative coherency measure in the modula-

tion domain for image components. The algorithm provides

a perfect reconstruction decomposition. Reconstructed im-

age from first few components is able to capture faithfully

the visual impact of the original image. The effectiveness

of the proposed algorithm is demonstrated with a variety

of well-known Brodatz textures. The decomposed image

components are visually motivated and their interpretations

coincide with human perception.

The proposed algorithm, however, is limited to texture im-

ages with components having limited orientation bandwidth.

The future work will be focused on fine-tuning the coherency

measure in (6) to accommodate circularly symmetric textural

patterns and apply the algorithm to nature images.
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Figure 2. Texture Decomposition Examples. (a) Original woven brass image. (b) First component of woven brass. (c) Second component of woven brass.
(d) DC component of woven brass. (e) Reconstruction of (b), (c), and (d). (f) Original raffia image. (g) First component of raffia. (h) Second component
of raffia. (i) DC component of raffia (j) Reconstruction of (g), (h) and (i). (k) Original burlap. (l) First component of burlap. (m) Second component of
burlap. (n) DC component of burlap. (o) Reconstruction of (l), (m) and (n). (p) Original tree. (q) First component of tree. (r) Second component of tree.
(s) DC component of tree. (o) Reconstruction of (q), (r) and (s).
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