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ABSTRACT

We propose a new polynomial-time grayscale conversion algorithm
applicable to general color images. The output grayscale image is
modeled as a linear combination of three color channels where the
mixing coefficients are computed by a constrained quadratic pro-
gramming scheme using modulation domain features of the input
color image. The optimization is formulated such that local color
space distances between pixels in the input image are approximately
preserved in the output grayscale image. Our experimental results
demonstrate that the proposed method performs favorably com-
pared to state-of-the-art conversion algorithms, often producing a
grayscale image with better visual distinctions between patches that
are close in the color space of the original image.

Index Terms— grayscale conversion, quadratic constrained
least squares, AM-FM

1. INTRODUCTION

Despite the ubiquity of low-cost storage, computational bandwidth,
and network bandwidth, grayscale representations remain important
for many fundamental image processing and computer vision tasks
such as edge detection, feature extraction, and image and video qual-
ity assessment. One of the main reasons for this is that intensity or
luminance often captures much of the visually important informa-
tion present in a color image. Efficient color to grayscale conver-
sion algorithms can reduce costs and enhance printed results in book
production and provide important visual cues in aids for the color
blind [1]. In addition, for a wide variety of applications grayscale
representations can offer important advantages in terms of both spa-
tial and temporal complexity relative to their color counterparts.

The process of converting an image from color to grayscale can
be viewed as a mapping or projection from a high dimensional vec-
tor space into a lower dimensional space. Hence, the conversion in-
volves inherent information loss: some colors that are distinct in the
original image will generally be mapped to a single intensity in the
grayscale image. Consequently, important visual information may
be lost in the grayscale conversion process. This loss can impact the
performance of subsequent processing such as edge detection or ob-
ject recognition. Kanan and Cottrell [2] compared the performance
of 13 grayscale conversion algorithms in an image recognition ap-
plication and concluded that recognition performance is tangibly af-
fected by the grayscale conversion step.

Grayscale conversion algorithms can be categorized into two
major classes. The first class computes the grayscale image us-
ing color transformations from the acquired color space, usually
RGB, to a new color space where the luminance channel is sepa-
rated from chrominance channels. For example, the NTSC standard
uses the YIQ color space where the Y channel is luminosity defined

as a linear combination of the RGB channels. The grayscale im-
age can also be extracted from the L (lightness) channel of the CIE
L*a*b* color space. The main problem with these color transfor-
mation approaches is that distinct colors having the same luminance
are mapped into the same gray level. Therefore, object boundaries
and edges can be lost. Recently, there is a growing interest in for-
mulating the grayscale conversion process using optimization-based
approaches. The key idea is to compute a grayscale image from the
color channels such that the distance between color pixels is pre-
served after the conversion, e.g., if the distance between two color
pixels is d, then the distance between these pixels in the grayscale
image should be close to d in the L2 sense. With this second ap-
proach, the conversion results depend on the chosen color distance
metric.

In this paper, we propose a new constrained optimization
grayscaler (COG) using quadratic programming. The grayscale
image is defined as a linear combination of the input color chan-
nels where the mixing coefficients are computed by a constrained
quadratic programming scheme involving modulation domain image
features. We calculate the signed color distance between pixels in
the L*a*b* color space, where the polarity is deduced based on the
Helmholtz-Kohlrausch effect. We tested the proposed algorithm on
the popular image dataset described in [3] and compared the results
both qualitatively and quantitatively in terms of contrast preservation
against a variety of state-of-the-art grayscale conversion algorithms.
The quantitative results show that the proposed COG on average
preserves contrast better than the best known competing methods.
While the average contrast preservation performance of COG is
only marginally better than the computationally more expensive
algorithm of Lu, Xu, and Jia [4], Fig. 1 shows that the results of
these two approaches can be perceptually quite different.

2. BACKGROUND

The simplest conversion method is to compute the grayscale image
by averaging the three input color channels. While this method is
fast and can produce reasonable results, it fails in cases where two
different input colors are mapped into one gray level. Rather than us-
ing equal weights, the three mixing coefficients can alternatively be
assigned based on human visual perception. For example, the Mat-
lab rgb2gray function computes the grayscale image as a weighted
combination of the RGB input channels with mixing coefficients
αR = 0.2990, αG = 0.5870, and αB = 0.1240. Alternatively, one
can obtain a grayscale image by converting the color input image to
a nonlinear color space such as CIE L*a*b* and then extracting the
lightness channel L as the converted grayscale image. However, this
technique can not differentiate between different colors that have the
same luminance (i.e., the iso-luminance colors problem).



Bala and Eschbach [5] addressed the iso-luminance colors prob-
lem by injecting high frequency chrominance details into the lu-
minance channel to aid in differentiating between adjacent colors.
Rasche, Geist, and Westall [6] introduced a dimension compression
mapping between input colors and output gray levels. Grundland
and Dodgson [7] defined a parametric piecewise linear mapping be-
tween the color image and the grayscale image. The grayscale im-
age is computed by fusing the information from the luminance and
chrominance channels in the YPQ color space where Y is the lumi-
nance channel, P represents yellow-blue, and Q represents red-green.

State-of-the-art grayscale conversion results have been achieved
recently by applying optimization-based approaches. These algo-
rithms produce a grayscale image by preserving color differences
in the grayscale image in some sense. Gooch, et al. [8] defined a
nonlinear signed distance between color pixels and preserved this
distance in the grayscale image by solving a global large scale
least-squares optimization problem. Kim, et al. [9] proposed a non-
linear global mapping grayscale conversion. They computed the
grayscale image using a least-squares optimization not unlike the
one in [8]. In addition, they incorporated the Nayatani model [10] of
the Helmholtz-Kohlrausch (HK) effect into the the signed distance
computation. Smith, et al. [11] also used the HK model in their
algorithm. Song, et al. [1] modeled the grayscale image as a Markov
random field and cast the grayscale conversion problem as a labeling
process using a probabilistic graphical model approach. Lu, Xu, and
Jia [4] proposed a weak-order color model for grayscale conversion
where they formulated the mapping between the color image and
the grayscale image as a parameterized multivariate polynomial
function. They then computed the polynomial parameters using
an iterative least-squares optimization method. Lau, Heidrich, and
Mantiuk [12] used a clustering-based method and a least-squares
optimization for the grayscale conversion process. This approach is
similar to that of [8], except that the distance computation occurs
only on a limited number of clusters instead of on the whole image.

3. CONSTRAINED OPTIMIZATION-BASED
GRAYSCALER (COG)

We adopt the CIE94 definition of color distance as in [8] and [9],
noting that improved accuracy can be obtained with the more com-
plex CIEDE2000 color distance definition [13]. Nevertheless, we
use the CIE94 distance here in the interest of simplicity. We com-
pute the distance between two pixels in the CIE L*a*b* color space,
hereafter referred to as LAB. Let L, a, and b denote the three LAB
color channels. Let m and n denote 2D spatial pixel coordinates in
the image and assume that the input color images are in the RGB
color space. In the remainder of this section, we give a procedural
description of the proposed COG algorithm.1

Step 1: Convert the input RGB image to the perceptually uni-
form LAB color space [14, pp. 32-38], which consists of a lightness
channel L and two chrominance channels a and b.

Step 2: Compute modulation domain features from each chan-
nel. We model the three LAB color channels as three components in
the modulation domain feature space. The modulation domain space
(AM-FM image model) represents a 2D image as a three component
vector consisting of an amplitude modulation (AM) component and
two frequency modulation (FM) components. The AM-FM repre-

1As a practical matter, the page limit prevents us from providing the the-
oretical and perceptual justifications for each step in this paper.

sentation is attractive because it provides perceptually motivated, in-
tuitive interpretation of local image contrast and local texture charac-
teristics. Specifically, the AM function captures local image contrast
and the FM specifies local texture orientation and spacing that are
derived from the local phase function. This model has been success-
fully used in many image and video processing applications such as
texture analysis, image synthesis, and target tracking [15–17]. The
LAB space AM-FM model is given by

L(m) = AL(m) cos[ϕL(m)] + Lo,

a(m) = Aa(m) cos[ϕa(m)] + ao,

b(m) = Ab(m) cos[ϕb(m)] + bo,

(1)

where AL(m) is the amplitude modulation (AM) function of the
lightness channel, which models local contrast, and ϕL(m) is the
phase modulation (PM) function. The local texture orientation and
granularity are manifest explicitly in the frequency modulation (FM)
function ∇ϕL(m). The modulating functions of the a and b chan-
nels are interpreted analogously to those of the L channel. In (1),
the constants Lo, ao, and bo are DC offsets obtained by de-meaning
the LAB color channels prior to AM-FM modeling.

Step 3: Construct dual-domain feature vectors F (m) to charac-
terize the local image structure jointly in the LAB color space and
the modulation domain. Let

At(m) =
√
A2

L(m) +A2
a(m) +A2

b(m) (2)

be the color AM vector modulus. The feature vectors are given by

F (m) = [FL(m) Fa(m) Fb(m)]T , (3)

where
FL(m) = L(m)/100,

Fa(m) = a(m)/At(m),

Fb(m) = b(m)/At(m).

(4)

We then define the unsigned color distance between two pixels at
spatial locations m and n according to

|d(m,n)| =
√

[F (m)− F (n)]T [F (m)− F (n)]. (5)

Step 4: Compute the signed color distance d(m,n) be-
tween pixels in the input image. Let LVAC(m) be the Variable-
Achromatic-Color lightness channel computed by the KL prediction
model [10], which seeks to provide additional cues for differen-
tiating iso-luminant colors. Associate to the unsigned distance
|d(m,n)| in (5) difference operators ∆LVAC, ∆L, ∆a, and ∆b
defined by, e.g., ∆L = L(m)− L(n). As in [9, 11], we take

sgn[d(m,n)] =

sgn(∆LVAC), ∆LVAC 6= 0,
sgn(∆L), ∆LVAC = 0,∆L 6= 0,
sgn[(∆a)3 + (∆b)3], otherwise.

(6)
The signed color distance is then given by

d(m,n) = sgn[d(m,n)] · |d(m,n)|. (7)

Step 5: Compute the output grayscale image according to

y(m) = αrR(m) + αgG(m) + αbB(m), (8)

where α = [αr αg αb]
T is a vector of mixing coefficients and

R(m), G(m), and B(m) are the original red, green, and blue in-
tensity values from the input image. Define a grayscale distance ∆y



between the pixels in the output grayscale image at spatial locations
m and n by

∆y = y(m)− y(n)

=

 R(m)−R(n)
G(m)−G(n)
B(m)−B(n)

T  αr

αg

αb


, Dm,nα, (9)

where Dm,n ∈ R1×3. For each m, we allow n to range over the
four-connected neighbors of m and we construct a matrix D by
stacking the vectors Dm,n corresponding to the four neighbors of
all pixels m in the original image. For an M × N input image, the
matrix D has dimensions 4MN × 3. The mixing coefficients α are
then obtained as the solution to the constrained quadratic program-
ming problem

arg min
α
||Dα− d||22

subject to 1α = 1,
(10)

where the vector d is obtained by stacking the distances (7) corre-
sponding to the four-neighbors n of all pixels m in the image and
where 1 = [1 1 1] is a row vector with all entries equal to one in
order to ensure that the mixing coefficients sum to unity. The indi-
vidual mixing coefficients are not restricted to be in [0 1].

The matrix D in (10) represents the color features extracted from
the input image. In addition to the features computed from the AM-
FM image model, we incoporate into the matrix D several secondary
low-level features such as local variance, local mean, edges, local
laplacian, and multiresolution.

4. RESULTS AND DISCUSSION

We evaluated the performance of the proposed COG algorithm
against the popular set of test images due to Čadı́k [3]. The set
consists of 24 color images and has been used to benchmark state-
of-the-art algorithms including those in [4, 7, 9, 11]. Grayscale
conversion results for eight of the test images are shown in Fig. 1.
For each example, the original color image is shown in the first
column and the COG conversion result is shown in the last column.
For comparison, grayscale images obtained using the competing
algorithms of Gooch, et al. [8], Grundland and Dodgson [7], Smith,
et al. [11], Kim, et al. [9], and Lu el al. [4] are shown in columns
two through six.

We used the color contrast preserving ratio (CCPR) [4] to quan-
titatively compare the performance of all six methods. The results
are given in Table 1. The range of CCPR is between zero and one,
where a higher CCPR score indicates better contrast preserving per-
formance. With respect to the CCPR measure, the algorithm of Lu,
et al. [4] and the proposed COG algorithm perform significantly bet-
ter than the other four methods tested, with the Lu, et al. algorithm
delivering the best performance in 11 cases and COG delivering the
best performance in eight cases. However, the COG algorithm per-
formed slightly better that that of Lu, et al. on average.

Visually, we argue that the conversion results delivered by COG
are appreciably better than those of the methods due to Gooch, et
al. [8], Grundland and Dodgson [7], Smith, et al. [11] and Kim, et
al. [9] for this set of test images. We argue moreover that COG
performs about equally as well as the state-of-the-art method of Lu,
et al. [4] while providing a substantially lower computational com-
plexity. It must also be kept in mind that the CCPR figure of merit
may not always correspond well with human visual perception. For

Table 1. Color contrast preservation comparison
No. CIEY Grunland07 Smith08 Kim09 Lu12 Ours

1 0.4556 0.4785 0.4932 0.4725 0.5335 0.5070
2 0.8726 0.9472 0.8626 0.8879 0.9672 0.9660
3 0.8216 0.8809 0.8456 0.8303 0.8653 0.8421
4 0.5750 0.5843 0.6258 0.6119 0.6274 0.6410
5 0.7262 0.7469 0.7559 0.7474 0.7189 0.7561
6 0.3168 0.6075 0.3485 0.3633 0.7088 0.4792
7 0.3729 0.5974 0.3725 0.4299 0.8786 0.8720
8 0.0621 0.3848 0.1594 0.4541 0.6685 0.5365
9 0.4536 0.6215 0.5882 0.5058 0.4003 0.6436
10 0.5803 0.6349 0.6137 0.5945 0.5701 0.6288
11 0.6036 0.6790 0.6885 0.5137 0.7264 0.6523
12 0.0422 0.3329 0.1299 0.3243 0.8347 0.7830
13 0.4477 0.5274 0.5070 0.4805 0.3816 0.5420
14 0.6621 0.6459 0.7413 0.7107 0.6681 0.6541
15 0.5765 0.6623 0.6417 0.6025 0.7163 0.7011
16 0.6383 0.6990 0.7021 0.6750 0.6848 0.7133
17 0.2313 0.6030 0.2952 0.5130 0.8696 0.6175
18 0.6089 0.6007 0.6470 0.6339 0.4946 0.6495
19 0.6360 0.6675 0.7004 0.6697 0.5206 0.6490
20 0.4319 0.6742 0.5260 0.4685 0.5690 0.7740
21 0.9061 0.9248 0.8997 0.9166 0.8520 0.9259
22 0.6012 0.6225 0.6706 0.6353 0.7393 0.6508
23 0.5850 0.4884 0.6218 0.6096 0.7070 0.6806
24 0.7039 0.7805 0.8121 0.7686 0.8002 0.7079
Avg 0.5380 0.6413 0.5937 0.6008 0.6876 0.6906

example, in our opinion the conversion results shown in the third
and seventh rows of Fig. 1 for the COG algorithm are superior to
those produced by the method of Lu, et al. [4]. However, Lu, et
al. achieved a better CCPR score in both cases.

Finally, we performed qualitative experiment to illustrate the
performance gain that results from incorporating modulation domain
features into COG. The original color Monet image is shown in
Fig. 2(a). The grayscale image obtained by simply extracting the
L channel of the LAB color space is shown in Fig. 2(b), while the
output of the Matlab rgb2gray routine is given in Fig. 2(c). The COG
result obtained by using the LAB representation alone in (4) without
modulation domain information is given in Fig. 2(d). The grayscale
image in Fig. 2(e) was produced by the full COG implementation,
including modulation domain features in (4). Observe in particu-
lar that the sun and its reflection in the water are washed out in the
grayscale images of Fig. 2(b) and (c), while the grayscale represen-
tations delivered by COG in Fig. 2(d) and (e) are substantially more
faithful to the original color image. Visually, we argue that the in-
corporation of modulation domain features increases the the fidelity
of the full COG result in Fig. 2(e) relative to Fig 2(d).

5. CONCLUSION

We proposed a fast, high quality constrained optimization grayscaler
(COG) for converting color images to grayscale. COG computes the
mixing coefficients for blending the red, green, and blue components
of the input image using constrained quadratic programming to en-
force agreement of the grayscale distances between the pixels of the
output image with the color distances between the pixels of the input
image, where the color distances are defined using novel modula-
tion domain features that are perceptually motivated and are more
robust than the CIE L*a*b* representation for preserving the local
texture structure and contrast of the input image. Our experimental
results demonstrated that the COG algorithm is capable of deliver-
ing high fidelity grayscale images that are competitive with the best
existing state-of-the-art grayscale conversion techniques while also
providing polynomial-time computational complexity.



Original Gooch05 [8] Grundland07 [7] Smith08 [11] Kim09 [9] Lu12 [4] Ours (COG)

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Grayscale conversion results: (a) Original image. (b) Gooch, et al. [8]. (c) Grundland Dodgson [7]. (d) Smith, et al. [11]. (e) Kim, et
al. [9]. (f) Lu, et al. [4]. (g) Ours (COG).

(a) Original (b) CIEY (c) Matlab rgb2gray (d) COG Lab (e) COG AM-FM

Fig. 2. Grayscale conversion results for the Monet image. (a) Original image. (b) CIEY channel. (c) Output of Matlab rgb2gray function. (d)
COG result using LAB features only without modulation domain information. (e) Full COG implementation with AM-FM features.
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