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ABSTRACT
We propose an algorithm to compute modulation functions
of the AM-FM image model. We show that previous algo-
rithms suffer from the wrapped orientation problem where
the discontinuities in the orientation map of the phase gra-
dient cause undesirable artifacts in the computed modulation
functions. We address this wrapped orientation problem by
imposing a local smoothness constraint on the phase func-
tion and solve for the unwrapped phase. The proposed algo-
rithm produces artifact free modulation functions that are in
good agreement with underlying image structure. Finally, we
demonstrate the superiority of proposed algorithm with visual
examples as well as quantitative measurement.

Index Terms— AM-FM image model, amplitude modu-
lation, frequency modulation, phase unwrapping, Riesz trans-
form.

1. INTRODUCTION

The AM-FM model has been used successfully in a wide va-
riety of 1D and 2D signal processing applications. The model
can be used to extract time varying frequencies of nonstation-
ary narrow-band signals [1, 2]. The time varying frequency,
also known as instantaneous frequency (IF) or the frequency
modulation (FM), is captured from the input signal f(x) by
modeling

f(x) = a(x) cos[ϕ(x)], (1)

where a(x) : R → [0,∞) is the amplitude modulation (AM)
function and ϕ(x) : R → R is the phase modulation (PM)
function. The FM function is defined as the derivative of the
phase modulation signal ϕ(x).

Prior to the 1990, the AM-FM model was primarily used
for 1D time series analysis. Bovik, Clark, and Geisler [3]
were the first to propose a 2D AM-FM model to represent im-
ages and textures. This is challenging because 1) the multidi-
mensional IF is not well-defined and 2) the extracted AM and
FM functions should agree with physical interpretations of the
underlying image structure. Hahn [4] introduced the single
orthant complex signal. Havlicek, Havlicek, and Bovik [5]
proposed the analytic image model. Bülow and Sommer [6]
proposed a nD hypercomplex signal model. Felsberg and
Sommer [7] introduced the monogenic signal model that uses

the Riesz transform as an extension of the 1D Hilbert trans-
form. Independently, Larkin, Bone, and Oldfield [8] arrived at
the same signal model as the monogenic. Recently, Demarcq
et al. [9] extended the monogenic signal to color images.

In this paper, we consider the 2D formulation of the sig-
nal model (1). Most of the 2D algorithms such as [4, 6–9]
are restricted to image analysis applications. The computed
AM, PM, and FM functions of these algorithms are used as
features in image processing tasks such as segmentation, op-
tical flow estimation, texture classification, and target track-
ing [10]. In these models, the computed PM functions are
wrapped in [−π, π). Therefore, they are not ideal for image
filtering and image synthesis. For example, direct filtering on
the computed PM and FM results in artifacts in the output im-
age because of discontinuities associated with branch cuts in
the wrapped phase.

Even after application of a practical 2D phase unwrapping
algorithm, branch cuts and discontinuities will still remain in
the unwrapped phase [10, 11]. These branch cuts will intro-
duce artifacts in the output image when we do AM-FM filter-
ing or reconstruction. In this paper, we impose the smooth-
ness contraint of the PM function to reduce the gradient mis-
match at the discontinuous locations. Once the discontinuities
are resolved, we reconstruct the PM function from the mod-
ified gradient field. The proposed algorithm produces AM,
PM, and FM functions in good agreement with human per-
ception of local image structure. Finally, we evaluate the ef-
fectiveness of the proposed algorithm against existing mod-
els [4–7] by quantitatively comparing the errors in the com-
puted AM, PM, and FM functions.

2. THE WRAPPED ORIENTATION PROBLEM

In the classic paper in 1946, Gabor [12] solved the model (1)
by constructing the analytic signal. The analytic signal is a
complex signal having the input signal as the real part and the
quadrature signal as the imaginary part. The quadrature signal
is computed by applying the Hilbert transform (HT) to the real
input signal. The spectrum of the analytic signal is supported
only in the right half of the frequency plane [2,12]. Most suc-
cessful multi-dimensional AM-FM signal models adopt the
Gabor’s complex signal model. Their goals are to construct
the multi-dimensional imaginary signals.



Hahn [4] proposed the single orthant complex signal
model where the spectrum of a nD complex signal is zero
in all but one orthant. Havlicek, Havlicek, and Bovik [5, 13]
reasoned that the spectra of nD signals have support in 2n−1

orthants in order to completely characterize the local structure
of the underlying signals. Bülow and Sommer [6] introduced
the nD hypercomplex signal model. The hypercomplex sig-
nal model is constructed by combining the hypercomplex
Fourier transform and Hahn’s single orthant approach [4]. In
the 2D case, the hypercomplex signal is a quaternionic signal
which consists of one AM function and three PM functions.
However, the PM functions of the 2D hypercomplex signal
may not exist for certain phase angles [6]. The construction
kernel is still the partial Hilbert transform.

Felsberg and Sommer [7] and Larkin, Bone, and Old-
field [8] independently proposed the monogenic signal model.
They used the Riesz transform to construct a multi-component
vector signal model. The AM component is computed as the
norm of this multi-component vector. The FM is computed
as the argument of signal components generated by the Riesz
transform. Similar to all the partial Hilbert transform ap-
proaches, the Riesz kernels are also directional.

In all of these models, the directional nature of the under-
lying kernels used to generate the complex signals introduces
undesirable artifacts that do not agree with visual perception
of the image structure. For example, the computed AM func-
tions produced by the single orthant (SO), the adjusted Hilbert
transform (aHT), and the hypercomplex signal (Hyper) ex-
hibit artifacts at structures perpendicular to the direction of
action of the directional kernels. Despite using directional
kernels, the magnitude of the two Riesz kernels is isotropic.
Therefore, the monogenic signal produces an artifact free AM
component. Nevertheless, the PM and FM computed from all
of these methods exhibit ambiguity in the orientation map of
the phase gradient. We illustrate this problem in Fig. 1 where
we compute the AM and PM of the original image (Fig. 1(a)).
The computed orientation map of the phase gradient is shown
in Fig. 1(d). In contrast to the smoothly varying nature of the
ground truth orientation map in Fig. 1(c), the computed orien-
tation map has multiple disjoint circular rings. We refer these
discontinuities as the wrapped orientation problem. These
disjoint rings are the source undesirable artifacts observed in
the filter output when image processing filters operate directly
on the computed AM and FM functions [10]. Here, we im-
pose a local smoothness constraint on the local phase function
to unwrap the local orientations. This constraint allows us to
compute artifact free AM, PM, and FM functions.

3. SMOOTH PHASE CONSTRAINT UNWRAPPING

We adopt the monogenic signal model as the base of our algo-
rithm. The monogenic signal model uses the 2D Riesz trans-
form to map an input image f(x) into a three-component vec-
tor of images (f(x), fx(x), fy(x)). The two Riesz transform

components fx(x) and fy(x) are computed by convolving the
Riesz kernels with the input image(

fx(x)
fy(x)

)
=

(
hx(x) ∗ f(x)
hy(x) ∗ f(x)

)
, (2)

where hx(x) and hy(x) are two directional filters acting on
the x and y direction [7, 14].

(a) (b)

(c) (d)

Fig. 1. Chirp image: (a) Original Gaussian chirp image. (b)
Original phase gradient field. (c) Original orientation map.
(d) Computed wrapped orientation map.

The monogenic signal models each component as f(x) =
A(x) cos[ϕ(x)], fx(x) = A(x) sin[ϕ(x)] cos[θ(x)], and
fy(x) = A(x) sin[ϕ(x)] sin[θ(x)]. In this model, ϕ(x) is
the original phase signal and θ(x) is referred to as the local
orientation. The AM component A(x) is computed as

A(x) =
√
f2(x) + f2x(x) + f2y (x). (3)

The local orientation θ(x) can be obtained simply as θ(x) =
tan−1(fy(x)/fx(x)).

Here, we show that we can compute the phase function
ϕ(x) and the local orientation θ(x) by differentiating the
monogenic model. Let [Ax, Ay] = ∇A and [fx, fy] = ∇f .
Let R be the magnitude of the FM functions. R can be
obtained by

R2 =
(Axf −Afx)2 + (Ayf −Afy)2

A2(f21 + f22 )
, (4)

where we drop the spatial arguments for convenience.
The wrapped orientation can be computed as

θw = tan−1

[
Ayf −Afy
Axf −Afx

]
. (5)



Chirp Diamond
Method AM MSE FM MSE AM MSE FM MSE
SO [4] 0.4752 8.8027 0.7174 1.5024
TKEO [15] 0.0509 6.1766 0.0186 1.5058
aHT [5] 0.0251 8.8027 0.0163 1.5024
Hyper [6] 0.1400 5.9368 0.1960 1.4603
Mono [8] 0.0014 6.1398 0.0045 1.4912
Ours 0.0014 5.8279 0.0045 1.4414

Table 1. The mean square error (MSE) of competing methods
with respect to the ground truth AM-FM signal models.

The FM component∇ϕ can be computed directly from the R
and θw as ∇ϕ = [R cos(θw) R sin(θw)]. Finally, the PM is
obtained by integrating∇ϕ.

We illustrate the wrapped orientation problem in Fig. 1.
The original Chirp image is in Fig. 1(a). The original FM
field and the orientation map are shown in Fig. 1(b) and (c).
The wrapped orientation map computed using (5) is shown in
Fig. 1(d). The branch cuts in the wrapped orientation map θw
will cause artifacts in the computed PM and FM.

We address the wrapped orientation problem by enforcing
a local phase smoothness constraint on the wrapped orienta-
tion θw. In particular, the local orientation difference com-
puted at two neighbor pixels should not exceed π/2. Based
on this constraint, we start the algorithm at seed points where
the AM is large in magnitude and subsequently adjust the ori-
entations of the pixels in neighborhoods of the seed points.
Let (i, j) be the spatial coordinate of a seed pixel. Let ∆ =
θw(i, j)− θ(i, j − 1) be the orientation difference of the seed
point and its neighbor. The local orientation at (i, j − 1) is
corrected as

θw(i, j − 1) =

{
θw(i, j − 1) + π if cos(∆) < 0

θw(i, j − 1) otherwise.
(6)

This algorithm is initialized by selecting as seeds all the
pixels where the AM exceeds a predefined threshold. A bi-
nary mask Ψ is then initialized to “1” at the seed points and
“0” else where. Starting at the seed points, the algorithm per-
forms orientation correction as in (6). For each corrected pixel
(m,n), we set Ψ(m,n) = 1. The algorithm proceeds similar
to a binary region-growing technique and stops when all pix-
els in the mask Ψ are set to “1”. This proposed algorithm has
complexityO(N2), whereN is the row or column dimension
of the input image.

4. RESULTS AND DISCUSSION

We evaluate the effectiveness of the proposed algorithm
against five main algorithms, i.e., the single orthant com-
plex signal (SO) [4], the Teager-Kaiser energy operator
(TKEO) [15], the adjusted Hilbert transform (aHT) [13],
the hypercomplex signal (Hyper) [6], and the monogenic
signal (Mono) [7].

We use two test images with known mathematical ground
truth for the AM, PM, and FM functions. The Chirp im-
age, shown in Fig. 3(a), has a Gaussian-shaped AM and a
quadratic PM. Their formulae are given by

a(m,n) = exp

[
− (m−M/2)2 + (n−N/2)2

MN

]
,

p(m,n) = 144
(m−M/2)2 + (n−N/2)2)

MN
. (7)

The Diamond image, shown in Fig. 3(e), consists of a con-
stant AM function and a linear PM function

p(m,n) = 4π [3m/M + 2n/N ] , (8)

where M and N are the row and column of the image. In our
experiment, we set M = N = 256. The correction neighbor-
hood is a 3x3 window. Ideally, the threshold level can set to
90−95% of the maximum value of the AM component to find
the seed points. Our experiments indicates that we can lower
this threshold level to 75% to save computational runtime.

The visual results of the Chirp image is illustrated in
Fig. 2, where each column contains the computed AM and
FM vector field. We compute the modulation functions for
all six methods but only show the best three method in Fig. 2.
The original image is shown in the first column. The results
of aHT and Mono methods are given in the second and third
column. Results of the proposed algorithm are illustrated in
the last column. Since the aHT approach is directional, the
computed AM in Fig. 2(b) contains undesirable artifacts in
the region around the center of the image. These artifacts
is directly caused by the sharp transition of the directional
Hilbert transform kernel. The AM computed by Mono does
not suffer from this problem because the magnitude of the
2D Riesz kernels is isotropic [7]. The FM computed by aHT
and Mono exhibit noticeable artifacts in the vertical stripes
across the middle portion of the FM field in Fig. 2(f) and (g).
The reason is that both of these approaches use directional
kernels. By applying the orientation unwrapping process pro-
posed in this paper, we are able to produce FM functions that
are free of such artifacts.

For quantitative evaluation, we compute the mean square
error (MSE) of the computed AM and FM functions against
the true signal models in (7) and (8) for six algorithms. The
MSE results are tabulated in Table 1 where bold face indi-
cates the best performance . These results in Fig. 1 demon-
strate that the proposed algorithm delivers a consistent per-
formance advantage for the FM computation relative to the
competing methods. Since we use the Riesz kernels to obtain
the AM, the AM result of our approach and Mono are iden-
tical and are better than other five competing methods. We
note that the MSE are computed over the whole image. As
the result, we do not notice much differences in the FM er-
rors quantitatively, e.g., in the Diamond image, the FM MSE
of Mono is 1.4912 and the FM MSE of the proposed method
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Fig. 2. Chirp: The computed AM and FM functions. The FM functions are illustrated as vector fields. (a) Original AM. (b)
aHT AM. (c) Mono AM. (d) Ours AM. (e) Original AM. (f) aHT FM. (g) Mono FM. (h) Ours FM.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Computed imaginary image for Chirp and Diamond: (a) Original Chirp image. (b) aHT imaginary image of (a). (c)
Mono imaginary image of (a). (d) Our imaginary image of (a). (e) Original Diamond image. (f) aHT imaginary image of (e).
(g) Mono imaginary image of (e). (h) Our imaginary image of (e).

1.4414. However, we can see clear improvements graphically
in Fig. 2(g) and (h), especially in the discontinuous regions in
the middle portion of the image.

In relation to the classical Gabor complex signal model,
we compare the imaginary images generated by aHT and
Mono using our orientation unwrapping approach. These
imaginary images are shown in Fig. 3, where the original
images are in the first column, the imaginary images of aHT
and Mono are shown in the second and third column. The
imaginary image obtained by our algorithm is shown in the
last column. We observe that there are texture mismatches in
the imaginary images of aHT and Mono in the middle region
of the image. These mismatches are expected because of the
directional kernels. Our algorithm is able to eliminate these
mismatches due to the orientation unwrapping process. Our

computed imaginary images in Fig. 3(d) and (e) do not suffer
from such disruption of the local texture coherency.

5. CONCLUSION

We proposed an algorithm to compute the classical AM-
FM image model. The proposed algorithm overcomes the
wrapped orientation problem characteristic of existing ap-
proaches by imposing a local phase smoothness constraint.
The new algorithm produces artifact free AM and FM com-
ponents. In addition, the computed AM and FM components
are in good agreement with physical interpretation of local
image structure. We show quantitatively that the proposed
algorithm outperforms the best current competing methods in
terms of mean square error relative to ground truth.



6. REFERENCES

[1] B. Boashash, “Estimating and interpreting the instan-
taneous frequency of a signal – Part I. Fundamentals,”
Proc. IEEE, vol. 80, no. 4, pp. 520–538, Apr. 1992.

[2] L. Cohen, Time-frequency Analysis, Englewood Cliffs,
Prentice-Hall, NJ, 1995.

[3] A. C. Bovik, M. Clark, and W. S. Geisler, “Multichannel
texture analysis using localized spatial filters,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 12, no. 1, pp.
55–73, Jan. 1990.

[4] S. L. Hahn, “Multidimensional complex signals with
single-orthant spectra,” Proc. IEEE, vol. 80, no. 8, pp.
1287–1300, Aug. 1992.

[5] J. P. Havlicek, J. W. Havlicek, and A. C. Bovik, “The
analytic image,” in Proc. IEEE Int’l. Conf. Image Proc.,
Santa Barbara, CA, Oct. 26-29, 1997.
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