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ABSTRACT

We introduce new generalized AM and FM functions to perform
nonlinear image filtering in the modulation domain with consistent,
artifact free phase reconstruction. The new framework enables us
to design nonlinear filters in the modulation domain that are capa-
ble of producing perceptually motivated signal processing results.
As an illustration, we demonstrate that the modulation domain ge-
ometric image transformations designed under this framework de-
liver artifact-free results that are consistent with those of classical
intensity-based geometric image transformations.

Index Terms— AM-FM image models, geometric transforma-
tions, image filters, modulation domain filtering.

1. INTRODUCTION

AM-FM image models were introduced in [1] and systematically
developed in [2, 3] and elsewhere. Such models seek to represent a
continuous domain image f : R2 → R as a sum of nonstationary
components according to

f(x) =

KX
k=1

fk(x) ≡
KX
k=1

ak(x) cos[ψk(x)], (1)

where each component fk(x) is characterized in the modulation
domain by a smoothly varying, positive semidefinite amplitude
modulation (AM) function ak(x) that captures local contrast and
a smoothly varying frequency modulation (FM) function ∇ψk(x)
that captures the orientation and granularity of local surface pat-
terns. The main idea is that the modulation domain representation
{ak,∇ψk}k∈[1,K] is more naturally related to human visual percep-
tion than a standard Fourier representation [1, 2] and can therefore
facilitate powerful, perceptually motivated processing and analysis.
Such models have been used successfully in a variety of signal anal-
ysis applications including speech recognition, image segmentation,
image classification, motion estimation, content-based retrieval, and
texture inpainting [3–8]. Note that the model (1) is ill-posed on
at least two levels: the decomposition into components is generally
defined by an appropriate multiband filterbank [3] or iterative regres-
sion [6], while the problem of uniquely defining the AM and FM
functions is typically disambiguated by associating an imaginary
part with each fk, either implicitly via, e.g., the multidimensional
Teager-Kaiser operator [9], or explicitly using an appropriate Hilbert
transform [3, 6].

For 15 years following the publication of [1], practical use of
the model (1) was limited to analysis-only applications for two main
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reasons. First, virtually all modern applications are concerned with
digital images defined on a discrete lattice; the approximation er-
rors inherent in estimating the spatial derivatives∇ψk from discrete
image samples precluded the possibility of accurate AM-FM image
synthesis. Second, a sufficiently jointly spatio-spectrally localized
perfect reconstruction filterbank was not available to permit perfect
reconstruction from the AM-FM model, even in the absence of any
modulation domain processing.

These problems were addressed in [10–12] where a perfect
reconstruction steerable pyramid filterbank with joint localization
properties similar to the Gabor filters was used to decompose a
discrete image into components and the discrete components fk(n)
were interpolated with cubic tensor product splines which could
be differentiated analytically to obtain the FM functions ∇ψk(n)
on the lattice n ∈ Z2. Perfect reconstruction of digital images
from the model (1) was demonstrated with this approach, as well as
AM-based processing including frequency selective attenuation and
elementary FM processing. However, due to the phase congruence
problem which we will discuss in Section 2, the modulation do-
main image filtering and synthesis techniques introduced in [11, 12]
cannot accommodate more sophisticated processing including geo-
metric transformations where interpolation to a new sampling lattice
is required.

In this paper we address the phase congruence problem by fac-
toring the phase congruence term out of the component FM func-
tions to obtain a new generalized AM function and corresponding
generalized FM function. This new generalized AM function re-
solves several phase reconstruction problems associated with AM-
FM image synthesis, but fails to remain positive semidefinite. We
show that this modification leads to artifact-free modulation domain
filtering results. In addition, for the first time we introduce a gen-
eralized framework for modulation domain image filtering that sup-
ports sophisticated AM and FM filtering including image synthesis
on transformed sampling lattices. This permits an elegant and direct
extension of the modulation domain image processing theory to in-
clude important classical geometric transformations such as rotation,
scaling, and non-integer translation.

2. GENERALIZED AM AND THE PHASE CONGRUENCE
PROBLEM

Consider a discrete image f(n) : Z2 → R with respect to the
model (1). For the modulation domain filtering techniques given
in [11,12], initial frequency samples∇ψk(n) are obtained by fitting
the image with a cubic tensor product spline, applying the contin-
uous frequency demodulation algorithm given in [3], and spatially
sampling the result. The phase unwrapping technique given in [13]
is then applied to integrate∇ψk(n) in a least squares (LS) sense and
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obtain a discrete unwrapped phase function ϕk(n). Because of the
ambiguity inherent in the LS phase unwrapping problem, the com-
puted phase ϕk(n) is generally inconsistent with the principle phase
values arccos[fk(n)/ak(n)] obtained from the original image com-
ponents at some pixels. The solution given in [10] is to define the
phase function ψk(n) according to

ψk(n) = ϕk(n) + ρk(n), (2)

where the phase congruence term ρk(n) is chosen to enforce agree-
ment between the principle values of the LS unwrapped phaseϕk(n)
and the principle values of ψk(n).

The phase model (2) is generally satisfactory for performing im-
age synthesis on the discrete lattice Z2 – even after AM-based im-
age filtering or elementary FM-based processing have been applied.
However, the phase congruence term ρk generally fails to be smooth
and, consequently, the presence of ρk(n) in (2) tends to introduce
undesirable artifacts in the reconstructed image when sophisticated
FM filtering or geometric transformations requiring interpolation to
a new spatial sampling lattice are applied. These artifacts arise be-
cause the integrated phase ψk(n) contains jumps that are introduced
to the phase by the phase congruence term ρk(n). These discontinu-
ities subsequently generate artifacts in the filtered output [12].

Here, we ameliorate the phase congruence problem by factoring
ρk(n) out of each term in (1) to define new generalized AM func-
tions A1k(n) and A2k(n) through

fk(n) = ak(n) cos[ψk(n)] = ak(n) cos[ϕk(n) + ρk(n)]

= ak(n) cos[ρk(n)] cos[ϕk(n)]

−ak(n) sin[ρk(n)] sin[ϕk(n)]

≡ A1k(n) cos[ϕk(n)] +A2k(n) sin[ϕk(n)]. (3)

In order to define modulation domain signal processing operations
capable of delivering filtered images that are free from undesir-
able phase reconstruction artifacts, AM-only processing should be
applied to the (non-generalized) amplitude modulation functions
ak(n). However, for joint AM-FM filtering, the generalized AM
functionsA1,k(n) andA2,k(n) should be processed. FM processing
should be applied only to the generalized FM functions∇ϕk(n) and
not to∇ψk(n). Subsequent to such processing, the generalized AM
and FM functions can be interpolated to synthesize image samples
on a modified sampling lattice as required to implement geometric
image transformations.

3. MODULATION DOMAIN IMPLEMENTATION OF
GEOMETRIC TRANSFORMATIONS

We define three basic artifact free classical image transformations,
i.e., scaling, rotation, and translation in the modulation domain. Let

Oα =

»
cos(α) sin(α)
− sin(α) cos(α)

–
(4)

be the rotation matrix by an arbitrary angle α and let Rα be the
rotation operation by an angle α acting on the pixel lattice. Let
∇ϕk(n) = [Uk(n) Vk(n)]T be the gradient of the phase ϕk(n),
where Uk(n) and Vk(n) are the horizontal and vertical components
of the gradient, respectively. Let Âik be the generalized AM, i =
1, 2 as in (3), and let ∇ϕ̂k(n) be the generalized FM functions.
Since the image is described by a sum of K AM-FM components
in the model (1), the final synthesized output image f̂(n) after trans-
formation is given by a linear sum of filtered components f̂(n) =PK
k=1 f̂k(n) in which the same transformation is applied to all K

components in parallel.
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Fig. 1. Block diagram of modulation domain image scaling.
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Fig. 2. Block diagram of modulation domain image rotation.

3.1. Scaling

The modulation domain scaling operation is designed to admit inte-
ger, rational, and general irrational scaling factors. For example, if
we enlarge the image by two, the magnitude of the FM field of the
enlarged image must be decreased by two. Consequently, to produce
a modulation domain image magnification operation that is consis-
tent with classical image scaling, we design a filtering scheme to
accommodate for these changes of the gradient field ϕk(n).

The modulation domain scaling operation is depicted in Fig. 1.
The AM signals Aik(n) are first up/down sample by a predefined
(non-integer) factor L and then are interpolated by either bilinear
or bicubic interpolants. The FM signal ∇ϕk(n) is also up/down
sample by the predefined factor L. This modified gradient signal is
then compensated by 1/L in order to preserve the texture structure
spacing and orientations. The modified gradient is then integrated to
find the modified phase function ϕ̂k(n). As the processed gradient
field ϕ̂k(n) may not be conservative, the modified phase is computed
by performing the least square phase unwrapping method proposed
by Ghiglia and Romero [13]. The scaled output signal is then given
as a summation of the filtered components f̂k(n).

3.2. Rotation

A classical image rotation involves a rotation of the image grid and
an interpolation scheme. In the modulation domain, a rotation on
the image grid will also rotate the orientation of the gradient field
∇ϕk(n). In order to preserve the visually important texture structure
and orientation, we implement the orientation change of the gradient
field by multiplying with a rotation matrix Oα.

The modulation domain image rotation operation is described
in Fig. 2. The rotation operator Rα is first applied to the AM sig-
nals Aik(n). The rotated AM signals are then interpolated to find
values lying on the pixel lattice. The rotation operator Rα is also
applied to the gradient field ∇ϕk(n) and then multiplied with the
rotation matrix Oα. Therefore, the rotation operation for the FM
signal∇ϕk(n) is defined asRαOα∇ϕk(n). Similar to Section 3.1,
the modified gradient field ∇ϕ̂k is then integrated to find the mod-
ified phase ϕ̂k by solving for the least square solution of the phase
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unwrapping problem. Finally, the rotated output image is computed
as a linear sum of the rotated components f̂k(n).

In addition, for the rotation of the FM field it may be shown that
the counter rotation operator Oα commutes with the lattice rotation
operatorRα:
Theorem: RαOα∇ϕk(n) = OαRα∇ϕk(n).
Proof: straightforward, but omitted for brevity.

3.3. Translation

Since we model f(n) =
PN
k=1 ak(n) cos[ψk(n)], the translated

output by displacement vector u = (u0, v0) is given by

f(n− u) =

NX
k=1

ak(n− u) cos[ψk(n− u)], (5)

where u ∈ R2. Therefore, the modulation domain translation oper-
ation can be achieved by translating ak(n) and ψk(n) by u, which
generally yields samples that fail to lie on the discrete sampling lat-
tice. We then apply bicubic interpolation to the resulting generalized
AM and FM functions to synthesize new image samples on the trans-
lated sampling lattice.

4. RESULTS AND DISCUSSION

We perform two classical image transformation operations, e.g.,
scaling and rotation with both natural images and familiar texture
test images. We use a bicubic interpolation scheme for both spatial
transformation and modulation domain transformation. The results
are shown in Fig. 3. The first row shows results of upsampling the
Boat and Barbara images by a factor of 2.0. The second row depicts
the results of rotating the Boat and Reptile images clockwise by
25◦. The first and the third columns are pixel domain image scaling
and rotation results, while the second and fourth columns show the
results of these operations performed in the modulation domain.

Perceptually, the results given by the modulation domain pro-
cessing are consistent with those obtained via pixel domain pro-
cessing. For the upsampling example of Barbara, the modulation
domain technique in Fig. 3(d) can preserve the diagonal stripes in
Barbara’s tie while the classical interpolation technique in Fig. 3(c)
fails to retain accurate texture orientations. The rotation results given
in Fig. 3(e)-(h) show that the techniques proposed in this paper are
effective for extending the modulation domain filtering theory to de-
liver geometric transformation results comparable in fidelity to those
obtained by traditional pixel domain image processing methods.

The quantitative comparison between the classical bicubic in-
terpolation and our proposed algorithm is shown in Table 1. We
restrict the comparison to the upsampling operation because of the
lack of ground truth data for the rotation and translation operations.
We measure the performance in terms of the peak signal to noise
ratio measure (PSNR) and the structural similarity index (SSIM) in-
dex [14]. For the upsampling operation, the PSNR performance of
the proposed algorithm is worse than that of the classical bicubic
interpolation. The proposed algorithm, however, outperforms the
classical bicubic interpolation in the perceptually motivated image
quality measure SSIM. While the PSNR is a popular quality mea-
sure in the literature, it has been proven to be a unreliable metric
in many image processing applications [15]. Furthermore, our goal
in this paper is not to argue that the proposed algorithms perform
better than the classical interpolation algorithms. Rather, we aim to
achieve comparable image transformation results but using modula-
tion domain processing as opposed to pixel domain processing.

Table 1. Comparison of the upsampling operation.
PSNR (dB) SSIM

Bicubic AM-FM Bicubic AM-FM
Boat 25.645 25.314 0.765 0.790
Barbara 32.881 32.482 0.704 0.729

5. CONCLUSION

We proposed a generalized framework to perform image transforma-
tions in the modulation domain. The modulation domain geometric
image transformation results obtained by the proposed approach are
visually consistent with those obtained by traditional pixel domain
techniques. In the upsampling case, we showed quantitatively that
the modulation domain technique can perform better than traditional
spatial interpolation techniques with respect to the SSIM figure of
merit. For future work, we will study quantitatively the signal pro-
cessing gain of modulation domain techniques and expand this gen-
eralized theory to other nonlinear image processing operations.
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Fig. 3. Examples. (a) Boat: Upsampled by 2.0 by bicubic interpolation. (b) Boat: Upsampled by 2.0 in modulation domain. (c) Barbara:
Upsampled by 2.0 by bicubic interpolation. (d) Barbara: Upsampled by 2.0 in modulation domain. (e) Boat: Rotated by 25◦ clockwise
using bicubic interpolation. (f) Boat: Rotated by 25◦ clockwise in modulation domain. (g) Reptile: Rotated by 25◦ clockwise using bicubic
interpolation. (h) Reptile: Rotated by 25◦ clockwise in modulation domain.
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