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ABSTRACT

We introduce a novel texture analysis algorithm capable of extract-
ing visually meaningful and locally coherent sub-textural compo-
nents from images. The algorithm operates in the modulation do-
main where texture is represented by locally coherent amplitude and
frequency modulation functions. The texture components are iter-
atively extracted based on a new quantitative coherency measure.
The effectiveness of the algorithm is demonstrated on several well-
known Brodatz textures.

Index Terms— AM-FM image model, texture segmentation,
texture analysis, local coherency

1. INTRODUCTION

Decomposing a complicated signal into perceptually meaningful
components is an important problem that has received increasing
attention recently [1–4]. Well-known examples include the cock-
tail party speech separation problem and image restoration from
multiple sub-image sources. In this paper, we are interested in the
image decomposition problem where a texture image is broken into
multiple visually meaningful components, e.g., simple and locally
coherent constituents. Unfortunately, such decomposition is an ill-
posed inverse problem [3, 4]. Starck, et al. [4] illustrated that a K
component image of N pixels will require N × K unknowns to be
solved. Therefore, prior knowledge of the signal components should
be incorporated, e.g., signal statistics, image models, and sparsity.

Early approaches used multiresolution techniques to describe
the image as a sum of localized parts. Daugman [5] proposed a hu-
man visual system (HVS) inspired Gabor filterbank to decompose
an image into smooth and localized components. The computed
components are band-pass and orientation selective. Alternatively,
Simoncelli and Freeman [6] introduced the steerable pyramid for
image analysis. The steerable pyramid decomposes an image into
multiple scales and multiple orientations. In the past two decades,
wavelets have been used extensively in denoising and compression
applications. Wavelets offer good time-frequency localization and a
compact representation [7]. While these techniques are essential in
many image processing applications, they lack specific models for
coherent texture components. Consequently, the decomposed com-
ponents obtained by these analysis techniques frequently fail to cor-
respond well with human visual perception of the image.

Recently, Meyer [8] pioneered a nonlinear partial differential
equation (PDE) approach to image decomposition. In this formu-
lation, an image is broken into a sum of two parts: a cartoon part and
a texture part. The cartoon describes a homogeneous region with
sharp boundaries, and is modeled by a bounded variational func-
tion. The texture part is modeled by certain energy norms. Both
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of these components are computed simultaneously by a total varia-
tion minimization framework [2, 3]. Similar to Meyer’s cartoon and
texture decomposition idea, Starck, et al. [4] formulated an image
decomposition using a combination of basis pursuit denosing and
total-variation regularization. They used two optimized and sparse
dictionaries, one for the cartoon and one for the texture, to extract
image components. Even though the two component image decom-
position model delivers meaningful results, this approach does not
generate locally coherent components.

In contrast to the two component image model approach, cartoon
and texture, Havlicek, et al. [9, 10] attempted to decompose images
into sums of multiple locally narrow-band components. They repre-
sented each component with slowly varying amplitude modulation
(AM) and frequency modulation (FM) functions, thereby explicitly
computing AM-FM image models in the modulation domain. A
Kalman filtering framework was developed in [9] to track texture
multicomponents spatially across the channels of a Gabor filterbank
and extract them. While this approach did not prove sufficiently ro-
bust to enable reliable analysis of general images, it should be noted
that extended Kalman filtering was applied successfully in [11] to
track multicomponent amplitude and frequency modulations tempo-
rally in human speech. The spatially adaptive Kalman filters of [9]
were replaced by a static global decomposition into components
based on the filterbank structure in [10], which led to a robust and
readily computable multicomponent image model. However, such
decomposition precluded the possibility of perfect reconstruction
and produced components that were less strongly connected to hu-
man visual perception. Evangelopoulos and Maragos [12] also used
the modulation domain model for image decomposition, but their
approach was limited to the two component decomposition model,
cartoon and texture.

In this paper, we propose a novel iterative algorithm for decom-
posing a texture image into homogeneous textural patches that are
locally coherent and visually meaningful. The components are iter-
atively extracted by a greedy algorithm that is similar to matching
pursuit [1] and utilizes a new quantitative modulation domain co-
herency measure. The experimental results show that the extracted
components are locally coherent and agree well with human percep-
tion. We discuss the modulation domain image model in Section 2.
The texture decomposition algorithm is given in Section 3. Results
and discussion appear in Section 4, while conclusions are given in
Section 5.

2. MODULATION DOMAIN IMAGE MODEL

The AM-FM image model represents an image t(x) as a finite sum
of K AM-FM components [9, 13]

t(x) =
KX

k=1

tk(x) =
KX

k=1

ak(x) cos[ϕk(x)], (1)
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where the AM functions ak(x) and FM functions ∇ϕk(x) are
smoothly varying and x ∈ R

2. In an image, we interpret ak(x)
as local contrast, |∇ϕk(x)| as texture spacing or granularity, and
arg∇ϕk(x) as local texture orientation. The model has been suc-
cessfully used in a variety of image processing applications [14].

Prior to computing the modulation functions in (1) for each com-
ponent, the image t(x) is usually decomposed into smooth and lo-
calized channel images tk(x) by filtering through a filterbank, e.g.,
Gabor filter bank, wavelets, or steerable pyramid. In this paper, we
use an adapted overcomplete steerable pyramid consisting of five
levels and eight orientations per level. This adapted implementation
is based on the original steerable pyramid introduced by Simoncelli
and Freeman [6].

The AM and FM functions in (1) were estimated using the
Teager-Kaiser energy operator in [15]. An alternative approach, e.g.,
analytic image demodulation, computes these modulation functions
as

ak(x) = |zk(x)|,
∇ϕk(x) = Re

»∇zk(x)

jzk(x)

–
, (2)

where zk(x) is a complex image given by

zk(x) = tk(x) + jH{tk(x)} (3)

and H{.} is the partial adjusted Hilbert transform [10]. Given the
continuous component tk(x), the algorithm (2) is exact. For a dis-
crete image, it can still be used to compute discrete modulation func-
tions by utilizing the spline-based framework introduced in [16].

3. MODULATION DOMAIN TEXTURE DECOMPOSITION

Let m, n ∈ N and let I(m, n) contain the samples of the continu-
ous image t(x) in (1). Let Ik(m, n) contain the samples of compo-
nent tk(x) in (1). Then Ik(m, n) admits a modulation domain rep-
resentation Γk = [Ak(m, n) Rk(m, n) θk(m, n)] which may be
computed using (2) with the spline-based demodulation framework
given in [16], where Rk(m, n) = |∇ϕk(m, n)| and θk(m, n) =
arg∇ϕk(m, n). The overall K component image I(m, n) is de-
scribed in the modulation domain by the multicomponent represen-
tation Γ = [Γ1 Γ2 . . . Γk]T obtained by concatenating the represen-
tations of the individual components. The vector Γ is then used as a
dictionary for matching orientations as the dominant texture compo-
nents are extracted.

However, the FM functions ∇ϕk(m, n) in (2) typically contain
undesirable artifacts at frequencies oriented along the direction of
action of the partial Hilbert transform. These artifacts result primar-
ily from the discrete approximation of the continuous partial Hilbert
transform filter. To ameliorate this problem, we actually compute
two FM functions for Ik(m, n) using two different partial Hilbert
transforms acting in orthogonal directions: a transform H1 with hor-
izontal action and a transform H2 with vertical action. Intuitively,
we think of this as steering the action of the transform away from the
important frequency content of the component, so that at least one of
the two FM functions will be relatively free from Hilbert transform
artifacts. The FM function with greater frequency magnitude is se-
lected on a pixel-by-pixel basis along with the corresonding AM for
inclusion in the representation Γk.

Let A1
k, R1

k, and θ1
k be the be the AM, FM magnitude, and FM

orientation functions computed for component Ik(m, n) using the

Table 1. AM-FM Texture Decomposition Algorithm

L ← original image I(m, n)
domOrien ← ∅
while(true)

1. Compute feature vector Γ for image L using (2).
2. Estimate the dominant orientation Θ(m, n) using (4).

if (Θ ∈ domOrien) break;
3. Extract texture component Cd using (6) and (7).
4. L ← L − Cd

5. domOrien ← [domOrien Θ]
end while

H1, and let A2
k, R2

k, and θ2
k be defined similarly for the H2 trans-

form. For q = 1, 2 we compute AM-weighted FM functions

R
q(m, n) =

KX
k=1

Aq
k(m, n)Rq

k(m, n)

Θq(m, n) =

KX
k=1

Aq
k(m, n)θq

k(m, n).

At each pixel, we compute the dominant FM orientation given by

Θ(m, n) = Θl(m,n)(m, n), (4)

where
l(m, n) = arg max

q∈[1,2]
{Rq(m, n)} . (5)

The dominant orientation (4) is matched against the overcom-
plete dictionary Γ to assign a weight to the AM and FM functions in
each Γk on a pixel-by-pixel basis. The dominant texture component
is then defined by the linear combination

Cd(m, n) =

KX
k=1

αk(m, n)Ak(m, n) cos[ϕk(m, n)], (6)

where the coherency measure αk(m, n) is defined by

αk(m, n) =

8<
:

1, δk(m, n) ≤ π
12

,

1 − { 3
π
[δk(m, n) − π

12
]}2, π

12
< δk(m, n) ≤ π

6
,

0, otherwise

(7)
and δk(m, n) = |θk(m, n) − Θ(m, n)|. Intuitively, the coherency
measure αk works in local spatial neighborhoods to group together
and blend components Ik(m, n) having FM orientations that are
close to the dominant orientation (4) at each pixel. The blended
sum (6) then constitutes a coherent, textural component that is ex-
tracted from the image and the process is repeated iteratively as in-
dicated in Table 1 until all coherent dominant orientations have been
extracted from the image. The threshold bandwidth π/6 in (7) was
chosen for agreement with the eight orientations present per level in
the adapted steerable pyramid.

The proposed algorithm can be interpreted as a frequency-based
feature extraction technique. It is, however, different from other tra-
ditional techniques such as Fourier and orientation-selective Gabor
filtering. Our algorithm is capable of finding the dominant texture
orientation of a component and extract it by matching its orientation
against an overcomplete feature dictionary. Other frequency-based
techniques rely on an energy-based analysis step to estimate texture
orientations, and subsequently require one to design filters with ap-
propriate bandwidths and orientations for the feature extraction pro-
cess. Both of these estimation steps are sensitive to errors if the
image structures and orientations are not known a priori.
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4. RESULTS AND DISCUSSION

We tested the algorithm described in Table 1 against a variety of
Brodatz textures. For each extracted component, we computed the
modulation domain feature dictionary Γ. The dominant texture
orientation Θ was estimated as in (4). The extracted component
Cd(m, n) was then found by matching the dominant orientation
Θ(m, n) against the dictionary Γ as described in (6) and (7). The
results are illustrated in Fig. 1. The left column contains original
images. The second and third columns show the first and second
dominant components and the last column shows the residual after
extraction of the first two dominant components. Images in the
second, third, and fourth columns of each row are contrast stretched
together and directly comparable in terms of gray scales.

The original burlap image is shown in Fig. 1(a). It can be in-
terpreted as a two component image with horizontal and vertical
stripes. The algorithm produces two dominant components shown
in Fig. 1(b)-(c). These components are locally coherent and coin-
cide with human perception. The lack of organized texture in the
residual image in Fig. 1(d) demonstrates that the horizontal and ver-
tical stripes of the original image are successfully extracted.

A more complex decomposition example of reptile skin texture
is shown in Fig. 1(e). The two dominant texture components are
shown in Fig. 1(f)-(g). The algorithm is capable of decomposing the
original image into three locally coherent image components. It is
interesting to observe that these components are not easily identified
from the original image. Similar perceptually motivated results can
be seen for the straw image in Fig. 1(i). Straws having vertical ori-
entations are successfully grouped into the first coherent component
in Fig. 1(j). The second extracted component in Fig. 1(k) depicts
remaining textures that are orthogonal to the first.

Fig. 1(m) shows a composite image which contains a wood grain
texture on the left and a uniform grainy texture on the right. The
decomposed texture components are shown in Fig. 1(n)-(o). The
first component in Fig. 1(n) is able to capture the wood grain texture
part of the original image, while the second component in Fig. 1(o)
extracts the remaining texture. This example suggests that better
decomposition results can be achieved if the original image is seg-
mented into homogeneous regions prior to applying this algorithm.

The proposed algorithm, however, is not effective for circularly
symmetric texture images like the tree image in Fig. 1(q). Although
the extract components in Fig. 1(r) and Fig. 1(s) are locally coherent,
they do not agree with human perception which interpretes the image
with one circular component. Such limitation can be explained by
the range restriction imposed on the angular bandwidth threshold of
the coherency measure in (7). The angular bandwidth was set to
π/6, which is not wide enough to handle circular textural patterns.

5. CONCLUSION

In this paper, we proposed an iterative texture analysis algorithm
capable of extracting locally coherent and meaningful components
from textural images. We introduced a new quantitative coherency
measure in the modulation domain for image components. The ef-
fectiveness of the proposed algorithm is demonstrated with a variety
of well-known Brodatz textures. The decomposed image compo-
nents are visually motivated and their interpretations coincide with
human perception.

The proposed algorithm, however, is limited to texture images
with components having limited orientation bandwidth. The future
work will be focused on fine-tuning the coherency measure in (7) to

accommodate circularly symmetric textural patterns and apply the
algorithm to nature images.
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(e) (f) (g) (h)
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Fig. 1. Examples. (a) Original burlap image. (b) First component of burlap. (c) Second component of burlap. (d) Residual of burlap. (e)
Original reptile skin image. (f) First component of reptile skin. (g) Second component of reptile skin. (h) Residual of reptile skin. (i) Original
straw image. (j) First component of straw. (k) Second component of straw. (l) Residual of straw. (m) Original wood/paper image. (n) First
component of wood/paper. (o) Second component of wood/paper. (p) Residual of wood/paper. (q) Original tree image. (r) First component
of tree. (s) Second component of tree. (t) Residual of tree.
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